Biodiversity of Bear Seamount, New England Seamount Chain: Results of Exploratory Trawling

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity of Bear Seamount, New England Seamount Chain: Results of Exploratory Trawling W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 9-2003 Biodiversity of Bear Seamount, New England Seamount chain: Results of exploratory trawling JA Moore M Vecchione R Gibbons JK Galbraith M Turnipseed Virginia Institute of Marine Science See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons, and the Marine Biology Commons Recommended Citation Moore, JA; Vecchione, M; Gibbons, R; Galbraith, JK; Turnipseed, M; Southworth, M; and Watkins, E, Biodiversity of Bear Seamount, New England Seamount chain: Results of exploratory trawling (2003). Journal of Northwest Atlantic Fishery Science, 31, 363-372. https://scholarworks.wm.edu/vimsarticles/1970 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors JA Moore, M Vecchione, R Gibbons, JK Galbraith, M Turnipseed, M Southworth, and E Watkins This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/1970 J Northw Atl Fish Sci, Vol 31: 363372 Biodiversity of Bear Seamount, New England Seamount Chain: Results of Exploratory Trawling J A Moore Florida Atlantic University, Honors College, Jupiter, FL 33458, USA M Vecchione, B B Collette and R Gibbons National Marine Fisheries Service, National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 K E Hartel Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA J K Galbraith National Marine Fisheries Service, Northeast Fisheries Science Center, Woods Hole, MA 02453, USA M Turnipseed, M Southworth, and E Watkins Virginia Institute of Marine Sciences, Gloucester Point, VA 23062, USA Abstract Bear Seamount (39o55'N 67o30'W) is an extinct undersea volcano located inside the US Exclusive Economic Zone south of Georges Bank The fauna associated with the seamount was little known until twenty trawl stations were made 27 December 2000, by the NOAA ship R/V Delaware II The objective of the survey was to begin to document the biodiversity on and over the seamount, particularly of fishes, cephalopods, and crustaceans Representatives of most species were preserved as vouchers and for subsequent definitive identification This report presents a description of the biodiversity A total of at least 274 species were collected Preliminary identifica- tions indicate the capture of 115 fish species Among these were a number of new fish records for the area or rare species, including Acromycter pertubator (Congridae), Diastobranchus capensis (Synaphobranchidae), Alepocephalus bairdii (Alepocephalidae), Mirognathus normani (Alepocephalidae), Bathygadus favosus (Bathygadidae), Nezumia longebarbata (Macrouridae), Gaidropsarus argentatus (Phycidae), Dibranchus tremendus (Ogcocephalidae) and Kali indica (Chiasmodontidae) Only two fish species of potential commercial importance were encountered: Coryphaenoides rupestris and Macrourus berglax" Cephalopods comprised 26 species from 15 families, including one new distributional record and several rarely-collected species The crusta- cean fauna was diverse with at least 46 species Totals for other invertebrate species are pending laboratory identification, but number at least 87 species from 10 Phyla This includes a number of new distributional records and a new species of gorgonian Key words: biodiversity, deep-sea, fauna, fishes, invertebrates, North Atlantic, seamount Introduction ate structural habitat diversity and likely create es- sential habitats for some deep-sea fishes and crusta- Seamounts represent biological islands in the deep ceans1 sea and often feature characteristic faunas that are quite different from those found in the surrounding The New England Seamounts (NES) make up the soft sediment and abyssal habitats1 Large depth ranges, longest seamount chain in the North Atlantic, encom- hard substrates, steep gradients, complex topography, passing more than 30 major volcanic peaks extend- impinging currents, topographically induced ing southeast from Georges Bank for about 1 200 km upwellings, clear oceanic water, and geographic iso- to the eastern end of the Bermuda Rise, ending lation all combine to make seamounts specialized abruptly with Nashville Seamount to the East North habitats for