Fabless: the Transformation of the Semiconductor Industry

Total Page:16

File Type:pdf, Size:1020Kb

Fabless: the Transformation of the Semiconductor Industry DANIEL NENNI PAUL MCLELLAN FABLESS: THE TRANSFORMATION OF THE SEMICONDUCTOR INDUSTRY Foreword by Dr. Cliff Hou, VP of R&D, TSMC A SEMIWIKI.COM PROJECT FABLESS: The Transformation of The Semiconductor Industry DANIEL NENNI PAUL MCLELLAN WITH FOREWORD BY CLIFF HOU, VP OF R&D, TSMC A SEMIWIKI.COM PROJECT Fabless: The Transformation of the Semiconductor Industry Copyright 2013 by SemiWiki.com LLC. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system without the prior written consent of the publisher. Authors: Daniel Nenni and Paul McLellan Editors: Beth Martin and Shushana Nenni ISBN: 978-1-4675-9307-6 BISAC: Business & Economics / General Fabless: The Transformation of the Semiconductor Industry Table of Contents Foreword .................................................................................................. iv Preface ......................................................................................................vi Chapter 1: The Semiconductor Century ............................................10 Chapter 2: The ASIC Business ............................................................21 In Their Own Words: VLSI Technology ......................................29 In Their Own Words: eSilicon Corporation .................................36 Chapter 3: The FPGA ..........................................................................44 In Their Own Words: Xilinx ..........................................................52 Chapter 4: Moving to the Fabless Model ..........................................64 In Their Own Words: Chips and Technologies ...........................68 Chapter 5: The Rise of the Foundry ..................................................71 In Their Own Words: TSMC and Open Innovation Platform .79 In Their Own Words: GLOBALFOUNDRIES .........................89 Chapter 6: Electronic Design Automation ........................................98 In Their Own Words: Mentor Graphics .....................................108 In Their Own Words: Cadence Design Systems ........................123 In Their Own Words: Synopsys ...................................................138 Chapter 7: Intellectual Property ........................................................153 In Their Own Words: ARM ..........................................................160 In Their Own Words: Imagination Technologies ......................168 Chapter 8: What’s Next for the Semiconductor Industry? ...........181 iii Fabless: The Transformation of the Semiconductor Industry Foreword Dr. Cliff Hou, Vice President, Research and Development, TSMC emiconductor innovation has the power to change the world. SAlthough, well over half a century ago, when semiconductors first came into being, few people really saw that promise. That power of semiconductors to innovate has stretched beyond its original applications. It also has changed how semiconductors are manufactured. Over the first 30 years of its existence, the semiconductor industry followed the proven integrated manufacturing model of the time. Those companies who owned the manufacturing assets made, marketed, researched and developed their own products. But then, the dynamics of innovation mingled with laws of supply and demand and a new concept—outsourcing—emerged and gave birth to what is known today as the dedicated foundry model, and the world has never been the same. Dr. Morris Chang is credited with identifying the innovation need and providing the resources to meet it. The need was making available manufacturing resources that are 100 percent dedicated to those emerging semiconductor companies that lacked the financial wherewithal to own their own expensive equipment. Like all great ideas, the premise was simple. What no one foresaw is that it would give rise to two, if not three, new industry segments, all of which contribute greatly to the innovative spirit of the industry today. When Dr. Chang established the Taiwan Semiconductor Manufacturing Company (TSMC) in 1987, the foundry segment and the fabless iv Fabless: The Transformation of the Semiconductor Industry semiconductor model were born. Today, fabless semiconductor companies—those companies who do not own manufacturing resources—are the fountainhead of innovation that is the foundation for our electronic world. The foundry segment has allowed these companies to invest in design and innovation rather than in manufacturing. As a result, innovation and the world economy have raced forward at an unprecedented pace. This has given nearly every semiconductor company the flexibility to innovate widely and creatively, constantly expanding the universe of products we rely upon today. Equally remarkable has been the rise of a powerful design ecosystem to complement the fabless industry. The ecosystem works in unison with designers and foundries to ensure that the IP, design tools, and services needed to get next-generation designs taped-out and in production are proven and ready to help customers meet their time-to-market goals. Today, the emergence of the fabless model, the dedicated foundry industry segment and an independent design ecosystem are driving the mobile revolution and will be the foundation of the internet-of-things. Even as this book was being written, the semiconductor industry continued to evolve. The drive to integrate the design and manufacturing links in the semiconductor value chain is now being extended downstream (to manufacturing equipment and materials suppliers) and upstream to major product companies. This