Guide to Common Tidal Marsh Invertebrates of the Northeastern

Total Page:16

File Type:pdf, Size:1020Kb

Guide to Common Tidal Marsh Invertebrates of the Northeastern - J Mississippi Alabama Sea Grant Consortium MASGP - 79 - 004 Guide to Common Tidal Marsh Invertebrates of the Northeastern Gulf of Mexico by Richard W. Heard University of South Alabama, Mobile, AL 36688 and Gulf Coast Research Laboratory, Ocean Springs, MS 39564* Illustrations by Linda B. Lutz This work is a result of research sponsored in part by the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant Nos. 04-S-MOl-92, NA79AA-D-00049, and NASIAA-D-00050, by the Mississippi-Alabama Sea Gram Consortium, by the University of South Alabama, by the Gulf Coast Research Laboratory, and by the Marine Environmental Sciences Consortium. The U.S. Government is authorized to produce and distribute reprints for govern­ mental purposes notwithstanding any copyright notation that may appear hereon. • Present address. This Handbook is dedicated to WILL HOLMES friend and gentleman Copyright© 1982 by Mississippi-Alabama Sea Grant Consortium and R. W. Heard All rights reserved. No part of this book may be reproduced in any manner without permission from the author. CONTENTS PREFACE . ....... .... ......... .... Family Mysidae. .. .. .. .. .. 27 Order Tanaidacea (Tanaids) . ..... .. 28 INTRODUCTION ........................ Family Paratanaidae.. .. .. .. 29 SALTMARSH INVERTEBRATES. .. .. .. 3 Family Apseudidae . .. .. .. .. 30 Order Cumacea. .. .. .. .. 30 Phylum Cnidaria (=Coelenterata) .. .. .. .. 3 Family Nannasticidae. .. .. 31 Class Anthozoa. .. .. .. .. .. .. .. 3 Order Isopoda (Isopods) . .. .. .. 32 Family Edwardsiidae . .. .. .. .. 3 Family Anthuridae (Anthurids) . .. 32 Phylum Annelida (Annelids) . .. .. .. .. .. 3 Family Sphaeromidae (Sphaeromids) 32 Class Oligochaeta (Oligochaetes). .. .. .. 3 Family Munnidae . .. .. .. .. 34 Class Hirudinea (Leeches) . .. .. .. 4 Family Asellidae . .. .. .. .. 34 Class Polychaeta (polychaetes).. .. .. .. .. 4 Family Bopyridae . .. .. .. .. 35 Family Nereidae (Nereids). .. .. .. .. 4 Order Amphipoda (Amphipods) . ... 36 Family Pilargiidae (pilargiids). .. .. .. .. 6 Family Hyalidae . .. .. 36 . Family Orbiniidae (Orbiniids) . .. .. .. .. 6 Family Gammaridae . ....... 36 Family Capitellidae (Capitellids). .. .. .. 6 Family Melitidae .. .. .. .. .. 37 Family Ampharetidae (Ampharetids) .. .. 8 Family Aoridae. .. .. .. 38 Family Spionidae (Spionids) . .. .. .. .. 9 Family Corophiidae. .. .. .. .. 39 Family Sabellidae (Sabellids) . .. .. .. .. 9 Family Hyalellidae.. .. .. .. .. 40 Family SerpuJidae (Serpulids) . .. .. .. .. 9 Family Talitridae . .. .. .. .. 40 Phylum Mollusca (Mollusks) . .. .. .. .. 10 Superorder Eucarida . .. 44 Class Gastropoda (Gastropods). .. .. .. .. 10 Order Decapoda . .. 44 Family Neritidae (Nerites). .. .. .. .. 10 Suborder Dendrobranchiata. .. .. 44 . Family Hydrobiidae (Hydrobiids). .. .. 11 Infraorder Penaeidea .. .. .. 44 Family Assimineidae . .. .. .. .. .. 15 Family Penaeidae . .. .. 44 Family Potamidae . .. .. .. .. .. .. 16 Suborder Pleocyemata .. .. .. .. 46 Family Littorinidae (periwinkles) . .. .. .. 17 Infraorder Caridea. .. .. .. 46 Family Melongenidae (Whelks). .. .. .. 18 Family Palaemonidae Family Pyramidellidae (Pyram Shells) . .. .. 18 (palaemonid Shrimps) . .. 46 Family Melampidae (Melampid Snails). .. .. 19 Infraorder Anomura.. .. .. 46 Class Bivalvia (=Pelecypoda) (Bivalves) .. .. 20 Family Diogenidae . Family Corbiculidae (Marsh Clams). ..... 21 (Diogenid Hermit Crabs) .. 48 Family Mactridae . .. .. .. .. .. .. 21 Infraorder Brachyura (Crabs) .. 48 Family Mytilidae (Mussels) . .. .. .. .. 22 Family Portunidae Family Dressenidae . .. .. .. .. .. .. 22 (Swimming Crabs) . .. .. .. 48 Family Cyrenoididae .. .. .. .. .. .. 23 Family Xanthidae (Mud Crabs) 50 Family Solecurtidae. .. .. .. .. .. 