deep-sea organisms (Rogers, 1994)1 The East of Bermuda (Fig1 1)1 The major peaks of the NES benthic fauna on seamounts include species that cre- rise as much as 4 000 m above the Sohm Abyssal Plain1 364 J1 Northw1 Atl1 Fish1 Sci1, Vol1 31, 2003 700° 65° 60° 55° 40° 35° Fig 1 Bathymetric chart of the New England Seamount chain showing depth contours (m) (from Houghton et al, 1977) About 300 km east of Nashville Seamount, the Cor- A review of the biogeography of seamount fauna ner Rise Seamounts form a cluster of peaks midway around the world (Wilson and Kaufman, 1987) makes between the eastern end of the NES and the Mid At- note of only one species known from the entire NES lantic Ridge1 The NES and Corner Rise Seamounts chain (the stony coral Enallopsammia rostrata from resulted from a mantle-plume hotspot, which moved Gregg Seamount)1 Because of this dearth of biotic in- towards the Mid Atlantic Ridge and currently resides formation, the NES was excluded from a recent dis- underneath Great Meteor Seamount (Sleep, 1990)1 cussion on the biology of seamounts around the world (Rogers, 1994)1 The NES chain lies roughly perpendicular to two major currents, the Gulf Stream, flowing to the north- Examinations by one of us (JAM) of archived east, and the Deep Western Boundary Current, which photos taken during the geological investigation of flows southwesterly along the continental slope (Ham- the NES has found that more than 50 species of in- ilton et al1, 1996)1 In addition, the Antarctic Bottom vertebrates and at least eight species of fishes do in Water flows around the bases of the seamounts at the fact live on these seamounts1 Exploratory commer- eastern end of the chain1 These seamounts alter the cial fishing in 1997 on Bear Seamount (the closest flow of the currents in their vicinity (Vastano and NES to the U1S1) captured another seven fish species, Warren, 1976; Hogg et al1, 1986), which may influence including two species previously known from the east- the recruitment of benthic and pelagic organisms1 ern Atlantic (Hydrolagus pallidus and Bathypterois dubius) and one previously found only in the temper- While the geology of the NES and the effects of ate southern hemisphere (Diastobranchus capensis; the seamounts on the Gulf Stream have been exten- Moore et al1, 2003)1 Clearly, much can be done to sively studied, the biota has been almost completely investigate the NES fauna and integrate that infor- ignored (Zeigler, MS 1955; Uchupi et al1, 1970; mation into the extensive knowledge gained from Vastano and Warren, 1976; Houghton et al1, 1977; other seamounts in the Atlantic, Pacific, and elsewhere Heirtzler et al1, MS 1977 and 1977; Hogg et al1, 1986)1 in the world1 MOORE et al1: Biodiversity of Bear Seamount 365 With the increase of deep-sea fisheries, interest MS 1962), two Alvin dives in 1968 (Alvin dive 286 in commercially fishing seamounts has increased and 287), and a commercial exploratory trawl by the (Koslow, 1997)1 Yet seamounts hold concentrations F/V Matthew Melissa out of Stonington, Connecti- of sessile suspension-feeding invertebrates, such as cut, in 19971 A list of taxa identified from these pre- scleractinians, gorgonians and sponges, that add struc- vious studies is given in Table 11 tural complexity, and there are concerns about the im- pact of fishing activities on these invertebrates Prior to our first cruise in 2000, several inverte- (Dayton et al1, 1995; Auster et al1, 1996; Probert et brates and a few fishes were identified from archived al1, 1997; Koslow and Gowlett-Holmes, MS 1998; photos from Atlantis cruise A-281 and Alvin dives 286 Moore and Mace, 1999; Koslow et al1, 2000)1 A re- and 2871 The archived photos are available at the cent haul of Darwin's roughy (Gephyroberyx darwini, Document Library of Woods Hole Oceanographic also known as big roughy) from a canyon on the south Institution1 In addition, several fish specimens were side of Georges Bank generated renewed interest by acquired from a commercial trawler that conducted a some U1S1 fishers in exploring the deepwater fishery few deepwater exploratory tows on the top of Bear resources of New England1 One fishing company put Seamount in 19971 These specimens are deposited at forward a specific proposal to explore the fishery re- the Ichthyology Collection of