is taking on the power of integration— virtual integration. Virtual integration is, by definition, the power of collaboration that blazes the direction and vision for the next generation of innovation. Innovation will always be the hallmark of the semiconductor industry and it is the theme that runs through this book. I’m honored and humbled to be part of this exciting industry and equally honored and humbled to offer my comments as the introduction to this book. Dr. Cliff Hou January 2014 v Fabless: The Transformation of the Semiconductor Industry Preface he purpose of this book is to illustrate the magnificence of Tthe fabless semiconductor ecosystem, and to give credit where credit is due. We trace the history of the semiconductor industry from both a technical and business perspective. We argue that the development of the fabless business model was a key enabler of the growth in semiconductors since the mid-1980s. Because business models, as much as the technology, are what keep us thrilled with new gadgets year after year, we focus on the evolution of the electronics business. We also invited key players in the industry to contribute chapters. These “In Their Own Words” chapters allow the heavyweights of the industry to tell their corporate history for themselves, focusing on the industry developments (both in technology and business models) that made them successful, and how they in turn drive the further evolution of the semiconductor industry. Before we dive in, let’s define some terms. Rather than electronics, which refers to whole devices like your cell phone or TV, we’ll be using the terms chip, IC, ASIC, SoC, and FPGA throughout the book as we focus on the components that go into the devices. Chip or IC can refer more broadly to the two main types of semiconductor devices we cover: ASICs and SoCs (systems-on-chip), and FPGAs (field-programmable gate arrays). We have chosen not to cover many other electronic components vi Fabless: The Transformation of the Semiconductor Industry including memory, flash, mixed-signal technology, and micro-electro- mechanical systems (MEMS). We also talk about several phases of development in the semiconductor industry, and use the following terms to describe the companies and technologies that define a particular business model. IC: An integrated circuit, also called a chip, is a set of electronic circuits, including transistors and other components, on a silicon substrate. Systems company: A systems company makes a consumer product from chips that other companies have designed. Examples include Cisco and Apple. Semiconductor company: Also called integrated device manufacturer (IDM), these companies, like Intel and Samsung, design and manufacture standard ICs that systems companies use in their products. Until the mid- 1980s, all semiconductor companies were IDMs, that is, they controlled both the design and manufacture of their chips. This changed gradually, and now there are only a few (Intel and Samsung notably). All other chip makers outsource the manufacturing of their designs to a foundry. ASIC: Application specific integrated circuit refers to two things: a chip that is custom designed for a specific application, rather than for a general-purpose application, and to the type of company that developed in the 1980s that performed the physical design and manufacturing of these application-specific ICs for other semiconductor or systems companies. “ASIC” is now commonly used interchangeably with “IC.” SoC: A system-on-chip is an IC that integrates all components of a computer or other electronic system into a single chip. It may contain digital, analog, mixed-signal, and often radio-frequency functions—all on a single chip substrate. Fabless company: A company that designs their own chip but outsources the manufacturing to a third-party,
Recommended publications
  • Release Notes for X11R6.8.2 the X.Orgfoundation the Xfree86 Project, Inc
    Release Notes for X11R6.8.2 The X.OrgFoundation The XFree86 Project, Inc. 9February 2005 Abstract These release notes contains information about features and their status in the X.Org Foundation X11R6.8.2 release. It is based on the XFree86 4.4RC2 RELNOTES docu- ment published by The XFree86™ Project, Inc. Thereare significant updates and dif- ferences in the X.Orgrelease as noted below. 1. Introduction to the X11R6.8.2 Release The release numbering is based on the original MIT X numbering system. X11refers to the ver- sion of the network protocol that the X Window system is based on: Version 11was first released in 1988 and has been stable for 15 years, with only upwardcompatible additions to the coreX protocol, a recordofstability envied in computing. Formal releases of X started with X version 9 from MIT;the first commercial X products werebased on X version 10. The MIT X Consortium and its successors, the X Consortium, the Open Group X Project Team, and the X.OrgGroup released versions X11R3 through X11R6.6, beforethe founding of the X.OrgFoundation. Therewill be futuremaintenance releases in the X11R6.8.x series. However,efforts arewell underway to split the X distribution into its modular components to allow for easier maintenance and independent updates. We expect a transitional period while both X11R6.8 releases arebeing fielded and the modular release completed and deployed while both will be available as different consumers of X technology have different constraints on deployment. Wehave not yet decided how the modular X releases will be numbered. We encourage you to submit bug fixes and enhancements to bugzilla.freedesktop.orgusing the xorgproduct, and discussions on this server take place on <[email protected]>.
