The Abundance, Distribution, and Bionomics of the Family Macrouridae in the Norfolk Canyon Area

Total Page:16

File Type:pdf, Size:1020Kb

The Abundance, Distribution, and Bionomics of the Family Macrouridae in the Norfolk Canyon Area W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1979 The abundance, distribution, and bionomics of the family Macrouridae in the Norfolk Canyon area Robert W. Middleton College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Oceanography Commons Recommended Citation Middleton, Robert W., "The abundance, distribution, and bionomics of the family Macrouridae in the Norfolk Canyon area" (1979). Dissertations, Theses, and Masters Projects. Paper 1539617486. https://dx.doi.org/doi:10.25773/v5-89x4-hq74 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. THE ABUNDANCE, DISTRIBUTION, AND BIONOMICS OF THE FAMILY MACROURIDAE IN THE NORFOLK CANYON AREA A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Arts by Robert W. Middleton 1979 ProQuest Number: 10626236 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10626236 Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQ uest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 APPROVAL SHEET This thesis is submitted in partial fulfillment the requirements for the degree of MASTER OF ARTS ) 7 -■ / / / /.ui l. /iurkLUU Robert W. Middleton Approved. 61 Jonh A . Musick, Chaqirman Department of Ichthyology Richard L. Wetzel Department of Wetlands Research John V. Merniner Dfepfartment of Ichthyology Gqprge C . Grant Department of Planktology William G. MacIntyre Department of Marine Chemistry TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ................................................. iv LIST OF TABLES ................................................... v LIST OF FIGURES .................................................. vi ABSTRACT .......................................................... ix INTRODUCTION ..................................................... 1 MATERIALS AND METHODS ............................................ 3 ANALYSIS OF MAJOR SPECIES . ..................... ............... 12 Coelorinchus c . carminatus............. 12 Nezumia aequalis ....................... 17 Nezumia bairdii ............................................. 21 Coryphaenoides rupestris ...................... 32 Coryphaeno ides carapinus ............................ 42 Coryphaenoides armatus ..................................... 46 DISTRIBUTION OF MACROURIDS BY TEMPERATURE....................... 51 ABUNDANCE OF THE FAMILY MACROURIDAE ............................. 56 COMPARISONS WITH OTHER STUDIES . .... 65 LITERATURE CITED ................................................. 68 VITA .............................................................. 72 iii ACKNOWLEDGEMENTS Special thanks are given to Dr. Jack Musick for his assistance and support throughout this study. I wish to thank also: Drs. Richard L. Wetzel, John V. Merriner, George C. Grant, and William G. MacIntyre for their critical review of the manuscript. The support, both professional and personal, of the many friends I have made at VIMS is appreciated very much. Finally to Ms. Laura Murray, a thank you is a small payment for an unenviable task. This study was supported by National Science Foundation grants numbers OCE 73-06539 and OCE 76-00729 to J.A. Musick, principal investigator. iv LIST OF TABLES Table Page 1 The coefficient of determination (r^) values for the change in headlength with change in depth regression lines, for Coelorinchus c. carminatus, Nezumia aequalis, Nezumia bairdii, Coryphaenoides rupestris, Coryphaenoides carapinus and Coryphaenoides armatus ................................ ..••• 14 2 The total number and the total biomass of each of the 22 species of macrourids captured in the Norfolk Canyon area ......................................... 67 v LIST OF FIGURES Figure Page 1. Map of the Norfolk Canyon study area. ......... 4 2a. Diagram of the head length measurement................ 6 2b. Diagram of the otolith measurement a x e s .............. 6 3. The log (wt) versus head length regressions for Nezumia bairdii, Coryphaenoides armatus, and Coryphaeno ides rupestris.................... 8 4. Graph of head length versus depth, by cruise, for Coelorinchus CL carminatus. The dot is the mean, the rectangle is the 95% confidence interval, and the lines enclose the range. N = the number of specimens and T = the number of trawls . ................................... 13 5. The distribution of log transfored [log (x+1)] abundance and weight of Coelorinchus CL carminatus at each station, plotted against d e p t h ........................................... 16 6. Graph of head length versus depth, by cruise, for Nezumia aequalis. The dot is the mean, the rectangle is the 95% confidence interval, and the lines enclose the range. N = the number of specimens and T = the number of trawls .... 18 7. The distribution of log transformed [log (x+1)] abundance and weight of Nezumia aequalis at each station, plotted against depth ....... 20 8. Graph of head length versus depth, by cruise, for Nezumia bairdii. The dot is the mean, the rectangle is the range. N = the number of specimens and T = the number of trawls..... 