the Peabody Museum sources on Bear Seamount1 This coincided with plan- of Natural History, Yale University1 ning by the National Marine Fisheries Service (NMFS) to conduct an exploratory survey to Bear Seamount Materials and Methods in late-20001 One objective of this survey was to be- gin to document the biodiversity on and over the Twenty hauls were made on or over Bear seamount, particularly of fishes, cephalopods, and Seamount using double-warp gear towed from the crustaceans before large-scale commercial fishing be- NOAA vessel R/V Delaware II from 27 December gins1 Knowledge of the fauna associated with the 2000 (cruise DE00-11)1 Of these hauls, 11 were fully seamounts is considered crucial in assessing the
Recommended publications
  • Vmes on the Corner Seamounts] NAFO
    Vulnerable Marine Ecosystems Database Newfoundland Seamounts Geographical reference Northwest Atlantic Management Body/Authority Northwest Atlantic Fisheries Organization (NAFO) Area Type Seamount closure (NAFO) Closed since 2007-01-01 until 2021-12-31 Habitat and Biology General Biology Seamounts are uniquely complex habitats that rise into bathyal and epi-pelagic depths. In general seamounts, owing to their isolation tend to support endemic populations and unique faunal assemblages. Physical description of the environment: Seamounts Newfoundland Seamounts consist of 6 peaks with summits all deeper than 2400 m, with most of the area being deeper than 3500m. The Newfoundland seamounts were volcanically active in the late Cretaceous period. Named seamounts include Shredder and Scruntion. Map FAO Fisheries and Aquaculture Department Disclaimer The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of FAO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. Dashed lines on maps represent approximate border lines for which there may not yet be full agreement. Management Measures specific to this area Area closed to bottom fishing from 1 Jan 2007 to 31 Dec 2010. Provisions for exploratory fishery, encounters and temporary closures. (Art 15.5-10) Period in force: 2007-01-01 to 2010-12-31 Source of information NAFO Conservation and Enforcement Measures 2010 (NAFO FC Doc. 10/1 Serial No. N5740) http://archive.nafo.int/open/fc/2010/fcdoc10-01.pdf 2010 NAFO. 2010. Scientific Council Meeting, 20-24 Sep 2010.
    [Show full text]
  • Age Progressive Volcanism in the New England Seamounts and the Opening of the Central Atlantic Ocean
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 89, NO. B12, PAGES 9980-9990, NOVEMBER 10, 1984 AGEPROGRESSIVE VOLCANISM IN THENEW ENGLAND SEAMOUNTS AND THE OPENING OF THE CENTRAL ATLANTIC OCEAN R. A. Duncan College of Oceanography, Oregon State University, Corvallis Abstract. Radiometric ages (K-Ar and •øAr- transient featur e•s that allow calculations of 39Ar methods) have been determined on dredged relative motions only. volcanic rocks from seven of the New England The possibility that plate motions may be Seamounts, a prominent northwest-southeast trend- recorded by lines of islands and seamounts in the ing volcanic lineament in the northwestern ocean basins is attractive in this regard. If, Atlantic Ocean. The •øAr-39Ar total fusion and as the Carey-Wilson-Morgan model [Carey, 1958; incren•ental heating ages show an increase in Wilson, 1963; Morgan, 19•1] proposes, sublitho- seamount construction age from southeast to spheric, thermal anomalies called hot spots are northwest that is consistent with northwestward active and fixed with respect to one another in motion of the North American plate over a New the earth's upper mantle, they would then consti- England hot spot between 103 and 82 Ma. A linear tute a reference frame for directly and precisely volcano migration rate of 4.7 cm/yr fits the measuring plate motions. Ancient longitudes as seamount age distribution. These ages fall well as latitudes would be determined from vol- Within a longer age progression from the Corner cano construction ages along the tracks left by Seamounts (70 to 75 Ma), at the eastern end of hot spots and, providing relative plate motions the New England Seamounts, to the youngest phase are also known, quantitative estimates of conver- of volcanism in the White Mountain Igneous gent plate motions can be calculated [Engebretson Province, New England (100 to 124 Ma).