    [Show full text]
  • EP Activity Report 2014
    EUROPRACTICE IC SERVICE THE RIGHT COCKTAIL OF ASIC SERVICES EUROPRACTICE IC SERVICE OFFERS YOU A PROVEN ROUTE TO ASICS THAT FEATURES: • Low-cost ASIC prototyping • Flexible access to silicon capacity for small and medium volume production quantities • Partnerships with leading world-class foundries, assembly and testhouses • Wide choice of IC technologies • Distribution and full support of high-quality cell libraries and design kits for the most popular CAD tools • RTL-to-Layout service for deep-submicron technologies • Front-end ASIC design through Alliance Partners Industry is rapidly discovering the benefits of using the EUROPRACTICE IC service to help bring new product designs to market quickly and cost-effectively. The EUROPRACTICE ASIC route supports especially those companies who don’t need always the full range of services or high production volumes. Those companies will gain from the flexible access to silicon prototype and production capacity at leading foundries, design services, high quality support and manufacturing expertise that includes IC manufacturing, packaging and test. This you can get all from EUROPRACTICE IC service, a service that is already established for 20 years in the market. THE EUROPRACTICE IC SERVICES ARE OFFERED BY THE FOLLOWING CENTERS: • imec, Leuven (Belgium) • Fraunhofer-Institut fuer Integrierte Schaltungen (Fraunhofer IIS), Erlangen (Germany) This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement N° 610018. This funding is exclusively used to support European universities and research laboratories. By courtesy of imec FOREWORD Dear EUROPRACTICE customers, Time goes on. A year passes very quickly and when we look around us we see a tremendous rapidly changing world.
    [Show full text]
  • Stephen Clarke-Willson
    Contact Stephen Clarke-Willson www.linkedin.com/in/drstephencw Programmer, Producer, Executive (LinkedIn) Sammamish www.arena.net (Company) www.above-the-garage.com (Personal) Summary above-the-garage.com/blog (Blog) Software technology development leadership and management. Top Skills Specialties: Technical / Product team building and management; Systems Programming System Architecture experience as first, second and third level manager in fast growing Game Development companies; systems programming, systems architecture, technology development. Publications Guild Wars Microservices and 24/7 Uptime Guild Wars 2 - Scaling from one to Experience millions Applying Game Design To Virtual NCSOFT Environments VP of Technology Nano-Plasm March 2019 - Present (1 year 7 months) Bellevue, WA ArenaNet LLC 13 years 6 months Programmer in the role of Studio Technical Director May 2013 - March 2019 (5 years 11 months) Bellevue, WA Lead engineering staff (about 100 members) for "gaming as a service" with continuous high volume content creation and delivery at MMO scale. Translate business objectives into innovative yet achievable technical challenges. Created technical unit with flat reporting structure and peer input reviews. Programmer in the roles of Server Programmer / Server Team Lead October 2005 - April 2013 (7 years 7 months) Developing multi-threaded, restartable, dynamically updatable, high performance, internet-resilient, bug free server code for the MMO Guild Wars (1 and 2). Above the Garage Productions Programmer / Owner Page 1 of 4 May 2004 - October 2005 (1 year 6 months) Game Technology Developer, Above the Garage Productions Developed downloadable music system "DirectSong.com" (from payment system [PayPal] to delivery system to embedded music player using Microsoft WMA technology).
