Development of Female Genital System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Male Reproductive System Sexual Reproduction Requires Two Types Of
Male Reproductive system Sexual reproduction requires two types of gametes or sex cells. In the male these cells are the spermatozoa and in the female they are the ova. The reproductive systems are unique in three respects 1. They are specialized in perpetuating the species and passing genetic information. 2. The anatomy and physiology between the male and female reproductive systems are different. 3. They exhibit latent development under hormonal control. The structures of the male reproductive system can be divided into three categories. 1. Primary sex organs - the gonads (testes). These produce sperm and sex hormones. 2. Secondary sex organs - the structures necessary for caring for and transportation of the sperm. A. Sperm transporting ducts 1. epididymus 2. ductus deferens 3. ejaculatory ducts 4. urethra B. Accessory glands 1. seminal vesicle 2. prostate gland 3. bulbourethral (Cowper's) glands C. Copulatory organ - penis. Also includes the scrotum (the skin enclosing the testes) 3. Secondary sex characteristics - These are not reproductively necessary, but are considered sexual attractants. They include things such as body hair, body physique, and voice pitch. Sexual determination - Sex is determined at the time of conception. As we will see, all ova have an x chromosome and sperm are 50:50 X and Y. If an ova is fertilized by an x sperm then we have a female. If an ova is fertilized by a Y sperm then we have a male. Sometimes we see more than one X in an ovum. As long as there is a Y chromosome we will have a male. ie. XXXY = male. -
The Morphology, Androgenic Function, Hyperplasia, and Tumors of the Human Ovarian Hilus Cells * William H
THE MORPHOLOGY, ANDROGENIC FUNCTION, HYPERPLASIA, AND TUMORS OF THE HUMAN OVARIAN HILUS CELLS * WILLIAM H. STERNBERG, M.D. (From the Department of Pathology, School of Medicine, Tulane University of Louisiana and the Charity Hospital of Louisiana, New Orleans, La.) The hilus of the human ovary contains nests of cells morphologically identical with testicular Leydig cells, and which, in all probability, pro- duce androgens. Multiple sections through the ovarian hilus and meso- varium will reveal these small nests microscopically in at least 8o per cent of adult ovaries; probably in all adult ovaries if sufficient sections are made. Although they had been noted previously by a number of authors (Aichel,l Bucura,2 and von Winiwarter 3"4) who failed to recog- nize their significance, Berger,5-9 in 1922 and in subsequent years, pre- sented the first sound morphologic studies of the ovarian hilus cells. Nevertheless, there is comparatively little reference to these cells in the American medical literature, and they are not mentioned in stand- ard textbooks of histology, gynecologic pathology, nor in monographs on ovarian tumors (with the exception of Selye's recent "Atlas of Ovarian Tumors"10). The hilus cells are found in clusters along the length of the ovarian hilus and in the adjacent mesovarium. They are, almost without excep- tion, found in contiguity with the nonmyelinated nerves of the hilus, often in intimate relationship to the abundant vascular and lymphatic spaces in this area. Cytologically, a point for point correspondence with the testicular Leydig cells can be established in terms of nuclear and cyto- plasmic detail, lipids, lipochrome pigment, and crystalloids of Reinke. -
Intraligamentous and Retroperitoneal Tumors of the Uterus and Its Adnexa
INTRALIGAMENTOUS AND RETROPERITONEAL TUMORS OF THE UTERUS AND ITS ADNEXA. BY WILLIAM H. WAT HEN. A. M.. M. D. [Reprinted from the 1894 Transactions of the American Gynecological Society.] INTRALIGAMENTOUS AND RETROPERITONEAL TUMORS OF THE UTERUS AND ITS ADNEXA. BY WILLIAM H. WATHEN. A. M.. M. D„ Professor of Abdominal Surgery and Gynecology in the Kentucky School of Medicine; Fellow of the American Gynecological Society and of the Southern Surgical and Gynecological Society; Gynecologist to the Kentucky School of Medicine Hospital and the Louisville City Hospital, etc., Louisville, Kentucky. With two Illustrations. A few years ago paroophoritic cysts embedded between the layers of the broad ligament deep into the pelvic cellular tissue, and intraligamentous and retroperitoneal myomata of the uterus or its muscular processes, were not amenable to surgical treat- ment, and when such conditions were encountered in a celiotomy the abdomen was closed without attempting to remove the tumor. Fortunately we now know more about the pathology of these tumors, and have learned how they may be removed with less mortality than was usual twenty years ago in ovariotomy. Paroophoritic cysts and subperitoneal myomata have nothing in common in their etiology, but, as the technique of the operation for their successful removal is in many particulars identical, I will include both kinds of tumors in what 1 will say to-day. Alban Doran, J. Bland Sutton, and other authorities have recently written so much about the pathology of these tumors that it will not be necessary for me to consider that part of the subject further than to make intelligent what I will say about the operative treatment. -