24 Family Grapsidae . .. .. 54 . .. Family Ostreidae. .. .. .. .. .. .. 24 Family Ocypodidae ... 56 Phylum Arthropoda.. .. .. .. .. .. .. 25 Subphylum Crustacea. .. .. .. .. .. .. 26 ACKNOWLEDGMENTS. .. .. '61 Class Cirrepedia. .. .. .. .. .. .. .. 26 BIBLIOGRAPHY . .. .. .. .. .. 62 Order Thoracica . .. .. .. .. 26 Suborder Balanomorpha. .. .. .. .. 26 TAXONOMIC KEY S .. ... ... ... .... .. 66 Class Malacostraca. .. .. .. .. .. 27 GLOSSARY. .. .. .. .. .. .. .. .. .. .. 78 Superorder Peracarida . .. .. .. 27 Order Mysidacea . .. .. .. .. .. 27 INDEX ................ ................ 81 ERRATA SHEET GUIDE TO COHHON TIDAL f1ARSH INVERTEBRATES �}HE NORTHEASTERN GUlF OF MEXICO CODE: Paaa/Column/Llne MASGP-79-004 1/1/30: "Ipoclalilt" to opacialiot. 3/1/13: "atolen" to atolon 6/1/6-7: Chanaa "Gardiner, 1977" to Gardiner and Wiloon, 1977 (1979) 9/2/fig. l"gend for 5f: change "Hypaniola" to Hobsonla 26/2/1: Correct spelling of "Cinepedia" to Cirripedia 26/2/8: Change "nsupl!" to n8upliar 27/2/2 from boeeom: Change "or" to of 27/2/12 from bottom: Change "figure 30f" to figure 30e 28/1/9: Change "figure 30e" to figur e 30f 29/fig. 30: Parts "e" and "f" are miBlabeled; they should be swapped 29/2/9: Change "antenna!! to antennae 32/2/2 from bottom: Should rea'd "ex tending anteriorly beyond eyes; inner" )/./1/4 from bottom: Insert Callahan in Clark and Robertson reference J4/2/11 from bottom: Chan ge obte.�,,- to �sus 37/2/4: Word left out of sentence. Add "mseromueronate" to end of line. 39/1/5 from bottom: Change "Myer" to Myer� 44/1/39: Delete extraneous line. IIldrval stages!! 47/f1g.51£ t bottom line: t:hsllKe IIkodlaken..!!;!." to kadlakensis 49/fig . 53: a - adult male refer. to left photograph, b - adule female refers to right photograph __ a • • • • ."_ "'o49/fig. 54 : upper left, b upper righe, c bottom left, d �ddle bottom, e • rigllt bottom -54/1/7:- C hango "chelae" to chela 54/1/15: Delaee ext ra "a" In Ma •• achusetts 60/1/4: Change "Me.hri" to Moshiri 65/2/reference: Change "W i lliams, 1976" to Williams, 1966. b61-couplet 13: Change "Leonereia" to Laenereis 70/couplee 3: Change fig. 67 to 68 70/couplet ��: Swap statements about uropods and pleopods to make it parallel with 5a; change f1g. 68 to 69. 70/couplet 6&: Add I'f" to fig . citation 70/couplet 7a : Change fig. 6-- to 68. 70/c ouple e lOa: Change "lIargar 1a" to lIa rger la 70/coupi-.rr-12a: ·-ellange fig; 3bb to 33b. 7J/couplet 14: Swap halve. of couplet 71/couplet 16: Swap halves of couplet 71/couplet 178: Second line, change. "outer ramus11 to inner ramus 71 /couplet ISb: Delete extra "rll 1n terebrana 1 1 7llcouplet 208: Change I�� I to ObtU8US 71/couplet 21: Swap halve. of couplet 71/couplet 23b: IIHH�rt comma aiter second antenna 71/cuupl�e 25: Swap halves of couplet 71/couplet 258: Change comma after setation to 8 semic olon 72/couple e 27: Swap halves of couplet 72/couplet 298: Change "�nneiE.£.!..d�sll to bonnieroides 72/couplee 30a: Change comma after broad to a semicolon 72/couplet 30b: Change comma after peduncle to a semicolon 1 72/couplet 36: Ch an ge I�l!banar1u�11 to clihanariuB 72/couplet 39: Change courtle to coarse 7 3/cou pl et �Ob: Chlitlge comma after entire to a semicolon 73/couplet 4lb: Insert comma a ft er �pine tl t 1t 73/couplet 428: Chtlnge 1 � to aztecus 73/coupl�t 43.: Change fig. 50g to 51g nlcoupl�t Io3b: Clla"ge fig. 50d tu 5ld 73/couplet 49: Swap halve. of couplet 74/couplct 54: Swap halves of cuuplet 74/couplf!t 55b: Change col01l to tH:�m1colon 74/couplct 57: Swap halve. of cuuplet 76/1 egend to fig. 70: ChanHc !lex. I coxa " to "ex., coxa" 79/2/8 eh & 9th defln1eiol1.: Chunge "pellial" to pall1al 1 PREFACE part of the estuarine "nursery grounds" for many fishes and invertebrates. Since the realization of the ecological and eco­ Salt marshes are formed along the shores