    [Show full text]
  • Wind River Vxworks Platforms 3.8
    Wind River VxWorks Platforms 3.8 The market for secure, intelligent, Table of Contents Build System ................................ 24 connected devices is constantly expand- Command-Line Project Platforms Available in ing. Embedded devices are becoming and Build System .......................... 24 VxWorks Edition .................................2 more complex to meet market demands. Workbench Debugger .................. 24 New in VxWorks Platforms 3.8 ............2 Internet connectivity allows new levels of VxWorks Simulator ....................... 24 remote management but also calls for VxWorks Platforms Features ...............3 Workbench VxWorks Source increased levels of security. VxWorks Real-Time Operating Build Configuration ...................... 25 System ...........................................3 More powerful processors are being VxWorks 6.x Kernel Compatibility .............................3 considered to drive intelligence and Configurator ................................. 25 higher functionality into devices. Because State-of-the-Art Memory Host Shell ..................................... 25 Protection ..................................3 real-time and performance requirements Kernel Shell .................................. 25 are nonnegotiable, manufacturers are VxBus Framework ......................4 Run-Time Analysis Tools ............... 26 cautious about incorporating new Core Dump File Generation technologies into proven systems. To and Analysis ...............................4 System Viewer ........................
    [Show full text]
  • A Vhsic Hardware Description Language Compiler for Logic Cell Arrays
    A VHSIC HARDWARE DESCRIPTION LANGUAGE COMPILER FOR LOGIC CELL ARRAYS by Bing Liu A thesis presented to the university of Mânitoba in partial fulfillment of úe requirements of the degree of Maste¡ of Science in Elecrical and Computel Engineering Winnipeg, Manitoba, Canada @ Bing Liu, January 1990 Bibliothèque nat¡onale rE fr"3""i"i;tjo'",' du Canada Canadian Theses Serv¡ce Service des thèses canadiennes Otta'¿/ã. Can¿da Kl A ON¡ The author has granted an inevocable non' L'auteur a accordé une licence iffévocable et exclusive licence allowing the National Library non exclusive permettant à h Bibliothèque of Canada to reproduce, loan, distribute or sell nationale du Canada.de reproduire, prêter, copies of his/her thesis by any means and in distribuer ou vendre des copies de sa thèse any form or format, making this thesis avaihble de quelque manière et sous quelque forme to ¡nterested persons. que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées. The author retains ownership of the copyright L auteur conserve la propriété du droit d'auteur in his/her thesis. Neither the thesis nor qui protà?e sa thèse. Ni la thèse ni des extraits substantial extracts from it may be printed or substantiels de celle-ci ne doivent être otherw¡se reproduced without his/her per' imprimés ou autrement reproduits sans son mission. autorisation. ISBN ø-315-7 r7s t -3 Canadä A VHSIC HARDWARE DESCRIPTION I.ANGUAGE COMPILER FOR LOG]C CEI,L ARRAYS BY BING LIU A thesis subnrined lo thc Fact¡lty of Crâduate Studies of the University of M¿nitoba in partial fulfìllment of the requirenrents of the degree of MASTM O¡' SC]MICE o 1990 Permission has becn granted to the L¡BRÁRY OF THE UNIVER' SITY OF MANITOBA to lend o¡ sell copies of tlt¡s thesis.