Germ Cells …… Do Not Appear …… Until the Sixth Week of Development
Reproductive System Session 1 Origin of the Sexes Lecture 1 Development of Male and Female Reproductive System 1 The genital system LANGMAN”S Medical Embryology Indifferent Embryo • Between week 1 and 6, female and male embryos are phenotypically indistinguishable, even though the genotype (XX or XY) of the embryo is established at fertilization. • By week 12, some female and male characteristics of the external genitalia can be recognized. • By week 20, phenotypic differentiation is complete. 4 Indifferent Embryo • The indifferent gonads develop in a longitudinal elevation or ridge of intermediate mesoderm called the urogenital ridge ❑ Initially…. gonads (as a pair of longitudinal ridges, the genital or gonadal ridges). ❑ Epithelium + Mesenchyme. ❑ Germ cells …… do not appear …… until the sixth week of development. • Primordial germ cells arise from the lining cells in the wall of the yolk sac at weeks 3-4. • At week 4-6, primordial germ cells migrate into the indifferent gonad. ➢ Male germ cells will colonise the medullary region and the cortex region will atrophy. ➢ Female germ cells will colonise the cortex of the primordial gonad so the medullary cords do not develop. 5 6 The genital system 7 8 • Phenotypic differentiation is determined by the SRY gene (sex determining region on Y). • which is located on the short arm of the Y chromosome. The Sry gene encodes for a protein called testes- determining factor (TDF). 1. As the indifferent gonad develops into the testes, Leydig cells and Sertoli cells differentiate to produce Testosterone and Mullerian-inhibiting factor (MIF), respectively. 3. In the presence of TDF, testosterone, and MIF, the indifferent embryo will be directed to a male phenotype. -
Comparative Studies on Gonad Development in the Rat, the Pig and in Cattle J
Proceedings of the Iowa Academy of Science Volume 49 | Annual Issue Article 96 1942 Comparative Studies on Gonad Development in the Rat, the Pig and in Cattle J. D. Thomson State University of Iowa Copyright © Copyright 1942 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Thomson, J. D. (1942) "Comparative Studies on Gonad Development in the Rat, the Pig and in Cattle," Proceedings of the Iowa Academy of Science: Vol. 49: No. 1 , Article 96. Available at: https://scholarworks.uni.edu/pias/vol49/iss1/96 This Research is brought to you for free and open access by UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Thomson: Comparative Studies on Gonad Development in the Rat, the Pig and COMPARATIVE STUDIES ON GONAD DEVELOPMENT IN THE RAT, THE PIG AND IN CATTLP1 J J. D. THOMSON INTRODUCTIO~ The relatively clear and simple developmental pattern of the frog gonad (Witschi 1914, 1924, 1929) makes it a good basic type with which to compare the sex glands of higher vertebrates. The frog gonad, before sex differentiation, consists of a germin al epithelium (cortex) containing germ cells and follicle cells, of a mesenchyme-filled primary gonad cavity (this mesenchyme later forming the primary albuginea), and of a series of rete cords (of mesonephric blastema origin) entering through the hilum and pro jecting into the primary gonad cavity. The rete cords constitute the primitive medulla. -
Mechanisms of Gonadal Morphogenesis Are Not Conserved Between Chick and Mouse ⁎ Ryohei Sekido , Robin Lovell-Badge