    [Show full text]
  • Diversity and Phylogeography of Southern Ocean Sea Stars (Asteroidea)
    Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Thesis submitted by Camille MOREAU in fulfilment of the requirements of the PhD Degree in science (ULB - “Docteur en Science”) and in life science (UBFC – “Docteur en Science de la vie”) Academic year 2018-2019 Supervisors: Professor Bruno Danis (Université Libre de Bruxelles) Laboratoire de Biologie Marine And Dr. Thomas Saucède (Université Bourgogne Franche-Comté) Biogéosciences 1 Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Camille MOREAU Thesis committee: Mr. Mardulyn Patrick Professeur, ULB Président Mr. Van De Putte Anton Professeur Associé, IRSNB Rapporteur Mr. Poulin Elie Professeur, Université du Chili Rapporteur Mr. Rigaud Thierry Directeur de Recherche, UBFC Examinateur Mr. Saucède Thomas Maître de Conférences, UBFC Directeur de thèse Mr. Danis Bruno Professeur, ULB Co-directeur de thèse 2 Avant-propos Ce doctorat s’inscrit dans le cadre d’une cotutelle entre les universités de Dijon et Bruxelles et m’aura ainsi permis d’élargir mon réseau au sein de la communauté scientifique tout en étendant mes horizons scientifiques. C’est tout d’abord grâce au programme vERSO (Ecosystem Responses to global change : a multiscale approach in the Southern Ocean) que ce travail a été possible, mais aussi grâce aux collaborations construites avant et pendant ce travail. Cette thèse a aussi été l’occasion de continuer à aller travailler sur le terrain des hautes latitudes à plusieurs reprises pour collecter les échantillons et rencontrer de nouveaux collègues. Par le biais de ces trois missions de recherches et des nombreuses conférences auxquelles j’ai activement participé à travers le monde, j’ai beaucoup appris, tant scientifiquement qu’humainement.
    [Show full text]
  • Biodiversity of the Kermadec Islands and Offshore Waters of the Kermadec Ridge: Report of a Coastal, Marine Mammal and Deep-Sea Survey (TAN1612)
    Biodiversity of the Kermadec Islands and offshore waters of the Kermadec Ridge: report of a coastal, marine mammal and deep-sea survey (TAN1612) New Zealand Aquatic Environment and Biodiversity Report No. 179 Clark, M.R.; Trnski, T.; Constantine, R.; Aguirre, J.D.; Barker, J.; Betty, E.; Bowden, D.A.; Connell, A.; Duffy, C.; George, S.; Hannam, S.; Liggins, L..; Middleton, C.; Mills, S.; Pallentin, A.; Riekkola, L.; Sampey, A.; Sewell, M.; Spong, K.; Stewart, A.; Stewart, R.; Struthers, C.; van Oosterom, L. ISSN 1179-6480 (online) ISSN 1176-9440 (print) ISBN 978-1-77665-481-9 (online) ISBN 978-1-77665-482-6 (print) January 2017 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 1.1 Objectives: 3 1.2 Objective 1: Benthic offshore biodiversity 3 1.3 Objective 2: Marine mammal research 4 1.4 Objective 3: Coastal biodiversity and connectivity 5 2. METHODS 5 2.1 Survey area 5 2.2 Survey design 6 Offshore Biodiversity 6 Marine mammal sampling 8 Coastal survey 8 Station recording 8 2.3 Sampling operations 8 Multibeam mapping 8 Photographic transect survey 9 Fish and Invertebrate sampling 9 Plankton sampling 11 Catch processing 11 Environmental sampling 12 Marine mammal sampling 12 Dive sampling operations 12 Outreach 13 3.