2 2 9. The gonadal maturity stages plotted against head length for Nezumia bairdii.................. 24 10. Head length frequency distribution for Nezumia bairdii by cruise. The number above each cruise indicates the number of specimens........ 2 7 11. The distribution of log transformed [log (x+1)] abundance and weight of Nezumia bairdii at each station plotted against depth .......... 28 vi 12. Graph of head length versus depth, by cruise, for Coryphaenoides rupestris. The dot is the mean, the rectangle is the 95% confidence interval, and the lines enclose the range. N = the number of specimens and T = the number of trawls............................................. 34 13. Diagram of depth plotted against the log transformed [log (x+1)] numerical abundance, by cruise, for Coryphaenoides rupestris......................... 35 14. The gonadal maturity stages plotted against head length for Coryphaenoides rupestris ............ 37 15. The distribution of log transformed [log (x+1)] abundance and weight of Coryphaenoides rupestris at each station, plotted against depth ................................... 41 16. Graph of head length versus depth, by cruise, for Coryphaenoides carapinus. The dot is the mean, the rectangle is the 95% confidence interval, and the lines enclose the range. N = the number of speciemsn and T = the number of trawls................................ 43 17. The distribution of log transformed [log (x+1)] abundance and weight of Corphaenoides carapinus at each station plotted against d e p t h ........................................... 45 18. Graph of head length versus depth, by cruise, for Corphaenoides armatus. The dot is the mean, the rectangle is the 95% confidence interval, and the lines enclose the range. N = the number of specimens and T = the number of trawls........................................... 47 19. The distribution of log transformed [log (x+1)] abundance and weight of Coryphaenoides armatus at each station plotted against d e p t h ............................................. 49 20. The gonadal maturity stages plotted against head length for Coryphaenoides armatus .............. 50 vii The temperature range for each species, by cruise. The dot designates the modal temperature. Ccc. - Coelorinelus C^. carminatus, n.b. - Nezumia bairdii, n.a. - Nesumia aequalis, c.r. - Coryphaenoides rupestris, c.c. - Coryphaenoides carapinus, c.a. - Coryphaenoides armatus. .................. 53 Composite graph of the temperature range of each species for all four cruises. The dot designates the modal temperature. Ccc. - Coelorinelus C. carminatus, n.b. - Nezumia bairdii, n.a. - Nezumia aequalis, c.r. - Coryphaenoides rupestris, c.c. - Coryphaenoides carapinus, c.a. - Coryphaenoides armatus .................. 54 Minimum and maximum depth of capture, with minimum, maximum, and modal temperatures of capture for each species and each cruise. .................. 55 Depth versus relative abundance (as percent, by number, of total capture) for the family Macrouridae, by individual cruise .... ...................... 57 Depth versus relative abundance (as percent, by biomass, of total capture) for the family Macrouridae, by individual cruise .......... .................. 58 Depth versus the log transformed [log (x+1)] numerical abundance for each species capture during the January 76-01 cruise. .................... 60 Depth versus the log transformed [log (x+1)] numerical abundance for each species capture during the June 73-10 cruise • .......... ................ 61 Depth
Recommended publications
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • 229 Index of Scientific and Vernacular Names
    previous page 229 INDEX OF SCIENTIFIC AND VERNACULAR NAMES EXPLANATION OF THE SYSTEM Type faces used: Italics : Valid scientific names (genera and species) Italics : Synonyms * Italics : Misidentifications (preceded by an asterisk) ROMAN (saps) : Family names Roman : International (FAO) names of species 230 Page Page A African red snapper ................................................. 79 Abalistes stellatus ............................................... 42 African sawtail catshark ......................................... 144 Abámbolo ............................................................... 81 African sicklefìsh ...................................................... 62 Abámbolo de bajura ................................................ 81 African solenette .................................................... 111 Ablennes hians ..................................................... 44 African spadefish ..................................................... 63 Abuete cajeta ........................................................ 184 African spider shrimp ............................................. 175 Abuete de Angola ................................................. 184 African spoon-nose eel ............................................ 88 Abuete negro ........................................................ 184 African squid .......................................................... 199 Abuete real ........................................................... 183 African striped grunt ................................................
