Travels on the Backbone Crest (A Group of Embryonic Cells)

Total Page:16

File Type:pdf, Size:1020Kb

Travels on the Backbone Crest (A Group of Embryonic Cells) BOOKS & ARTS COMMENT EVOLUTION non-deuterostomes. In the most effective section, he strips vertebrates down to their parts, such as the nerve cord, notochord (fore- runner of the vertebral column) and neural Travels on the backbone crest (a group of embryonic cells). He even delves into the largely ignored gut and viscera. Chris Lowe lauds a study of vertebrate origins that Gee discusses how data from living and brings us up to date with a shifting field. fossilized hemichordates and echinoderms have facilitated the search for the origins of the defining chordate anatomies. He ome of the great remaining mysteries groups belong in the highlights how palaeontological, develop- in zoology concern origins — of multi- deuterostome lineage mental and genomic data now all support cellularity, complex nervous systems, of animals alongside the idea that the common ancestor of chor- Slife cycles and sex, for example. The chordates — have dates, hemichordates and echinoderms had evolutionary origin of vertebrates is among largely been resolved. pharyngeal gill slits for filter feeding. That the most intractable of these, despite more Others are as intrac- gives us a glimpse of the early chordate ances- than a century of work spanning a range of table as ever, including tor, which lived around 600 million years ago. disciplines and animal groups. where to place key fos- Other features, such as a complex brain, prob- In Across the Bridge, Henry Gee reviews sil groups such as the ably emerged much later. Having established the most recent research in this area. Gee curious vetulicolians, Across the Bridge: a hazy picture of the earliest chordates, Gee (the senior editor responsible for palae- which lived during Understanding focuses on building vertebrates and their the Origin of the ontology and evolutionary development the Cambrian period, Vertebrates defining features from the basic chordate at Nature) synthesizes contributions from some 541 million to HENRY GEE body plan, for example through spectacular anatomy, developmental biology, genomics, 485 million years ago. University of Chicago innovations in the vertebrate head. palaeontology and the study of evolutionary Nevertheless, Gee Press (2018) Gee considers the evolution of each charac- relationships using DNA-sequence data. effectively develops teristic independently and as a component of He also puts forward his own ideas on this his own evolutionary scenario. He traces the vertebrate body plan. He includes alterna- fascinating conundrum. vertebrate origins from the common ances- tive interpretations and areas in which data The book is a follow-up to Gee’s 1996 Before tor of chordates, echinoderms (which include are weak or missing, allowing the reader to the Backbone, which was one of the reasons I starfish and sea urchins) and hemichordates, think hard about some of the more specula- decided to pursue research into the origins of deep in animal history, to establish a start- tive parts of his arguments. Various bizarre chordates (the group including vertebrates, ing point from which innovations of the first animals illustrate particular points. For exam- the fishlike lancelets and marine invertebrates chordates arose. Having sketched that picture, ple, the strange gelatinous marine inverte- called tunicates). At the time, the discipline he traces the evolution of definitive vertebrate brates called larvaceans secrete a mucus was intimidating, involving impenetrable characteristics by mining rich new studies ‘house’ for filter feeding, which they shed and papers and a dizzying array of contradic- from neglected chordate groups, from lance- rebuild every few hours. They are an extreme tory hypotheses. Gee tamed and synthesized lets and tunicates to hagfish and lampreys. His example of how our closest invertebrate rela- the literature to lay out the history and logic well-argued rationale draws from anatomy, tives have taken their own evolutionary tan- of the most significant hypotheses, such as palaeontology and molecular genetic data. gent, partly driven by genome simplification. Walter Garstang’s 1894 auricularian theory. The book is not a revision of Before the My main criticism of Across the Bridge is (This posited that the chordate body plan Backbone. But one of its goals seems to be that for a subject this visual, I would have evolved