    [Show full text]
  • North-Easternmost Record of Halosaurus Ovenii (Actinopterygii: Notacanthiformes: Halosauridae) in the Mediterranean Sea, with Notes on Its Biology
    ACTA ICHTHYOLOGICA ET PISCATORIA (2009) 39 (1): 33–37 DOI: 10.3750/AIP2009.39.1.06 NORTH-EASTERNMOST RECORD OF HALOSAURUS OVENII (ACTINOPTERYGII: NOTACANTHIFORMES: HALOSAURIDAE) IN THE MEDITERRANEAN SEA, WITH NOTES ON ITS BIOLOGY Antonio PAIS 1* , Paolo MERELLA 2, Maria Cristina FOLLESA 3, and Hiroyuki MOTOMURA 4 1 Sezione di Acquacoltura e Gestione delle Risorse Acquatiche, Dipartimento di Scienze Zootecniche, Università di Sassari, Sassari, Italy 2 Sezione di Parassitologia e Malattie Parassitarie, Dipartimento di Biologia Animale, Università di Sassari, Sassari, Italy 3 Dipartimento di Biologia Animale ed Ecologia, Università di Cagliari, Viale Poetto 1, 09126 Cagliari, Italy 4 The Kagoshima University Museum, 1 –21 –30 Korimoto, Kagoshima 890 –0065, Japan Pais A., Merella P., Follesa M.C., Motomura H. 2009. North-easternmost record of Halosaurus ovenii (Actinopterygii: Notacanthiformes: Halosauridae) in the Mediterranean Sea, with notes on its biology. Acta Ichthyol. Piscat. 39 (1): 33–37. Abstract. A single adult female specimen of Halosaurus ovenii Johnson, 1864 was captured by trammel nets at a depth of about 200 m off the coast of Arbatax (Sardinia, Italy) in early April 2007. Macroscopic and micro - scopic analysis of the gonad showed a postspawning ovary. This is the fourth documented capture of this fish in the Mediterranean Sea, representing the north-easternmost record for this species in this geographic area. Furthermore, the present specimen was fished at the shallowest depth ever recorded before. Keywords: Halosaurus ovenii , new record, Mediterranean, Sardinia According to Froese and Pauly (2008) , 10 species belong specimen (229 mm TL) off the Balearic Islands, at 2800 m to the genus Halosaurus Johnson, 1864 (Notacanthiformes: depth, the deepest record for this species.
    [Show full text]
  • Order BERYCIFORMES ANOPLOGASTRIDAE Anoplogaster
    click for previous page 2210 Bony Fishes Order BERYCIFORMES ANOPLOGASTRIDAE Fangtooths by J.R. Paxton iagnostic characters: Small (to 16 cm) Dberyciform fishes, body short, deep, and compressed. Head large, steep; deep mu- cous cavities on top of head separated by serrated crests; very large temporal and pre- opercular spines and smaller orbital (frontal) spine in juveniles of one species, all disap- pearing with age. Eyes smaller than snout length in adults (but larger than snout length in juveniles). Mouth very large, jaws extending far behind eye in adults; one supramaxilla. Teeth as large fangs in pre- maxilla and dentary; vomer and palatine toothless. Gill rakers as gill teeth in adults (elongate, lath-like in juveniles). No fin spines; dorsal fin long based, roughly in middle of body, with 16 to 20 rays; anal fin short-based, far posterior, with 7 to 9 rays; pelvic fin abdominal in juveniles, becoming subthoracic with age, with 7 rays; pectoral fin with 13 to 16 rays. Scales small, non-overlap- ping, spinose, cup-shaped in adults; lateral line an open groove partly covered by scales. No light organs. Total vertebrae 25 to 28. Colour: brown-black in adults. Habitat, biology, and fisheries: Meso- and bathypelagic. Distinctive caulolepis juvenile stage, with greatly enlarged head spines in one species. Feeding mode as carnivores on crustaceans as juveniles and on fishes as adults. Rare deepsea fishes of no commercial importance. Remarks: One genus with 2 species throughout the world ocean in tropical and temperate latitudes. The family was revised by Kotlyar (1986). Similar families occurring in the area Diretmidae: No fangs, jaw teeth small, in bands; anal fin with 18 to 24 rays.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • Marine Fishes of the Azores: an Annotated Checklist and Bibliography
