Germ Cells …… Do Not Appear …… Until the Sixth Week of Development

Total Page:16

File Type:pdf, Size:1020Kb

Germ Cells …… Do Not Appear …… Until the Sixth Week of Development Reproductive System Session 1 Origin of the Sexes Lecture 1 Development of Male and Female Reproductive System 1 The genital system LANGMAN”S Medical Embryology Indifferent Embryo • Between week 1 and 6, female and male embryos are phenotypically indistinguishable, even though the genotype (XX or XY) of the embryo is established at fertilization. • By week 12, some female and male characteristics of the external genitalia can be recognized. • By week 20, phenotypic differentiation is complete. 4 Indifferent Embryo • The indifferent gonads develop in a longitudinal elevation or ridge of intermediate mesoderm called the urogenital ridge ❑ Initially…. gonads (as a pair of longitudinal ridges, the genital or gonadal ridges). ❑ Epithelium + Mesenchyme. ❑ Germ cells …… do not appear …… until the sixth week of development. • Primordial germ cells arise from the lining cells in the wall of the yolk sac at weeks 3-4. • At week 4-6, primordial germ cells migrate into the indifferent gonad. ➢ Male germ cells will colonise the medullary region and the cortex region will atrophy. ➢ Female germ cells will colonise the cortex of the primordial gonad so the medullary cords do not develop. 5 6 The genital system 7 8 • Phenotypic differentiation is determined by the SRY gene (sex determining region on Y). • which is located on the short arm of the Y chromosome. The Sry gene encodes for a protein called testes- determining factor (TDF). 1. As the indifferent gonad develops into the testes, Leydig cells and Sertoli cells differentiate to produce Testosterone and Mullerian-inhibiting factor (MIF), respectively. 3. In the presence of TDF, testosterone, and MIF, the indifferent embryo will be directed to a male phenotype. 4. In the absence of TDF, testosterone, and MIF, the indifferent embryo will be directed to a female phenotype. 9 10 ❑The components of the indifferent embryo that are remodeled to form the adult female and male reproductive systems are: 1. Gonads 2. Paramesonephric (Mullerian) duct 3. Mesonephric (Wolffian) duct 4. Phallus 5. Urethral folds 6. Genital swellings 11 12 Indifferent Embryo Adult Female Adult Male Testes, Seminiferous Ovary, Primordial Gonads Tubules, Tubuli Recti, Follicles, Rete Ovarii Leydig Cells, Sertoli Cells Uterine Tubes, Uterus, Paramesonephric Cervix, Upper Third of Appendix Testes Ducts Vagina*, Hydatid of Morgagni Epididymis, Ductus Appendix Vesiculosa, Duct Deferens, Seminal Mesonephric Ducts of Gartner Vesicles, Ejaculatory Duct, Appendix Epididymis Efferent Ductules, Mesonephric Tubules Epoophoron, Paroophoron Paradidymis Glance and Body of the Phallus Clitoris Penis Ventral Aspect of the Urethral Folds Labia Minora Penis Genital Swellings Labia Majora, Mons Pubis Scrotum • * Lower two-thirds develops from vaginal plate of urogenital sinus • Structures written by red color refers to vestigial structures Genital Ducts in the Sixth Week A: Male; B: Female Genital ducts in the sixth week in the male A and female B. The mesonephric and paramesonephric ducts are present in both. Note the excretory tubules of the mesonephros and their relation to the developing gonad in both sexes. 14 A:Genital ducts in the female at the end of the second month B: Genital ducts after descent of ovary Genital ducts in the female at the end of the second month. Note the paramesonephric (müllerian) tubercle and formation of the uterine canal. B. Genital ducts after descent of the ovary. The only parts remaining from the mesonephric system are the epoophoron, paroophoron, and Gartner’s cyst. 15 Formation of the Uterus and Vagina A. 9 weeks, B. At the end of the third month, C. Newborn • A. 9 weeks. Note the disappearance of the uterine septum. • B. At the end of the third month. Note the tissue of the sinovaginal bulbs. • C. Newborn. The fornices and vagina are formed by vacuolization of the the upper portion of the • paramesonephric tissue, and the lower portion of the vagina is formed by vacuolization 16 • of the sinovaginal bulbs. Formation of the Uterus and Vagina A. 9 weeks, B. At the end of the third month, C. Newborn 17 Main Abnormalities of the Uterus and Vagina 18 A: Genital ducts in the male in the fourth month. B: Genital ducts after descent of the testis. 