through transformation at the larval, to examine how the most influential classi- liked more illustrations. It is, after all, the rather than adult, stage.) Before the Backbone cal hypotheses fare in the light of new data, oddness of the main groups and their stem inspired novices like me to get excited about which is one of Gee’s unique perspectives. fossils that has made vertebrate origins such the challenges in vertebrate origins. He begins with a group-by-group examina- a difficult nut to crack. Is a major new summary of the field tion, from echinoderms to hagfish and a few Do I buy Gee’s original synthesis? warranted, just two decades on? In my Mostly. The morphological divide between view, yes. (Among many others in the field, chordates and their closest relatives I encouraged Gee to write this book, and remains perilously large, and even with he thanks me for so doing in the preface.) new advances, Gee’s hypothesis is a good There has been significant progress across contender; but it is not the only one, so the disciplines on research into important, yet bridge to early chordates remains a little previously neglected, animal groups at cru- wobbly. (An alternative treatment of recent cial positions in the evolutionary tree. Along progress is outlined in Noriyuki Satoh’s 2016 with tunicates and lancelets, these include Chordate Origins and Evolution.) But Across NOAA OKEANOS EXPLORER PROGRAM OKEANOS EXPLORER NOAA hagfish, lampreys and marine worms the Bridge is a deft and well-argued distilla- called hemichordates. The publication of tion of how advances have shifted the field the genomes of two hemichordates — the to the point of dispatching some of the most acorn worms Saccoglossus kowalevskii and influential and elegant classical hypotheses, Ptychodera flava (O. Simakov et al. Nature and it is a bold attempt at developing a new 527, 459–465; 2015) — rounded out the synthesis. It thereby deepens understanding representative genomes of almost all major of our own evolutionary origins. ■ animal groups with direct relevance to vertebrate origins. That draws a line under a Chris Lowe is an associate professor at 20-year burst of productive research. Hopkins Marine Station in the Department Some of the problems that once stalled of Biology at Stanford University, California. progress — such as uncertainty over which Hagfish have been neglected in vertebrate studies. e-mail: [email protected] ©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. ©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts rese5rv eJULYd. 2018 | VOL 559 | NATURE | 31 .
Recommended publications
  • Brains of Primitive Chordates 439
    Brains of Primitive Chordates 439 Brains of Primitive Chordates J C Glover, University of Oslo, Oslo, Norway although providing a more direct link to the evolu- B Fritzsch, Creighton University, Omaha, NE, USA tionary clock, is nevertheless hampered by differing ã 2009 Elsevier Ltd. All rights reserved. rates of evolution, both among species and among genes, and a still largely deficient fossil record. Until recently, it was widely accepted, both on morpholog- ical and molecular grounds, that cephalochordates Introduction and craniates were sister taxons, with urochordates Craniates (which include the sister taxa vertebrata being more distant craniate relatives and with hemi- and hyperotreti, or hagfishes) represent the most chordates being more closely related to echinoderms complex organisms in the chordate phylum, particu- (Figure 1(a)). The molecular data only weakly sup- larly with respect to the organization and function of ported a coherent chordate taxon, however, indicat- the central nervous system. How brain complexity ing that apparent morphological similarities among has arisen during evolution is one of the most chordates are imposed on deep divisions among the fascinating questions facing modern science, and it extant deuterostome taxa. Recent analysis of a sub- speaks directly to the more philosophical question stantially larger number of genes has reversed the of what makes us human. Considerable interest has positions of cephalochordates and urochordates, pro- therefore been directed toward understanding the moting the latter to the most closely related craniate genetic and developmental underpinnings of nervous relatives (Figure 1(b)). system organization in our more ‘primitive’ chordate relatives, in the search for the origins of the vertebrate Comparative Appearance of Brains, brain in a common chordate ancestor.