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Zootaxa, Marine Fish Diversity: History of Knowledge and Discovery
    Zootaxa 2525: 19–50 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Marine fish diversity: history of knowledge and discovery (Pisces) WILLIAM N. ESCHMEYER1, 5, RONALD FRICKE2, JON D. FONG3 & DENNIS A. POLACK4 1Curator emeritus, California Academy of Sciences, San Francisco, California, U.S.A. 94118 and Research Associate, Florida Museum of Natural History, Gainesville, Florida, U.S.A. 32611. E-mail: [email protected] 2Ichthyology, Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany. E-mail: [email protected] 3California Academy of Sciences, San Francisco, California, U.S.A. 94118. E-mail: [email protected] 4P.O. Box 518, Halfway House 1685, South Africa. E-mail: [email protected] 5Corresponding Author. E-mail: [email protected] Abstract The increase in knowledge of marine fish biodiversity over the last 250 years is assessed. The Catalog of Fishes database (http://research.calacademy.org/ichthyology/catalog) on which this study is based, has been maintained for 25 years and includes information on more than 50,000 available species names of fishes, with more than 31,000 of them currently regarded as valid species. New marine species are being described at a rate of about 100–150 per year, with freshwater numbers slightly higher. In addition, over 10,000 generic names are available ones of which 3,118 are deemed valid for marine fishes (as of Feb. 19, 2010). This report concentrates on fishes with at least some stage of their life cycle in the sea. The number of valid marine species, about 16,764 (Feb.
    [Show full text]
  • Otoliths in Situ in the Stem Teleost Cavenderichthys Talbragarensis
    Journal of Vertebrate Paleontology ISSN: 0272-4634 (Print) 1937-2809 (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 Otoliths in situ in the stem teleost Cavenderichthys talbragarensis (Woodward, 1895), otoliths in coprolites, and isolated otoliths from the Upper Jurassic of Talbragar, New South Wales, Australia Werner W. Schwarzhans, Timothy D. Murphy & Michael Frese To cite this article: Werner W. Schwarzhans, Timothy D. Murphy & Michael Frese (2018) Otoliths in situ in the stem teleost Cavenderichthystalbragarensis (Woodward, 1895), otoliths in coprolites, and isolated otoliths from the Upper Jurassic of Talbragar, New South Wales, Australia, Journal of Vertebrate Paleontology, 38:6, e1539740, DOI: 10.1080/02724634.2018.1539740 To link to this article: https://doi.org/10.1080/02724634.2018.1539740 © 2019 Werner W. Schwarzhans, Timothy View supplementary material D. Murphy, and Michael Frese. Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 19 Feb 2019. Submit your article to this journal Article views: 619 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1539740 (14 pages) © Published with license by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2018.1539740 ARTICLE OTOLITHS IN SITU IN THE STEM TELEOST CAVENDERICHTHYS TALBRAGARENSIS (WOODWARD, 1895), OTOLITHS IN COPROLITES,
    [Show full text]
  • Macrouridae of the Eastern North Atlantic
    FICHES D’IDENTIFICATION DU PLANCTON Edited by G.A. ROBINSON Institute for Marine Environmental Research Prospect Place, The Hoe, Plymouth PL1 3DH, England FICHE NO. 173/174/175 MACROURIDAE OF THE EASTERN NORTH ATLANTIC by N. R. MERRETT Institute of Oceanographic Sciences Natural Environment Research Council Wormley, Godalming, Surrey GU8 5UB, England (This publication may be referred to in the following form: Merrett, N. R. 1986. Macrouridae of the eastern North Atlantic. Fich. Ident. Plancton, 173/174/175,14 pp.) https://doi.org/10.17895/ices.pub.5155 INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CONSEIL INTERNATIONAL POUR L’EXPLORATION DE LA MER Palzegade 2-4, DK-1261 Copenhagen K, Denmark 1986 ISSN 0109-2529 Figure 1. Egg and larval stages of Coelorinchus coelorinchus. (A) Egg from the Strait of Messina (1.20 mm diameter); (B) same on 4th day of incubation; (C) between 6th and 7th day; (D) at the end of 1 week; (E) newly hatched larva (4.21 mm TL); (F) larva 8 days old (3.88 mm TL); (G) larva 15 days old (464 mm TL) (redrawn from Sanzo, 1933); (H) 5.0 mm HL larva, “Thor” Stn 168 (51’30” ll”37’W). 