of nomic importance of salt marshes, millions of dollars coastal plains in the temperate and tropical zones of in research funds have been allocated for the study of the world wherever wave action is slowed enough to these valuable and productive wetlands. Very little allow grasses to become established. They are found information, however, has been compiled for the in the intertidal zone in shallow water, in the lee of identification of marine and estuarine salt marsh in­ sea islands, along borders of bays and inlets, and vertebrates. Ursin (1972) and Olmstead and Fell along tidal streams, bayous, and the mouths of rivers. (1974) have published handbooks or guides to salt In the United States, an almost continuous band of marsh organisms, but both these guides are designed salt marshes fringes the Atlantic and Gulf coasts. The for the temperate tidal marshes of the Atlantic coast. predominant grass in Atlantic coastal marshes is The only popular account of salt marsh invertebrates smooth cordgrass, Spartina alternij1ora. Tides along for our region is a guide by Fotheringham and Brun­ the Atlantic coast occur regularly twice a day and enmeister (1975)* to the common invertebrates of the have amplitudes of 4 to 8 feet (1.3 to 2.6 meters). northwestern Gulf Coast. Although their treatment is Conditions are different in the northern Gulf of Mex­ interesting, it is general and therefore limited in its ico where tides in most regions occur at irregular in­ treatment of tidal marsh invertebrates. Teal (1962), tervals and are much lower in amplitude than along in his paper on Georgia salt marshes, was the first to the Atlantic coast. Tides in the Gulf are usually no give an extensive list of salt marsh invertebrates. The higher than 1.5 feet (0.5 meters). Strong southerly most comprehensive faunal study of the salt marshes winds can "blow in the tide" during a normal low of the northern Gulf was that of Subrahmanyam et al tide, and strong northerly winds can "blow out the ( 1 976). They listed
Recommended publications
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • Polychaetes Associated with a Tropical Ocean Outfall: Synthesis of a Biomonitoring Program Off O'ahu, Hawai'f
    Polychaetes Associated with a Tropical Ocean Outfall: Synthesis ofa Biomonitoring Program off O'ahu, Hawai'F J. H. Bailey-Brock,2,3,4,5 B. Paavo,3,4 B. M. Barrett,3,4 and J. Dreyer3,4 Abstract: A comparison of benthic polychaete communities off the Sand Island Wastewater Outfall was undertaken to recognize organic enrichment indicator species for Hawaiian waters. Primary-treatment sewage is discharged off the south shore of O'ahu at 70 m depth. A historical data set spanning 9 yr for seven sites at 70 m and two recent studies at 20, 50, and 100 m depths were analyzed. Geochemical data did not support the assumption that the outfall is an im­ portant source of organic enrichment in nutrient-poor sandy sediments within oligotrophic tropical waters. Five polychaete species, however, appeared partic­ ularly sensitive, positively or negatively, to environmental conditions near the outfall. Neanthes arenaceodentata (Nereididae) and Ophryotrocha adherens (Dor­ villeidae) have been dominant at sites within the outfall's zone of initial dilution (ZID). Since 1993, N arenaceodentata has virtually disappeared, and 0. adherens concurrently became abundant and continued to flourish at ZID sites. Well­ known indicators within the Capitella capitata complex (Capitellidae) were pres­ ent at ZID and control (far field) sites though their ZID abundance was greater. Two sabellids, Euchone sp. Band Augeneriella dubia were inversely distributed, the smaller Euchone sp. B at far field sites and larger A. dubia within ZID sta­ tions. The former was most likely restricted to a greater proportion offine sed­ iment particles at two far field sites.