19 Descent of the Ovary and Testes • The ovaries and testes develop within the abdominal cavity but later descend into the pelvis and scrotum, respectively. • This descent involves the gubernaculum (a band of fibrous tissue) and the processus vaginalis (an invagination of peritoneum). 20 Testes 1. The gubernaculum extends from the testes to the genital swellings (forming the gubernaculum testes in the adult male, which anchors the testes within the scrotal sac). 2. The processus vaginalis forms the tunica vaginalis in the adult male. 3. Cryptorchidism??? 21 Descent of the testis: A. During the 2nd month; B. In the middle of the 3rd month; C. In the 7th month; D. Shortly after birth. 22 Drawing showing the coverings of the testes that are derived from constituents of the abdominal wall 23 Ovary 1. The gubernaculum extends from the ovary to the junction of the uterus and uterine tubes (forming the ovarian ligament in the adult female) and the continues into the labia majora (forming the round ligament of the uterus in the adult female). 2. The processus vaginalis is obliterated in the adult female 24 25 Development of Prostate Gland ❑The prostate gland develops from multiple outgrowths of the prostatic urethra. ❑Dihydrotestosterone (DHT) is the main mediator of prostatic growth in males. 26 External Genitalia Indifferent Stage A. Approximately 4 weeks; B. Approximately 6 weeks 27 External Genitalia in the Male A. Development of external genitalia in the male at 10 weeks; B. Transverse sections through phallus during formation of penile urethra; C. Newborn 28 Hypospadias and Epispadias Hypospadias showing the various Epispadias combined with exstrophy of locations of abnormal urethral orifices the bladder. Bladder mucosa is exposed 29 Development of the External Genitalia in the Female:- A: at 5 months; B: in the newborn 30.
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Comparative Studies on Gonad Development in the Rat, the Pig and in Cattle J
    Proceedings of the Iowa Academy of Science Volume 49 | Annual Issue Article 96 1942 Comparative Studies on Gonad Development in the Rat, the Pig and in Cattle J. D. Thomson State University of Iowa Copyright © Copyright 1942 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Thomson, J. D. (1942) "Comparative Studies on Gonad Development in the Rat, the Pig and in Cattle," Proceedings of the Iowa Academy of Science: Vol. 49: No. 1 , Article 96. Available at: https://scholarworks.uni.edu/pias/vol49/iss1/96 This Research is brought to you for free and open access by UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Thomson: Comparative Studies on Gonad Development in the Rat, the Pig and COMPARATIVE STUDIES ON GONAD DEVELOPMENT IN THE RAT, THE PIG AND IN CATTLP1 J J. D. THOMSON INTRODUCTIO~ The relatively clear and simple developmental pattern of the frog gonad (Witschi 1914, 1924, 1929) makes it a good basic type with which to compare the sex glands of higher vertebrates. The frog gonad, before sex differentiation, consists of a germin­ al epithelium (cortex) containing germ cells and follicle cells, of a mesenchyme-filled primary gonad cavity (this mesenchyme later forming the primary albuginea), and of a series of rete cords (of mesonephric blastema origin) entering through the hilum and pro­ jecting into the primary gonad cavity. The rete cords constitute the primitive medulla.