Developmental Biology 302 (2007) 132–142 www.elsevier.com/locate/ydbio Mechanisms of gonadal morphogenesis are not conserved between chick and mouse ⁎ Ryohei Sekido , Robin Lovell-Badge Division of Developmental Genetics, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK Received for publication 3 June 2006; revised 16 August 2006; accepted 5 September 2006 Available online 9 September 2006 Abstract To understand mechanisms of sex determination, it is important to know the lineage relationships of cells comprising the gonads. For example, in mice, the Y-linked gene Sry triggers differentiation of Sertoli cells from a cell population originating in the coelomic epithelium overlying the nascent gonad that also gives rise to uncharacterised interstitial cells. In contrast, little is known about origins of somatic cell types in the chick testis, where there is no Sry gene and sex determination depends on a ZZ male/ZW female mechanism. To investigate this, we performed fate mapping experiments in ovo, labelling at indifferent stages the coelomic epithelium by electroporation with a lacZ reporter gene and the underlying nephrogenous (or mesonephric) mesenchyme with chemical dyes. After sex differentiation, LacZ-positive cells were exclusively outside testis cords and were 3βHSD-negative, indicating that the coelomic epithelium contributes only to non-steroidogenic interstitial cells. However, we detected dye-labelled cells both inside and outside the cords. The former were AMH-positive while some of the latter were 3βHSD- positive, showing that nephrogenous mesenchyme contributes to both Sertoli cells and steroidogenic cells. This is the first demonstration via lineage analysis that steroidogenic cells originate from nephrogenous mesenchyme, but the revelation that Sertoli cells have different origins between chick and mouse suggests that, during evolution, mechanisms of gonad morphogenesis may diverge alongside those of sex determination. -
Cranial Cavitry
Embryology Endo, Energy, and Repro 2017-2018 EMBRYOLOGY OF THE REPRODUCTIVE SYSTEM Janine Prange-Kiel, Ph.D. Office: L1.106, Phone: 83117 Email: [email protected] LEARNING OBJECTIVES: • Name the structures in kidney development that contribute to the development of the reproductive organs. • Predict how the presence or absence of the Y chromosome and the expression of the SRY gene would influence the development of the gonads. • Predict how the presence or absence of testosterone, dihydrotestosterone, and anit- Mullerian hormone would influence the development of the genital ducts and indifferent primordia of the external genitalia. I. Introduction In general, the function of the genital (reproductive) system in males and females is the formation, nurture, and transport of germ cells. In females, an additional function is to provide the proper milieu for the fetal development after conception. Like the urinary system, the genital system derives from intermediate mesoderm. The development of these two systems is tightly interwoven as structures that develop as parts of the urinary system gain function in the genital system. In the adult, the sexual organs differ between males and females. The early genital system, however, is similar in both sexes, and the sexual differentiation of this initially indifferent, bipotential system starts only in the seventh week of embryonic development. The details on how sexual differentiation is determined will be discussed below, but it is worth mentioning here that irregularities in this process result in disorders of sexual differentiation (DSDs). DSDs occur in approximately 1 in 4,500 live births and will be discussed in a separate lecture. -
Comparative Studies on Gonad Development in the Rat, the Pig and in Cattle
Proceedings of the Iowa Academy of Science Volume 49 Annual Issue Article 96 1942 Comparative Studies on Gonad Development in the Rat, the Pig and in Cattle J. D. Thomson State University of Iowa Let us know how access to this document benefits ouy Copyright ©1942 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Thomson, J. D. (1942) "Comparative Studies on Gonad Development in the Rat, the Pig and in Cattle," Proceedings of the Iowa Academy of Science, 49(1), 475-501. Available at: https://scholarworks.uni.edu/pias/vol49/iss1/96 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Thomson: Comparative Studies on Gonad Development in the Rat, the Pig and COMPARATIVE STUDIES ON GONAD DEVELOPMENT IN THE RAT, THE PIG AND IN CATTLP1 J J. D. THOMSON INTRODUCTIO~ The relatively clear and simple developmental pattern of the frog gonad (Witschi 1914, 1924, 1929) makes it a good basic type with which to compare the sex glands of higher vertebrates. The frog gonad, before sex differentiation, consists of a germin al epithelium (cortex) containing germ cells and follicle cells, of a mesenchyme-filled primary gonad cavity (this mesenchyme later forming the primary albuginea), and of a series of rete cords (of mesonephric blastema origin) entering through the hilum and pro jecting into the primary gonad cavity. -
ANA214: Systemic Embryology