    [Show full text]
  • Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001
    Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001. Preface This bibliography attempts to list all substantial autobiographies, biographies, festschrifts and obituaries of prominent oceanographers, marine biologists, fisheries scientists, and other scientists who worked in the marine environment published in journals and books after 1922, the publication date of Herdman’s Founders of Oceanography. The bibliography does not include newspaper obituaries, government documents, or citations to brief entries in general biographical sources. Items are listed alphabetically by author, and then chronologically by date of publication under a legend that includes the full name of the individual, his/her date of birth in European style(day, month in roman numeral, year), followed by his/her place of birth, then his date of death and place of death. Entries are in author-editor style following the Chicago Manual of Style (Chicago and London: University of Chicago Press, 14th ed., 1993). Citations are annotated to list the language if it is not obvious from the text. Annotations will also indicate if the citation includes a list of the scientist’s papers, if there is a relationship between the author of the citation and the scientist, or if the citation is written for a particular audience. This bibliography of biographies of scientists of the sea is based on Jacqueline Carpine-Lancre’s bibliography of biographies first published annually beginning with issue 4 of the History of Oceanography Newsletter (September 1992). It was supplemented by a bibliography maintained by Eric L. Mills and citations in the biographical files of the Archives of the Scripps Institution of Oceanography, UCSD.
    [Show full text]
  • Resembling Those of Antigen Receptors Receptor Family with A
    Hagfish Leukocytes Express a Paired Receptor Family with a Variable Domain Resembling Those of Antigen Receptors This information is current as Takashi Suzuki, Tadasu Shin-I, Asao Fujiyama, Yuji Kohara of September 29, 2021. and Masanori Kasahara J Immunol 2005; 174:2885-2891; ; doi: 10.4049/jimmunol.174.5.2885 http://www.jimmunol.org/content/174/5/2885 Downloaded from References This article cites 37 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/174/5/2885.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Hagfish Leukocytes Express a Paired Receptor Family with a Variable Domain Resembling Those of Antigen Receptors1,2 Takashi Suzuki,* Tadasu Shin-I,§ Asao Fujiyama,†¶ʈ Yuji Kohara,‡§ and Masanori Kasahara3* Jawed vertebrates are equipped with TCR and BCR with the capacity to rearrange their V domains.
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1999 Academic Press. This manuscript is an author version with the final publication available and may be cited as: Young, C. M. (1999). Marine invertebrate larvae. In E. Knobil & J. D. Neill (eds.), Encyclopedia of Reproduction, 3. (pp. 89-97). London, England, and San Diego, CA: Academic Press. --------1111------- Marine Invertebrate Larvae Craig M. Young Harbor Branch Oceanographic Institution 1. What Is a Larva? metamorphOSiS Morphological and physiological changes II. The Production of Larvae that occur during the transition from the larval phase to iII. Larval forms and Diversity the juvenile phase: often coincides with settlement in ben­ IV. Larval Feeding and Nutrition thic species. V. Larval Orientation, Locomotion, Dispersal, and mixed development A developmental mode that includes a Mortality brooded or encapsulated embryonic stage as well as a free­ VI. Larval Settlement and Metamorphosis swimming larval stage. VlI. Ecological and Evolutionary Significance of Larvae planktotrophic larva A feeding larva that obtains at least part VlIl. Economic and Medical Importance of Larvae of its nutritional needs from either particulate or dissolved exogenous sources. Planktotrophic larvae generally hatch from small, transparent eggs. GLOSSARY settlement The permanent transition of a larva from the plankton to the benthos. In sessile organisms, settlement atrochal larva A uniformly ciliated larva (cilia not arranged is marked by adhesion to the substratum. It is often closely in distinct bands). associated with metamorphosis and may involve habitat se­ competent larva A larva that is physiologically and morpho­ lection.