    [Show full text]
  • Abnormalities and Position-Converted
    Medical Academy named after S. I. Georgievsky Chair of obstetrics, gynecology and perinatology # 1 Abnormalities of development and position of the internal female genitalia Livshyts I. V. PhD, Associate Professor • Congenital malformations of the female genital tract are defined as deviations from normal anatomy resulting from embryological maldevelopment of the Mullerian or paramesonephric ducts. • They represent a rather common benign condition with a prevalence of 4–7% • Müllerian malformations are frequently associated with abnormalities of the renal and axial skeletal systems Grimbizis et al., 2001; Saravelos et al., 2008; Chan et al., 2011a Early embryo development • Until 8 weeks' gestation, the human fetus is undifferentiated sexually and contains both male (wolffian) and female (müllerian) genital ducts. • Wolffian structures (in the male fetus) differentiate into the vas deferens, epididymis, and seminal vesicles. Wolffian (mesonephric) duct • In the female fetus, with the absence of testosterone secretion, the Wolffian duct regresses, but inclusions may persist. • The epoophoron and Skene's glands may be present. • Also, lateral to the wall of the vagina a Gartner's duct or cyst could develop as a remnant. Speroff L. et al., 2005 Müllerian (paramesonephric) ducts • Paired ducts of the embryo that run down the lateral sides of the urogenital ridge and terminate at the sinus tubercle in the primitive urogenital sinus. • In the female, without the influence of AMH, they will develop to form the fallopian tubes, uterus, cervix, and the upper one-third of the vagina. • In the absence of testosterone and dihydrotestosterone, the genital tubercle develops into the clitoris, and the labioscrotal folds do not fuse, leaving labia minora and majora.
    [Show full text]
  • Comparative Studies on Gonad Development in the Rat, the Pig and in Cattle
    Proceedings of the Iowa Academy of Science Volume 49 Annual Issue Article 96 1942 Comparative Studies on Gonad Development in the Rat, the Pig and in Cattle J. D. Thomson State University of Iowa Let us know how access to this document benefits ouy Copyright ©1942 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Thomson, J. D. (1942) "Comparative Studies on Gonad Development in the Rat, the Pig and in Cattle," Proceedings of the Iowa Academy of Science, 49(1), 475-501. Available at: https://scholarworks.uni.edu/pias/vol49/iss1/96 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Thomson: Comparative Studies on Gonad Development in the Rat, the Pig and COMPARATIVE STUDIES ON GONAD DEVELOPMENT IN THE RAT, THE PIG AND IN CATTLP1 J J. D. THOMSON INTRODUCTIO~ The relatively clear and simple developmental pattern of the frog gonad (Witschi 1914, 1924, 1929) makes it a good basic type with which to compare the sex glands of higher vertebrates. The frog gonad, before sex differentiation, consists of a germin­ al epithelium (cortex) containing germ cells and follicle cells, of a mesenchyme-filled primary gonad cavity (this mesenchyme later forming the primary albuginea), and of a series of rete cords (of mesonephric blastema origin) entering through the hilum and pro­ jecting into the primary gonad cavity.
    [Show full text]
  • Human Physiology/The Female Reproductive System 1 Human Physiology/The Female Reproductive System
    Human Physiology/The female reproductive system 1 Human Physiology/The female reproductive system ← The male reproductive system — Human Physiology — Pregnancy and birth → Homeostasis — Cells — Integumentary — Nervous — Senses — Muscular — Blood — Cardiovascular — Immune — Urinary — Respiratory — Gastrointestinal — Nutrition — Endocrine — Reproduction (male) — Reproduction (female) — Pregnancy — Genetics — Development — Answers Introduction All living things reproduce. This is something that sets the living apart from non-living. Even though the reproductive system is essential to keeping a species alive, it is not essential to keeping an individual alive. This chapter describes the different parts of the female reproductive system: the organs involved in the process of reproduction, hormones that regulate a woman's body, the menstrual cycle, ovulation and pregnancy, the female's role in genetic division, birth control, sexually transmitted diseases and other diseases and disorders. Reproduction Reproduction can be defined as the process by which an organism continues its