2 . .. Figure 2. (A) Bathygadine, Gudornuc sp.: 30+ mm TL (redrawn from Fahay and Markle, 1984, Fig. 140B); Macrourur bcrglax: (B) 3-0 mm HL, “Dana” Stn 11995 (63’17“ 58’1 1’W); (C) 4.5 mm HL, “Dana” Stn 13044 (63’37“ 55’30’W); (D) 6-5 mm HL “Dana” Stn 13092 (58’45“ 42’14‘W); (E) 10.9 mm HL, “Dana” Stn 9985 (61’56” 37’30‘W).
    [Show full text]
  • Biodiversity of Arctic Marine Fishes: Taxonomy and Zoogeography
    Mar Biodiv DOI 10.1007/s12526-010-0070-z ARCTIC OCEAN DIVERSITY SYNTHESIS Biodiversity of arctic marine fishes: taxonomy and zoogeography Catherine W. Mecklenburg & Peter Rask Møller & Dirk Steinke Received: 3 June 2010 /Revised: 23 September 2010 /Accepted: 1 November 2010 # Senckenberg, Gesellschaft für Naturforschung and Springer 2010 Abstract Taxonomic and distributional information on each Six families in Cottoidei with 72 species and five in fish species found in arctic marine waters is reviewed, and a Zoarcoidei with 55 species account for more than half list of families and species with commentary on distributional (52.5%) the species. This study produced CO1 sequences for records is presented. The list incorporates results from 106 of the 242 species. Sequence variability in the barcode examination of museum collections of arctic marine fishes region permits discrimination of all species. The average dating back to the 1830s. It also incorporates results from sequence variation within species was 0.3% (range 0–3.5%), DNA barcoding, used to complement morphological charac- while the average genetic distance between congeners was ters in evaluating problematic taxa and to assist in identifica- 4.7% (range 3.7–13.3%). The CO1 sequences support tion of specimens collected in recent expeditions. Barcoding taxonomic separation of some species, such as Osmerus results are depicted in a neighbor-joining tree of 880 CO1 dentex and O. mordax and Liparis bathyarcticus and L. (cytochrome c oxidase 1 gene) sequences distributed among gibbus; and synonymy of others, like Myoxocephalus 165 species from the arctic region and adjacent waters, and verrucosus in M. scorpius and Gymnelus knipowitschi in discussed in the family reviews.
    [Show full text]
  • Parasite Communities of the Alepocephalidae and the Macrouridae in the Balearic Sea (NW Mediterranean)
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Universitat Autònoma de Barcelona Facultat de Biociències Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia Unitat de Zoologia PhD Thesis A Journey to the Deeps of the Sea: Parasite communities of the Alepocephalidae and the Macrouridae in the Balearic Sea (NW Mediterranean) A thesis submitted by David Pérez García for the degree of Doctor in Aquaculture under the direction of Dr. Maite Carrassón López de Letona, Dr. Maria Constenla Matalobos, Dr. Anna Soler Membrives and the supervision of Dr. Maite Carrassón López de Letona. This thesis has been inscribed in the Aquaculture PhD program from the Universitat Autònoma de Barcelona. Director and supervisor Director Maite Carrassón López de Letona Maria Constenla Matalobos Universitat Autònoma de Barcelona Universitat Autònoma de Barcelona Director PhD student Anna Soler Membrives David Pérez García Universitat Autònoma de Barcelona Universitat Autònoma de Barcelona Bellaterra, March 2017 Acknowledgements When I started to write this section I was pondering how to do it. It’s obviously a place to thank all the different persons involved somehow in the present thesis.