    [Show full text]
  • Going Vertical: a New Integration Era in the Semiconductor Industry Table of Contents
    Going vertical: A new integration era in the semiconductor industry Table of contents 01 Executive overview Integration in the 02 semiconductor industry Strategic options for 03 semiconductor companies Moving forward: what semiconductor 04 companies must consider today Going vertical: A new integration era in the semiconductor industry 2 Executive overview Like many industries, the semiconductor industry is not immune to waves of diversification and consolidation through inorganic and organic growth. While inflection points with large-scale systemic changes in the value chain are relatively rare, our perspective is that there is a systemic change currently trending in the industry. Since the inception of the industry, semiconductor companies have recognized the value of technology. Accordingly, the market has rewarded semiconductor companies for specializing in distinct parts of the value chain by developing technological advantages by investing in R&D and by scaling technology through horizontal integration. This way of working transformed an industry that was initially vertically integrated (semiconductor design, semiconductor manufacturing, and system integration) into an ecosystem focused on specific areas of design, manufacturing, and/or systems. In the past five years, business value in some segments has moved from underlying technology to specific use cases to better monetize end-customer data and experience. • 5G, automotive, AI, cloud, system integration and hardware-software integration System integrators and software and cloud platform companies are no longer just important customers for the semiconductor industry—they are directly expanding into multiple upstream areas. • Taking advantage of silicon and system design • Control more of the technology stack • Optimize system performance • Improve the customer experience This vertical integration trend is distinctly different from the vertical integration which occurred at the inception of the semiconductor and integrated device manufacturing industry more than 50 years ago.
    [Show full text]
  • Intel Quartus Prime Pro Edition User Guide: Programmer Send Feedback
    Intel® Quartus® Prime Pro Edition User Guide Programmer Updated for Intel® Quartus® Prime Design Suite: 21.2 Subscribe UG-20134 | 2021.07.21 Send Feedback Latest document on the web: PDF | HTML Contents Contents 1. Intel® Quartus® Prime Programmer User Guide..............................................................4 1.1. Generating Primary Device Programming Files........................................................... 5 1.2. Generating Secondary Programming Files................................................................. 6 1.2.1. Generating Secondary Programming Files (Programming File Generator)........... 7 1.2.2. Generating Secondary Programming Files (Convert Programming File Dialog Box)............................................................................................. 11 1.3. Enabling Bitstream Security for Intel Stratix 10 Devices............................................ 18 1.3.1. Enabling Bitstream Authentication (Programming File Generator)................... 19 1.3.2. Specifying Additional Physical Security Settings (Programming File Generator).............................................................................................. 21 1.3.3. Enabling Bitstream Encryption (Programming File Generator).........................22 1.4. Enabling Bitstream Encryption or Compression for Intel Arria 10 and Intel Cyclone 10 GX Devices.................................................................................................. 23 1.5. Generating Programming Files for Partial Reconfiguration.........................................
    [Show full text]
  • Semiconductor Contract Manufacturing Worldwide, 1997
    t). Semiconductor Contract Manufacturing Worldwide—SCMS-WW to Re- Document Publication order Code Date Document Title Tab: Perspective • SCMS-WW-DP-9701 February 3, 1997 DQ Predicts: Semiconductor Contract Manufacturing in 1997 y a SCMS-WW-DP-9702 March 17, 1997 Telebriefing Summary: Is the Recovery Around the Corner in Wafer Fab Equipment? Or Will the Slowdow/n Extend into 1998? ^ a SCMS-WW-DP-9703 May 12, 1997 Semiconductor Contract Manufacturing W^fer Pricing Trends / a SCMS-WW-DP-9704 June 9, 1997 1996 Fabless Semiconductor Review v a SCMS-WW-DP-9705 June 16. 