    [Show full text]
  • Towards Understanding the Phylogenetic History of Hydrozoa: Hypothesis Testing with 18S Gene Sequence Data*
    SCI. MAR., 64 (Supl. 1): 5-22 SCIENTIA MARINA 2000 TRENDS IN HYDROZOAN BIOLOGY - IV. C.E. MILLS, F. BOERO, A. MIGOTTO and J.M. GILI (eds.) Towards understanding the phylogenetic history of Hydrozoa: Hypothesis testing with 18S gene sequence data* A. G. COLLINS Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, USA SUMMARY: Although systematic treatments of Hydrozoa have been notoriously difficult, a great deal of useful informa- tion on morphologies and life histories has steadily accumulated. From the assimilation of this information, numerous hypotheses of the phylogenetic relationships of the major groups of Hydrozoa have been offered. Here I evaluate these hypotheses using the complete sequence of the 18S gene for 35 hydrozoan species. New 18S sequences for 31 hydrozoans, 6 scyphozoans, one cubozoan, and one anthozoan are reported. Parsimony analyses of two datasets that include the new 18S sequences are used to assess the relative strengths and weaknesses of a list of phylogenetic hypotheses that deal with Hydro- zoa. Alternative measures of tree optimality, minimum evolution and maximum likelihood, are used to evaluate the relia- bility of the parsimony analyses. Hydrozoa appears to be composed of two clades, herein called Trachylina and Hydroidolina. Trachylina consists of Limnomedusae, Narcomedusae, and Trachymedusae. Narcomedusae is not likely to be the basal group of Trachylina, but is instead derived directly from within Trachymedusae. This implies the secondary gain of a polyp stage. Hydroidolina consists of Capitata, Filifera, Hydridae, Leptomedusae, and Siphonophora. “Anthomedusae” may not form a monophyletic grouping. However, the relationships among the hydroidolinan groups are difficult to resolve with the present set of data.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • Barnegat Bay— Year 2
    Plan 9: Research Barnegat Bay— Benthic Invertebrate Community Monitoring & Year 2 Indicator Development for the Barnegat Bay-Little Egg Harbor Estuary - Barnegat Bay Diatom Nutrient Inference Model Hard Clams as Indicators of Suspended Ecological Evaluation of Particulates in Barnegat Bay Sedge Island Marine Assessment of Fishes & Crabs Responses to Conservation Zone Human Alteration of Barnegat Bay Assessment of Stinging Sea Nettles (Jellyfishes) in Barnegat Bay Baseline Characterization Dr. Paul Jivoff, Rider University, Principal Investigator of Phytoplankton and Harmful Algal Blooms Project Manager: Joe Bilinski, Division of Science, Research and Environmental Health Baseline Characterization of Zooplankton in Barnegat Bay Thomas Belton, Barnegat Bay Research Coordinator Dr. Gary Buchanan, Director—Division of Science, Research & Environmental Health Multi-Trophic Level Modeling of Barnegat Bob Martin, Commissioner, NJDEP Bay Chris Christie, Governor Tidal Freshwater & Salt Marsh Wetland Studies of Changing Ecological Function & Adaptation Strategies 29 August 2014 Final Report Project Title: Ecological Evaluation of Sedge Island Marine Conservation Area in Barnegat Bay Dr. Paul Jivoff, Rider University, Manager [email protected] Joseph Bilinski, NJDEP Project Manager [email protected] Tom Belton, NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Acknowledgements I would like to thank the Rutgers University Marine Field Station for providing equipment, facilities and logistical support that were vital to completing this project. I also thank Rider University students (Jade Kels, Julie McCarthy, Laura Moritzen, Amanda Young, Frank Pandolfo, Amber Barton, Pilar Ferdinando and Chelsea Tighe) who provided critical assistance in the field and laboratory. The Sedge Island Natural Resource Education Center provided key logistical support for this project.