    [Show full text]
  • Metabarcoding in the Abyss: Uncovering Deep-Sea Biodiversity Through Environmental
    Metabarcoding in the abyss : uncovering deep-sea biodiversity through environmental DNA Miriam Isabelle Brandt To cite this version: Miriam Isabelle Brandt. Metabarcoding in the abyss : uncovering deep-sea biodiversity through environmental DNA. Agricultural sciences. Université Montpellier, 2020. English. NNT : 2020MONTG033. tel-03197842 HAL Id: tel-03197842 https://tel.archives-ouvertes.fr/tel-03197842 Submitted on 14 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE M ONTPELLIER En Sciences de l'Évolution et de la Biodiversité École doctorale GAIA Unité mixte de recherche MARBEC Pourquoi Pas les Abysses ? L’ADN environnemental pour l’étude de la biodiversité des grands fonds marins Metabarcoding in the abyss: uncovering deep - sea biodiversity through environmental DNA Présentée par Miriam Isabelle BRANDT Le 10 juillet 2020 Sous la direction de Sophie ARNAUD-HAOND et Daniela ZEPPILLI Devant le jury composé de Sofie DERYCKE, Senior researcher/Professeur rang A, ILVO, Belgique Rapporteur
    [Show full text]
  • Snotty Hagfish
    DOWNLOADABLE EXTRAS Introduction to Science 9 Dissecting an Article: Snotty Hagfish When you threaten a hagfi sh, it squirts a huge amount of snotty goo from hundreds of glands that run along its sides. The goo is in such large quantities it could gag a large predator like a shark. The goo that they secrete can expand to 20 litres when it is combined with water; it is like mixing powdered glue paste up for papier-mâché. This goo is produced as a defence mechanism where they become so slippery that the predator can’t hold on to them. They can also tie themselves into a knot spreading the goo all over the predator, this twisting pretzel movement also removes the goo that is sticking them to themselves so that they can escape. The hagfi sh is mainly prey for birds and mammals, with very few sea creatures daring to eat the slimy snot ball. Scientists think that this could be because the goo is able to block fi sh’s gills which would suffocate them so instead they stay away. Hagfi sh are an eel-like marine fi sh that are found in deep areas of the ocean. Hagfi sh occur in a range of colours including pink, brown, blue, grey and even black or white spotted. They are very simple fi sh and lack a true eye. They have a series of eye spots instead that detect light rather than actually see objects. Hagfi sh use long whiskers around their mouths called barbels to help them sense the things in their environment.
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • Hagfish at Home!
    Hagfish at home! What is a hagfish? A hagfish is a type of fish whose body looks similar to that of an eel or worm with a flattened tail. They are usually about a half meter long and are generally found in cold deep waters near the ocean floor (abyssmal zone) where they can live for months without food. When they do eat, they feast on the remains of deceased animals like whales and sharks, that sink to the bottom. Often, hundreds of hagfish will congregate around a carcass and eat it from the inside out. Why are they so slimy? Like many ocean animals, the hagfish needs a way to defend itself against hungry predators. Hagfish accomplish this task by producing a thick, fibrous slime that expands upon contact with saltwater. The slime coats their whole bodies making them unpalat- able, and possibly even dangerous to eat, as hagfish can even hurl their slime to choke potential predators. But if this slime is a choking hazard, why don’t hagfish choke on their own slime? Well, hagfish take their own precautions: they tie their bodies in knots to wipe the excess slime away from their heads so they can eat Above, a car is covered in hagfish slime as result without choking on their own slime! of an accident involving a truck transporting hagfish for human consumption. Photo: Reuters, via The Atlantic Make Your own hagfish slime! What yOU'LL NEED Washable school glue (8 oz) Baking soda (1 tsp) Saline solution/contact lens solution (3 tbsp) Optional Ingredients Liquid food-coloring Mixing bowl Craft glitter Measuring spoons Mixing spoon Airtight container for storage* *Bonus points if it’s a reusable or non-plastic con- tainer! instructions Pour 8 oz of glue into the mixing bowl.