1997 System-Level Integration ASICs Add Embedded DFIAM y a SCMS-WW-DP-9706 July 21, 1997 Wafer Fab Equipment Market Forecast and Capacity Update • SCMS-WW-DP-9707 August 25, 1997 The Challenges of Embedded DRAM in ASICs: A Manufacturing K/" Economics Point of View • SCMS-WW-DP-9708 September 1, 1997 Capital Spending And Wafer Fab Equipment Midyear Forecast Update: Real Recovery in Progress? Or Is Another Stall in the Works'' ^-^ a SCMS-WW-DP-9709 December 1, 1997 Amkor Wafer Fabrication Services'^ • SCMS-WW-DP-9710 October 13, 1997 IBM Transfers First Copper Metallization Process into Production) a SCMS-WW-DP-9711 November 10, 1997 A Ride Down Intel's Pricing Escalator • SCMS-WW-DP-9712 December 22, 1997 Semiconductor Contract Manufacturing Wafer Pricing Trends: Fall 1997 y Tab: Market Trends a SCMS-WW-MT-9701 September 15, 1997 Midyear 1997 Forecast: Semiconductor Contract Manufacturing Tab: Market StatisUes a SCMS-WW-MS-9701 November 24, 1997 1996 Semiconductor Contract Manufacturing
    [Show full text]
  • October 1998
    OCTOBER 1998 GAME DEVELOPER MAGAZINE V GAME PLAN It’s First and Goal for EDITOR IN CHIEF Alex Dunne [email protected] MANAGING EDITOR Tor D. Berg [email protected] Fantasy Sports DEPARTMENTS EDITOR Wesley Hall whall@mfi.com his fall, as the leaves turn success stories. Unlike the traditional ART DIRECTOR Laura Pool lpool@mfi.com shades of orange and the days studio’s royalty revenue model, SWS has EDITOR-AT-LARGE Chris Hecker grow shorter, one of the two revenue streams: a two-year licens- [email protected] largest, most massively multi- ing agreement to develop more than 40 CONTRIBUTING EDITORS Jeff Lander T [email protected] player games picks up steam and sucks online games for CNN/SI (http://base- in participants. It’s a role-playing game ball.cnnsi.com), plus revenue from ban- Mel Guymon [email protected] that draws tens of thousands (gads, ner advertising displayed on the CNN/SI Omid Rahmat probably more) of players, and if my game’s web pages, which garner 50 mil- [email protected] predictions are right, it will be one of lion page views per month. Surprisingly, ADVISORY BOARD Hal Barwood the most popular attractions on the and in contrast to most commercial fan- Noah Falstein eventual TV set-top box. I’m talking tasy leagues, some of the CNN/SI Brian Hook about fantasy football leagues. leagues are free for participants and Susan Lee-Merrow It’s taken quite a bit of time for me to offer cash prizes for winners. These are Mark Miller 2 accept the fact that fantasy league sports the guppy leagues which, hopefully, (there are also fantasy leagues for base- entice the most enthusiastic players to COVER IMAGE Epic MegaGames ball, hockey, and perhaps even pro join the premiere leagues for $15.
    [Show full text]
  • North American Company Profiles 8X8
    North American Company Profiles 8x8 8X8 8x8, Inc. 2445 Mission College Boulevard Santa Clara, California 95054 Telephone: (408) 727-1885 Fax: (408) 980-0432 Web Site: www.8x8.com Email: [email protected] Fabless IC Supplier Regional Headquarters/Representative Locations Europe: 8x8, Inc. • Bucks, England U.K. Telephone: (44) (1628) 402800 • Fax: (44) (1628) 402829 Financial History ($M), Fiscal Year Ends March 31 1992 1993 1994 1995 1996 1997 1998 Sales 36 31 34 20 29 19 50 Net Income 5 (1) (0.3) (6) (3) (14) 4 R&D Expenditures 7 7 7 8 8 11 12 Capital Expenditures — — — — 1 1 1 Employees 114 100 105 110 81 100 100 Ownership: Publicly held. NASDAQ: EGHT. Company Overview and Strategy 8x8, Inc. is a worldwide leader in the development, manufacture and deployment of an advanced Visual Information Architecture (VIA) encompassing A/V compression/decompression silicon, software, subsystems, and consumer appliances for video telephony, videoconferencing, and video multimedia applications. 8x8, Inc. was founded in 1987. The “8x8” refers to the company’s core technology, which is based upon Discrete Cosine Transform (DCT) image compression and decompression. In DCT, 8-pixel by 8-pixel blocks of image data form the fundamental processing unit. 2-1 8x8 North American Company Profiles Management Paul Voois Chairman and Chief Executive Officer Keith Barraclough President and Chief Operating Officer Bryan Martin Vice President, Engineering and Chief Technical Officer Sandra Abbott Vice President, Finance and Chief Financial Officer Chris McNiffe Vice President, Marketing and Sales Chris Peters Vice President, Sales Michael Noonen Vice President, Business Development Samuel Wang Vice President, Process Technology David Harper Vice President, European Operations Brett Byers Vice President, General Counsel and Investor Relations Products and Processes 8x8 has developed a Video Information Architecture (VIA) incorporating programmable integrated circuits (ICs) and compression/decompression algorithms (codecs) for audio/video communications.