    [Show full text]
  • CORE Arrigoni Et Al Millepora.Docx Click Here To
    An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea Item Type Article Authors Arrigoni, Roberto; Maggioni, Davide; Montano, Simone; Hoeksema, Bert W.; Seveso, Davide; Shlesinger, Tom; Terraneo, Tullia Isotta; Tietbohl, Matthew; Berumen, Michael L. Citation Arrigoni R, Maggioni D, Montano S, Hoeksema BW, Seveso D, et al. (2018) An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea. Coral Reefs. Available: http://dx.doi.org/10.1007/s00338-018-01739-8. Eprint version Post-print DOI 10.1007/s00338-018-01739-8 Publisher Springer Nature Journal Coral Reefs Rights Archived with thanks to Coral Reefs Download date 05/10/2021 19:48:14 Link to Item http://hdl.handle.net/10754/629424 Manuscript Click here to access/download;Manuscript;CORE Arrigoni et al Millepora.docx Click here to view linked References 1 2 3 4 1 An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea 5 6 2 7 8 3 Roberto Arrigoni1, Davide Maggioni2,3, Simone Montano2,3, Bert W. Hoeksema4, Davide Seveso2,3, Tom Shlesinger5, 9 10 4 Tullia Isotta Terraneo1,6, Matthew D. Tietbohl1, Michael L. Berumen1 11 12 5 13 14 6 Corresponding author: Roberto Arrigoni, [email protected] 15 16 7 1Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah 17 18 8 University of Science and Technology, Thuwal 23955-6900, Saudi Arabia 19 20 9 2Dipartimento di Scienze dell’Ambiente e del Territorio (DISAT), Università degli Studi di Milano-Bicocca, Piazza 21 22 10 della Scienza 1, Milano 20126, Italy 23 24 11 3Marine Research and High Education (MaRHE) Center, Faafu Magoodhoo 12030, Republic of the Maldives 25 26 12 4Taxonomy and Systematics Group, Naturalis Biodiversity Center, P.O.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • Crustacea: Peracarida: Tanaidacea: Apseudomorpha), with Descriptions of a New Genus and Six New Species
    Zootaxa 3734 (4): 401–441 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3734.4.1 http://zoobank.org/urn:lsid:zoobank.org:pub:00DC3ED7-62FD-4D99-ABCC-0DC57D1A51E7 Tanaidaceans from Brunei, IV. The Families Kalliapseudidae, Pagurapseudopsi- dae, Parapseudidae and Apseudidae (Crustacea: Peracarida: Tanaidacea: Apseudomorpha), with descriptions of a new genus and six new species ROGER N. BAMBER ARTOO Marine Biology Consultants, Ocean Quay Marina, Belvidere Road, Southampton SO14 5QY, United Kingdom. E-mail: [email protected] Abstract Apseudomorph tanaidaceans from recent samples of the South China Sea benthos off Brunei have been examined. The habitats were sandy substrata from between 5 and 90 m depth. Fourteen species of the four families considered here were discovered. A new species of Tanapseudes is described. The distribution of Phoxokalliapseudes gobinae is analyzed. Biropalostoma goofi is recorded for the first time in Brunei waters. One new species of the Apseudidae (in the genus Bunakenia) and four new species of the Parapseudidae (one each in the genera Platylicoa and Pakistanapeudes, and two in a new genus Actenos, of the subfamily Pakistanapseudinae) are described. The genus Platylicoa is moved to the Pakistanapseudinae, and the genus Hainanius is returned to the Parapseudidae (Parapseudinae). Apseudes tenuicorporeus is moved from Biropalostoma to the new pakistanapseudin genus described herein. Key words: Tanaidacea, Pagurapseudidae, Kalliapseudidae, Parapseudidae, Apseudidae, Actenos, Aponychos, Apseudopsis, Bilobatus, Biropalostoma, Bunakenia, Mendamanus, Pakistanapseudes, Pagurapseudopsis, Phoxokalliapseudes, Platylicoa, Tanapseudes, South China Sea Introduction This paper is the fourth on the South China Sea tanaidacean fauna of the waters off Brunei.