ANA214: Systemic Embryology ISHOLA, Azeez Olakune [email protected] Anatomy Department, College of Medicine and Health Sciences Outline • Organogenesis foundation • Urogenital system • Respiratory System • Kidney • Larynx • Ureter • Trachea & Bronchi • Urinary bladder • Lungs • Male urethra • Female urethra • Cardiovascular System • Prostate • Heart • Uterus and uterine tubes • Blood vessels • Vagina • Fetal Circulation • External genitalia • Changes in Circulation at Birth • Testes • Gastrointestinal System • Ovary • Mouth • Nervous System • Pharynx • Neurulation • GI Tract • Neural crests • Liver, Spleen, Pancreas Segmentation of Mesoderm • Start by 17th day • Under the influence of notochord • Cells close to midline proliferate – PARAXIAL MESODERM • Lateral cells remain thin – LATERAL PLATE MESODERM • Somatic/Parietal mesoderm – close to amnion • Visceral/Splanchnic mesoderm – close to yolk sac • Intermediate mesoderm connects paraxial and lateral mesoderm Paraxial Mesoderm • Paraxial mesoderm organized into segments – SOMITOMERES • Occurs in craniocaudal sequence and start from occipital region • 1st developed by day 20 (3 pairs per day) – 5th week • Gives axial skeleton Intermediate Mesoderm • Differentiate into Urogenital structures • Pronephros, mesonephros Lateral Plate Mesoderm • Parietal mesoderm + ectoderm = lateral body wall folds • Dermis of skin • Bones + CT of limb + sternum • Visceral Mesoderm + endoderm = wall of gut tube • Parietal mesoderm surrounding cavity = pleura, peritoneal and pericardial cavity • Blood & -
Female Adnexal Tumor of Probable Wolffian Origin, FATWO: Report of a Rare Case
J Cases Obstet Gynecol, 2016;3(1):15-18 Jo ur nal o f Ca se s in Ob st et ri cs &G ynec olog y Case Report Female adnexal tumor of probable wolffian origin, FATWO: Report of a rare case Cevdet Adiguzel1,*, Eylem Pinar Eser2, Sebnem Baysal1, Esra Selver Saygili Yilmaz1, Eralp Baser1 1 Department of Obstetrics and Gynecology, Adana Numune Education and Research Hospital, Adana, Turkey 2 Department of Pathology, Adana Numune Education and Research Hospital, Adana, Turkey Abstract Female adnexal tumors of probable Wolffian origin (FATWO) arise in the broad ligament from the remnants of the me- sonephric duct. The behavior of these tumors is generally benign. However, they can also behave aggressive- ly and exhibit recurrences or metastases. Herein we present a rare case of FATWO that was diagnosed in a premenopausal woman. Key words: Adnexal mass, FATWO, wolffian Introduction Case presentation Female adnexal tumors of probable Wolffian origin (FAT- A 42-year-old pre-menopausal woman, gravida 2, para 2, WO) were first documented in 1973 by Kariminejad and was referred to our clinic for evaluation of a left adnexal Scully [1]. These tumors arise in the broad ligament from mass suspected to be malignant. Her previous gynecolog- the remnants of the mesonephric duct such as epoophoron, ical history included a cesarean section for dystocia. Pel- paroophoron and Gartner’s duct [2]. Approximately 80 cas- vic ultrasound showed a normal sized uterus, with a thin es of FATWO have been previously reported in the litera- and regular endometrial lining. The right ovary was nor- ture [3]. -
A Contribution to the Morphology of the Human Urino-Genital Tract
APPENDIX. A CONTRIBUTION TO THE MORPHOLOGY OF THE HUMAN URINOGENITAL TRACT. By D. Berry Hart, M.D., F.R.C.P. Edin., etc., Lecturer on Midwifery and Diseases of Women, School of the Royal Colleges, Edinburgh, etc. Ilead before the Society on various occasions. In two previous communications I discussed the questions of the origin of the hymen and vagina. I there attempted to show that the lower ends of the Wolffian ducts enter into the formation of the former, and that the latter was Miillerian in origin only in its upper two-thirds, the lower third being formed by blended urinogenital sinus and Wolffian ducts. In following this line of inquiry more deeply, it resolved itself into a much wider question?viz., the morphology of the human urinogenital tract, and this has occupied much of my spare time for the last five years. It soon became evident that what one required to investigate was really the early history and ultimate fate of the Wolffian body and its duct, as well as that of the Miillerian duct, and this led one back to the fundamental facts of de- velopment in relation to bladder and bowel. The result of this investigation will therefore be considered under the following heads:? I. The Development of the Urinogenital Organs, Eectum, and External Genitals in the Human Fcetus up to the end of the First Month. The Development of the Permanent Kidney is not CONSIDERED. 260 MORPHOLOGY OF THE HUMAN URINOGENITAL TRACT, II. The Condition of these Organs at the 6th to 7th Week. III.