    [Show full text]
  • I/O Design and Core Power Management Issues in Heterogeneous Multi/Many-Core System-On-Chip
    UNIVERSITY OF CALIFORNIA, IRVINE I/O Design and Core Power Management Issues in Heterogeneous Multi/Many-Core System-on-Chip DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Myoung-Seo Kim Dissertation Committee: Professor Jean-Luc Gaudiot, Chair Professor Alexandru Nicolau, Co-Chair Professor Alexander Veidenbaum 2016 c 2016 Myoung-Seo Kim DEDICATION To my father and mother, Youngkyu Kim and Heesook Park ii TABLE OF CONTENTS Page LIST OF FIGURES vi LIST OF TABLES viii ACKNOWLEDGMENTS ix CURRICULUM VITAE x ABSTRACT OF THE DISSERTATION xv I DESIGN AUTOMATION FOR CONFIGURABLE I/O INTERFACE CONTROL BLOCK 1 1 Introduction 2 2 Related Work 4 3 Structure of Generic Pin Control Block 6 4 Specification with Formalized Text 9 4.1 Formalized Text . 9 4.2 Specific Functional Requirement . 11 4.3 Composition of Registers . 11 5 Experiment Results 18 6 Conclusions 24 II SPEED UP MODEL BY OVERHEAD OF DATA PREPARATION 26 7 Introduction 27 8 Reconsidering Speedup Model by Overhead of Data Preparation (ODP) 29 iii 9 Case Studies of Our Enhanced Amdahl's Law Speedup Model 33 9.1 Homogeneous Symmetric Multicore . 33 9.2 Homogeneous Asymmetric Multicore . 35 9.3 Homogeneous Dynamic Multicore . 36 9.4 Heterogeneous CPU-GPU Multicore . 39 9.5 Heterogeneous Dynamic CPU-GPU Multicore . 41 10 Conclusions 43 III EFFICIENT CORE POWER CONTROL SCHEME 44 11 Introduction 45 12 Related Work 47 13 Architecture 51 13.1 Heterogeneous Many-Core System . 51 13.2 Discrete L2 Cache Memory Model . 52 14 3-Bit Power Control Scheme 55 14.1 Active Status .
    [Show full text]
  • CHAPTER 3: Combinational Logic Design with Plds
    CHAPTER 3: Combinational Logic Design with PLDs LSI chips that can be programmed to perform a specific function have largely supplanted discrete SSI and MSI chips in board-level designs. A programmable logic device (PLD), is an LSI chip that contains a “regular” circuit structure, but that allows the designer to customize it for a specific application. PLDs sold in the market is not customized with specific functions. Instead, it is programmed by the purchaser to perform a function required by a particular application. PLD-based board-level designs often cost less than SSI/MSI designs for a number of reasons. Since PLDs provide more functionality per chip, the total chip and printed- circuit-board (PCB) area are less. Manufacturing costs are reduced in other ways too. A PLD-based board manufacturer needs to keep samples of few, “generic” PLD types, instead of many different MSI part types. This reduces overall inventory requirements and simplifies handling. PLD-type structures also appear as logic elements embedded in LSI chips, where chip count and board areas are not an issue. Despite the fact that a PLD may “waste” a certain number of gates, a PLD structure can actually reduce circuit cost because its “regular” physical structure may use less chip area than a “random logic” circuit. More importantly, the logic function performed by the PLD structure can often be “tweaked” in successive chip revisions by changing just one or a few metal mask layers that define signal connections in the array, instead of requiring a wholesale addition of gates and gate inputs and subsequent re-layout of a “random logic” design.
    [Show full text]