    MARINE FISHES OF THE AZORES: AN ANNOTATED CHECKLIST AND BIBLIOGRAPHY. RICARDO SERRÃO SANTOS, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS SANTOS, RICARDO SERRÃO, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS 1997. Marine fishes of the Azores: An annotated checklist and bibliography. Arquipélago. Life and Marine Sciences Supplement 1: xxiii + 242pp. Ponta Delgada. ISSN 0873-4704. ISBN 972-9340-92-7. A list of the marine fishes of the Azores is presented. The list is based on a review of the literature combined with an examination of selected specimens available from collections of Azorean fishes deposited in museums, including the collection of fish at the Department of Oceanography and Fisheries of the University of the Azores (Horta). Personal information collected over several years is also incorporated. The geographic area considered is the Economic Exclusive Zone of the Azores. The list is organised in Classes, Orders and Families according to Nelson (1994). The scientific names are, for the most part, those used in Fishes of the North-eastern Atlantic and the Mediterranean (FNAM) (Whitehead et al. 1989), and they are organised in alphabetical order within the families. Clofnam numbers (see Hureau & Monod 1979) are included for reference. Information is given if the species is not cited for the Azores in FNAM. Whenever available, vernacular names are presented, both in Portuguese (Azorean names) and in English. Synonyms, misspellings and misidentifications found in the literature in reference to the occurrence of species in the Azores are also quoted. The 460 species listed, belong to 142 families; 12 species are cited for the first time for the Azores.
    [Show full text]
  • How Did the Deepwater Horizon Oil Spill Impact Deep-Sea Ecosystems? Charles R
    Nova Southeastern University NSUWorks Marine & Environmental Sciences Faculty Articles Department of Marine and Environmental Sciences 9-1-2016 How Did the Deepwater Horizon Oil Spill Impact Deep-Sea Ecosystems? Charles R. Fisher Pennsylvania State University - Main Campus Paul A. Montagna Texas A & M University - Corpus Christi Tracey Sutton Nova Southeastern University, [email protected] Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography. Follow this and additional works at: https://nsuworks.nova.edu/occ_facarticles Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons NSUWorks Citation Charles R. Fisher, Paul A. Montagna, and Tracey Sutton. 2016. How Did the Deepwater Horizon Oil Spill Impact Deep-Sea Ecosystems? .Oceanography , (3) : 182 -195. https://nsuworks.nova.edu/occ_facarticles/784. This Article is brought to you for free and open access by the Department of Marine and Environmental Sciences at NSUWorks. It has been accepted for inclusion in Marine & Environmental Sciences Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Fisher, C.R., P.A. Montagna, and T.T. Sutton. 2016. How did the Deepwater Horizon oil spill impact deep-sea ecosystems? Oceanography 29(3):182–195, http://dx.doi.org/10.5670/oceanog.2016.82. DOI http://dx.doi.org/10.5670/oceanog.2016.82 COPYRIGHT This article has been published in Oceanography, Volume 29, Number 3, a quarterly journal of The Oceanography Society. Copyright 2016 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research.