    [Show full text]
  • Gadiformes Selected Meristic Characters in Species Belonging to the Order Gadiformes Whose Adults Or Larvae Have Been Collected in the Study Area
    548 Gadiformes Selected meristic characters in species belonging to the order Gadiformes whose adults or larvae have been collected in the study area. Total vertebrae, second dorsal and anal fin rays are numerous in the Bathygadidae and Macrouridae, but are seldom reported. Classification sequence and sources of meristic data: Eschmeyer, 1990; Fahay and Markle, 1984; Fahay, 1989; Cohen et al., 1990; Iwamoto, 2002; Iwamoto and Cohen, 2002a; 2002b; Merrett, 2003. PrC = principal caudal rays; ~ = approximately Family Precaudal Total Dorsal Anal Pectoral Pelvic Species Vertebrae Vertebrae Fin Rays Fin Rays Fin Rays Fin Rays Bregmacerotidae Bregmaceros atlanticus 14 53–55 47–56 49–58 16–21 5–7 Bregmaceros cantori 14 45–49 45–49 45–49 16–23 (family) 5–7 Bregmaceros sp. 14–15 52–59 52–59 58–69 16–23 (family) 5–7 Bregmaceros houdei 13–14 47–50 47–50 41–46 16–23 (family) 5–7 Family Precaudal Total First + Second Anal Pectoral Pelvic Species Vertebrae Vertebrae Dorsal Fin Rays Fin Rays Fin Rays Fin Rays Bathygadidae Bathygadus favosus 12–14 ~70 9–11+125 110 15–18 9(10) Gadomus dispar 12–13 80+ 12–13 – 18–20 8 Gadomus longifilis 11–13 – 9–11 – 14–16 8–9 Macrouridae Caelorinchus caribbeus 11–12 – 11–12+>110 >110 17–20 7 Caelorinchus coelorhynchus 11–12 – 10–11 – (17)18–20(21) 7 Caelorinchus occa 12–13 – 9–11 – 17–20 7 Coryphaenoides alateralis – 13 – 21–23 8 Coryphaenoides armatus 13–15 – 10–12+~125 ~135 19–21 10–11 Coryphaenoides brevibarbis 12–13 – 9 – 19–20 8–9 Coryphaenoides carapinus 12–15 – 10–11+100 117 17–20 9–11 Coryphaenoides guentheri
    [Show full text]
  • First Record of the Grenadier Coelorinchus Sheni (Actinopterygii: Gadiformes: Macrouridae) from Japan
    Species Diversity 23: 121–127 25 May 2018 DOI: 10.12782/specdiv.23.121 First Record of the Grenadier Coelorinchus sheni (Actinopterygii: Gadiformes: Macrouridae) from Japan Naohide Nakayama1,2,5, Hiroko Takaoka3, and Kei Miyamoto4 1 The Kyoto University Museum, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501, Japan E-mail: [email protected] 2 Present address: Department of Marine Biology, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan 3 Okinawa Churaumi Aquarium, 424 Ishikawa, Motobu, Kunigami, Okinawa 905-0206, Japan 4 Okinawa Churashima Research Center, 888 Ishikawa, Motobu, Kunigami, Okinawa 905-0206, Japan 5 Corresponding author (Received 21 September 2017; Accepted 24 November 2017) The rarely caught grenadier, Coelorinchus sheni Chiou, Shao and Iwamoto, 2004, is newly recorded from Japanese wa- ters, based on a single specimen (196 mm in head length, 692+ mm in total length) collected from the East China Sea off the north-west coast of Ie-jima island, Okinawa, at a depth of 650 m. It belongs to the C. tokiensis group, and readily differs from other Japanese congeners in having a series of dark saddles on the body, a fully-scaled underside of the head, and a short light organ anterior to the anus (its anterior tip falling far short of a line connecting the inner pelvic-fin bases), and in lacking a complete bony support of the lateral nasal ridge. The morphology of the Japanese specimen is fully described, with the first report of the species’ fresh coloration. Localities of type specimens of C. sheni are also emended.
    [Show full text]