species. In the human reproductive process, two kinds of sex cells ( gametes), are involved: the male gamete (sperm), and the female gamete (egg or ovum). These two gametes meet within the female's uterine tubes located one on each side of the upper pelvic cavity, and begin to create a new individual. The female needs a male to fertilize her egg; she then carries offspring through pregnancy and childbirth. Similarities between male and female reproductive systems The reproductive systems of the male and female have some basic similarities and some specialized differences. They are the same in that most of the reproductive organs of both sexes develop from similar embryonic tissue, meaning they are homologous. Both systems have gonads that produce (sperm and egg or ovum) and sex organs.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • A Contribution to the Morphology of the Human Urino-Genital Tract
    APPENDIX. A CONTRIBUTION TO THE MORPHOLOGY OF THE HUMAN URINOGENITAL TRACT. By D. Berry Hart, M.D., F.R.C.P. Edin., etc., Lecturer on Midwifery and Diseases of Women, School of the Royal Colleges, Edinburgh, etc. Ilead before the Society on various occasions. In two previous communications I discussed the questions of the origin of the hymen and vagina. I there attempted to show that the lower ends of the Wolffian ducts enter into the formation of the former, and that the latter was Miillerian in origin only in its upper two-thirds, the lower third being formed by blended urinogenital sinus and Wolffian ducts. In following this line of inquiry more deeply, it resolved itself into a much wider question?viz., the morphology of the human urinogenital tract, and this has occupied much of my spare time for the last five years. It soon became evident that what one required to investigate was really the early history and ultimate fate of the Wolffian body and its duct, as well as that of the Miillerian duct, and this led one back to the fundamental facts of de- velopment in relation to bladder and bowel. The result of this investigation will therefore be considered under the following heads:? I. The Development of the Urinogenital Organs, Eectum, and External Genitals in the Human Fcetus up to the end of the First Month. The Development of the Permanent Kidney is not CONSIDERED. 260 MORPHOLOGY OF THE HUMAN URINOGENITAL TRACT, II. The Condition of these Organs at the 6th to 7th Week. III.
    [Show full text]
  • 1- Development of Female Genital System
    Development of female genital systems Reproductive block …………………………………………………………………. Objectives : ✓ Describe the development of gonads (indifferent& different stages) ✓ Describe the development of the female gonad (ovary). ✓ Describe the development of the internal genital organs (uterine tubes, uterus & vagina). ✓ Describe the development of the external genitalia. ✓ List the main congenital anomalies. Resources : ✓ 435 embryology (males & females) lectures. ✓ BRS embryology Book. ✓ The Developing Human Clinically Oriented Embryology book. Color Index: ✓ EXTRA ✓ Important ✓ Day, Week, Month Team leaders : Afnan AlMalki & Helmi M AlSwerki. Helpful video Focus on female genital system INTRODUCTION Sex Determination - Chromosomal and genetic sex is established at fertilization and depends upon the presence of Y or X chromosome of the sperm. - Development of female phenotype requires two X chromosomes. - The type of sex chromosomes complex established at fertilization determine the type of gonad differentiated from the indifferent gonad - The Y chromosome has testis determining factor (TDF) testis determining factor. One of the important result of fertilization is sex determination. - The primary female sexual differentiation is determined by the presence of the X chromosome , and the absence of Y chromosome and does not depend on hormonal effect. - The type of gonad determines the type of sexual differentiation in the Sexual Ducts and External Genitalia. - The Female reproductive system development comprises of : Gonad (Ovary) , Genital Ducts ( Both male and female embryo have two pair of genital ducts , They do not depend on ovaries or hormones ) and External genitalia. DEVELOPMENT OF THE GONADS (ovaries) - Is Derived From Three Sources (Male Slides) 1. Mesothelium 2. Mesenchyme 3. Primordial Germ cells (mesodermal epithelium ) lining underlying embryonic appear among the Endodermal the posterior abdominal wall connective tissue cell s in the wall of the yolk sac).