    [Show full text]
  • Dieta Natural Do Siri-Azul Callinectes Sapidus (Decapoda, Portunidae) Na Região
    Dieta natural do siri-azul Callinectes sapidus (Decapoda, Portunidae) na região... 305 Dieta natural do siri-azul Callinectes sapidus (Decapoda, Portunidae) na região estuarina da Lagoa dos Patos, Rio Grande, Rio Grande do Sul, Brasil Alexandre Oliveira, Taciana K. Pinto, Débora P. D. Santos & Fernando D’Incao Fundação Universidade Federal do Rio Grande, Caixa Postal 474, 96201-900 Rio Grande, RS, Brasil. ([email protected], [email protected], [email protected], [email protected]) ABSTRACT. Natural diet of the blue crab Callinectes sapidus (Decapoda, Portunidae) in the Patos Lagoon estuary area, Rio Grande, Rio Grande do Sul, Brazil. The Southern Brazil blue crab Callinectes sapidus Rathbun, 1869 is the most abundant crab of the genus Callinectes in Patos Lagoon estuary. Although this species is widely distributed throughout the Patos Lagoon estuary area, there is little information about its natural diet. This species is an important predator and has a significant influence on its prey populations. The aim of this study was to check the natural diet of blue crab through the foregut contents analysis. Crabs were collected using an otter trawl net from March 2003 to March 2004. After collected, crabs were preserved immediately in 10% formaldehyde. The carapace width, weight and sex were measured for each individual. The foregut of each crab was removed and stored in 70% ethanol. Blue crab feeds on a wide variety of sessile and slow moving invertebrates. The main item was Detritus, followed by the suspension-feeder mollusk Erodona mactroides Bosc, 1802 (Erodonidae). Sand grains and the small crustaceans of class Ostracoda, were an important component of the foregut contents, but sand grains were not considered food.
    [Show full text]
  • Journal of Marine Research, Sears Foundation For
    The Journal of Marine Research is an online peer-reviewed journal that publishes original research on a broad array of topics in physical, biological, and chemical oceanography. In publication since 1937, it is one of the oldest journals in American marine science and occupies a unique niche within the ocean sciences, with a rich tradition and distinguished history as part of the Sears Foundation for Marine Research at Yale University. Past and current issues are available at journalofmarineresearch.org. Yale University provides access to these materials for educational and research purposes only. Copyright or other proprietary rights to content contained in this document may be held by individuals or entities other than, or in addition to, Yale University. You are solely responsible for determining the ownership of the copyright, and for obtaining permission for your intended use. Yale University makes no warranty that your distribution, reproduction, or other use of these materials will not infringe the rights of third parties. This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Journal of Marine Research, Sears Foundation for Marine Research, Yale University PO Box 208118, New Haven, CT 06520-8118 USA (203) 432-3154 fax (203) 432-5872 [email protected] www.journalofmarineresearch.org Species densities of macrobenthos associated with seagrass: A field experimental study of predation by David K. Young1, Martin A. Buzas2, and Martha W.
    [Show full text]
  • Molecular Phylogeny of the Family Capitellidae (Annelida)
    Title Molecular Phylogeny of the Family Capitellidae (Annelida) Author(s) Tomioka, Shinri; Kakui, Keiichi; Kajihara, Hiroshi Zoological Science, 35(5), 436-445 Citation https://doi.org/10.2108/zs180009 Issue Date 2018-10 Doc URL http://hdl.handle.net/2115/75605 Type article File Information Zoological Science35-5_436‒445(2018).pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP ZOOLOGICAL436 SCIENCE 35: 436–445 (2018) S. Tomioka et al. © 2018 Zoological Society of Japan Molecular Phylogeny of the Family Capitellidae (Annelida) Shinri Tomioka1*, Keiichi Kakui2, and Hiroshi Kajihara2 1Rishiri Town Museum, Senhoshi, Rishiri Is., Hokkaido 097-0311, Japan 2Department of Biological Sciences, Faculty of Science, Hokkaido University, N10 W8, Sapporo, Hokkaido 060-0810, Japan Capitellids have emerged as monophyletic in most but not all recent molecular phylogenies, indi- cating that more extensive taxon sampling is necessary. In addition, monophyly of most or all capitellid genera was questionable, as some diagnostic characters vary ontogenetically within individuals. We tested the monophyly of Capitellidae and eight capitellid genera using phyloge- netic analyses of combined 18S, 28S, H3, and COI gene sequences from 36 putative capitellid spe- cies. In our trees, Capitellidae formed a monophyletic sister group to Echiura, and Capitella was also monophyletic, separated by a long branch from other capitellids. Well-supported clades each containing representatives of different genera, or containing a subset of species within a genus, indicated that Barantolla, Heteromastus, and Notomastus are likely not monophyletic. We mapped three morphological characters traditionally used to define capitellid genera (head width relative to width of first segment, number of thoracic segments, and number of segments with capillary chae- tae) onto our tree.
    [Show full text]
  • ABSTRACT Title of Dissertation: PATTERNS IN
    ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range.
    [Show full text]