    [Show full text]
  • Rp,, OCEANOGRAPHY DEEP SEA. WASTE DISPOSAL
    INTERNAL DOCUMENT rp,, OCEANOGRAPHY DEEP SEA. WASTE DISPOSAL [This document should not be cited in a published bibliography, and is supplied for the use of the recipient only]. a - INSTITUTE OF \ z OCEAN OGRAPHIC SCIENCES %V. '"oos INSTITUTE OF OCEANOGRAPHIC SCIENCES Worm ley, Godalming, Surrey, GU8 BUB. (042-879-4141) (Director: Dr. A. S. Laughton) Bidston Observatory, Crossway, Birkenhead, Taunton, Merseyside, L43 7RA. Somerset, TA1 2DW. (051 652-2396) (0823-86211) (Assistant Director: Dr. D. E. Cartwright) (Assistant Director: M.J. Tucker) OCEANOGRAPHY rslatsd to DEBP SEA. WASTE DISPOSAL A Survev commissioned bv the Department of the Environment In^tltnt^ or Oceanogr^phie Sciences, Woruloy, ^onalming, Surrey GDW September 1978 •r; Wn fr^'W'w , -ig^at igGr^SSjes*'': 'i'-.r '&#0 4 i®i": iSSfflSj*-; ,*h :gSm '# .f f. .-< ' ^ ' \" . ' .- : - '-' '"i" "'"Tn'fWr^ ^ "rf'iVf. i.^t. %& g,*;gh^ h#wk^, . '::Y '"?' "%v t /:;,f »"-^iY: ^jw&j ,<1.^....-L. ,. t '.4..^,.,.. r X e^^TDy; . '.*,,.:'*,;wVk..^... , .. WIS3 li A) pi if r 31*: 'AM jngraa $#* ;- :Y^-; •••••: if'**J KAW W!&#' %wt;pfy W,.x u t wk%Wg%#&0 '•'£i'5dteii>irt PAWR t .* jpM»rtte»ai«l'*<M»r» •"i £i 'li-,'".!,,• -•t'iA^r., - !MfcSs-d»e. * CONTENTS Page i-% INTRODUCTION 1.1 CHAPTER 1 GEOLOGY AND GEOPHYSICS 2.1 CHAPTER 2 GEOCHEMISTRY 3.1 CHAPTER 3 PHYSICAL OCEANOGRAPHY 4.1 CHAPTER 4 MARINE BIOLOGY INTROnUCTZON The Sixth Report of the Royal CommisaioA on Environmental Pollution (Cmnd 66l8) recommended that a programme of research is needed to ensure that safe containment for an indefinite period of lon^-lived, highly radioactive wastes is feasible before a commitment is made to a large scale nuclear programme, In response to the Commission^ recommendations the Government decided to keep open and study further two options for the disposal of waste in the ocean (Cmnd 6820).
    [Show full text]
  • The Absence of Sharks from Abyssal Regions of the World's Oceans
    Proc. R. Soc. B (2006) 273, 1435–1441 doi:10.1098/rspb.2005.3461 Published online 21 February 2006 The absence of sharks from abyssal regions of the world’s oceans Imants G. Priede1,*, Rainer Froese2, David M. Bailey3, Odd Aksel Bergstad4, Martin A. Collins5, Jan Erik Dyb6, Camila Henriques1, Emma G. Jones7 and Nicola King1 1University of Aberdeen, Oceanlab, Newburgh, Aberdeen AB41 6AA, UK 2Leibniz-Institut fu¨r Meereswissenschaften, IfM-GEOMAR, Du¨sternbrooker Weg 20, 24105 Kiel, Germany 3Marine Biology Research Division, Scripps Institution of Oceanography, UCSD 9500 Gilman Drive, La Jolla, CA 92093-0202, USA 4Institute of Marine Research, Flødevigen Marine Research Station, 4817 His, Norway 5British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK 6Møre Research, Section of Fisheries, PO Box 5075, 6021 Aalesund, Norway 7FRS Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK The oceanic abyss (depths greater than 3000 m), one of the largest environments on the planet, is characterized by absence of solar light, high pressures and remoteness from surface food supply necessitating special molecular, physiological, behavioural and ecological adaptations of organisms that live there. Sampling by trawl, baited hooks and cameras we show that the Chondrichthyes (sharks, rays and chimaeras) are absent from, or very rare in this region. Analysis of a global data set shows a trend of rapid disappearance of chondrichthyan species with depth when compared with bony fishes. Sharks, apparently well adapted to life at high pressures are conspicuous on slopes down to 2000 m including scavenging at food falls such as dead whales.
    [Show full text]