    [Show full text]
  • Vaginal Cysts Undoubtedly Originate from Different Vaginal Glands
    erated exfoliated detritus, fat and VAGINAL CYSTS epithelium, droplets cholesterin crystals. If large, the contents may be a from 2 to 4 mm. are of CLARENCE B. INGRAHAM, M.D. clear fluid. Their walls, thick, fibrous tissue lined from two to of DENVER by thirty layers squamous epithelium, usually thicker at one point than Vaginal cysts have received frequent consideration at another. The superficial cells are often devoid of in medical literature. Stokes, Cullen,1 Breisky,2 nuclei and filled with vacuoles. The deepest layer is Winkel,3 Freund,4 Veit,5 Gebhard6 and Bandler7 most often cuboidal. have written important articles on this subject. Such a cyst, usually painless, occasionally causes a Small cysts in the vagina are unusual; a large cyst disagreeable irritation or vaginismus. The treatment is rare. One large cyst and two small ones having is enucleation. come under my observation, I take this opportunity to report them. Vaginal cysts undoubtedly originate from different sources; from inclusions of vaginal epithelium, from vaginal glands, persistent embryonic structures, pos- sibly from urethral epithelium. It is often difficult or impossible to determine their origin. A cyst, originally lined by squamous epithelium, may undergo changes, many layers of cells being reduced to a single layer with the characteristics of a cuboidal cell. A probable form of vaginal cyst is one that develops from inclusions of vaginal epithelium, crypts or folds adhering as a result of vaginitis, not uncommon in the young. Such an adhesive vaginitis may result from infections, from a general systemic highly irritating Fig. 2.—On the double uterus with cervices with or a left, communicating discharge, from the ulcération of foreign body.
    [Show full text]
  • Ta2, Part Iii
    TERMINOLOGIA ANATOMICA Second Edition (2.06) International Anatomical Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TA2, PART III Contents: Systemata visceralia Visceral systems Caput V: Systema digestorium Chapter 5: Digestive system Caput VI: Systema respiratorium Chapter 6: Respiratory system Caput VII: Cavitas thoracis Chapter 7: Thoracic cavity Caput VIII: Systema urinarium Chapter 8: Urinary system Caput IX: Systemata genitalia Chapter 9: Genital systems Caput X: Cavitas abdominopelvica Chapter 10: Abdominopelvic cavity Bibliographic Reference Citation: FIPAT. Terminologia Anatomica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, 2019 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Anatomica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: SYSTEMA DIGESTORIUM Chapter 5: DIGESTIVE SYSTEM Latin term Latin synonym UK English US English English synonym Other 2772 Systemata visceralia Visceral systems Visceral systems Splanchnologia 2773 Systema digestorium Systema alimentarium Digestive system Digestive system Alimentary system Apparatus digestorius; Gastrointestinal system 2774 Stoma Ostium orale; Os Mouth Mouth 2775 Labia oris Lips Lips See Anatomia generalis (Ch.
    [Show full text]
  • An Unusual Case of Anterior Vaginal Wall Cyst 1GS Anitha, 2M Prathiba, 3Mangala Gowri
    JSAFOG An Unusual10.5005/jp-journals-10006-1367 Case of Anterior Vaginal Wall Cyst CasE REPORT An Unusual Case of Anterior Vaginal Wall Cyst 1GS Anitha, 2M Prathiba, 3Mangala Gowri ABSTRACT asymptomatic and have been reported to occur in as Vaginal cysts are rare and are mostly detected as an incidental many as 1% of all women. Because the ureteral bud also finding during a gynecological examination. Gartner duct cysts, develops from the Wolffian duct, it is not surprising that the most common benign cystic lesion of the vagina, represent Gartner duct cysts have been associated with ureteral embryologic remnants of the caudal end of the mesonephric and renal abnormalities, including congenital ipsilateral (Wolffian) duct. These cysts are usually small and asymptomatic and have been reported to occur in as many as 1% of all women. renal dysgenesis or agenesis, crossed fused renal ectopia A 17-year-old unmarried girl presented with mass per vagina and ectopic ureters. In addition, associated anomalies since one and a half year. On examination, anterior vaginal of the female genital tract, including structural uterine wall cyst of 8 × 4 × 3 cm was detected. Surgical excision anomalies (ipsilateral müllerian duct obstruction, bicor- of the cyst was done under spinal anesthesia by sharp and nuate uteri, and uterus didelphys) and diverticulosis of blunt dissection. The cyst was filled with mucoid material and histopathological examination confirmed Gartner origin. This the fallopian tubes, have been described. Gartner cysts is a rare case of large Gartner cyst. can be asymptomatic or can present with symptoms like Keywords: Anterior vaginal wall cyst, Gartner cyst, Müllerian mass per vagina, vaginal discharge, pain, dyspareunia, cyst, Surgical excision.
    [Show full text]