    [Show full text]
  • Biology of Chordates Video Guide
    Branches on the Tree of Life DVD – CHORDATES Written and photographed by David Denning and Bruce Russell ©2005, BioMEDIA ASSOCIATES (THUMBNAIL IMAGES IN THIS GUIDE ARE FROM THE DVD PROGRAM) .. .. To many students, the phylum Chordata doesn’t seem to make much sense. It contains such apparently disparate animals as tunicates (sea squirts), lancelets, fish and humans. This program explores the evolution, structure and classification of chordates with the main goal to clarify the unity of Phylum Chordata. All chordates possess four characteristics that define the phylum, although in most species, these characteristics can only be seen during a relatively small portion of the life cycle (and this is often an embryonic or larval stage, when the animal is difficult to observe). These defining characteristics are: the notochord (dorsal stiffening rod), a hollow dorsal nerve cord; pharyngeal gills; and a post anal tail that includes the notochord and nerve cord. Subphylum Urochordata The most primitive chordates are the tunicates or sea squirts, and closely related groups such as the larvaceans (Appendicularians). In tunicates, the chordate characteristics can be observed only by examining the entire life cycle. The adult feeds using a ‘pharyngeal basket’, a type of pharyngeal gill formed into a mesh-like basket. Cilia on the gill draw water into the mouth, through the basket mesh and out the excurrent siphon. Tunicates have an unusual heart which pumps by ‘wringing out’. It also reverses direction periodically. Tunicates are usually hermaphroditic, often casting eggs and sperm directly into the sea. After fertilization, the zygote develops into a ‘tadpole larva’. This swimming larva shows the remaining three chordate characters - notochord, dorsal nerve cord and post-anal tail.
    [Show full text]
  • Using Information in Taxonomists' Heads to Resolve Hagfish And
    This article was downloaded by: [Max Planck Inst fuer Evolutionsbiologie] On: 03 September 2013, At: 07:01 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Historical Biology: An International Journal of Paleobiology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ghbi20 Using information in taxonomists’ heads to resolve hagfish and lamprey relationships and recapitulate craniate–vertebrate phylogenetic history Maria Abou Chakra a , Brian Keith Hall b & Johnny Ricky Stone a b c d a Department of Biology , McMaster University , Hamilton , Canada b Department of Biology , Dalhousie University , Halifax , Canada c Origins Institute, McMaster University , Hamilton , Canada d SHARCNet, McMaster University , Hamilton , Canada Published online: 02 Sep 2013. To cite this article: Historical Biology (2013): Using information in taxonomists’ heads to resolve hagfish and lamprey relationships and recapitulate craniate–vertebrate phylogenetic history, Historical Biology: An International Journal of Paleobiology To link to this article: http://dx.doi.org/10.1080/08912963.2013.825792 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information.
    [Show full text]
  • Myxine Glutinosa
    Atlantic Hagfish − Myxine glutinosa Overall Vulnerability Rank = Moderate Biological Sensitivity = Moderate Climate Exposure = High Data Quality = 67% of scores ≥ 2 Expert Data Expert Scores Plots Myxine glutinosa Scores Quality (Portion by Category) Low Moderate Stock Status 2.4 0.2 High Other Stressors 1.6 1.1 Very High Population Growth Rate 2.6 0.6 Spawning Cycle 1.1 2.6 Complexity in Reproduction 1.9 1.0 Early Life History Requirements 1.1 2.1 Sensitivity to Ocean Acidification 1.5 1.9 Prey Specialization 1.0 2.6 Habitat Specialization 1.2 3.0 Sensitivity attributes Sensitivity to Temperature 1.6 2.7 Adult Mobility 3.0 2.2 Dispersal & Early Life History 2.7 1.4 Sensitivity Score Moderate Sea Surface Temperature 3.9 3.0 Variability in Sea Surface Temperature 1.0 3.0 Salinity 1.4 3.0 Variability Salinity 1.2 3.0 Air Temperature 1.0 3.0 Variability Air Temperature 1.0 3.0 Precipitation 1.0 3.0 Variability in Precipitation 1.0 3.0 Ocean Acidification 4.0 2.0 Exposure variables Variability in Ocean Acidification 1.0 2.2 Currents 2.1 1.0 Sea Level Rise 1.1 1.5 Exposure Score High Overall Vulnerability Rank Moderate Atlantic Hagfish (Myxine glutinosa) Overall Climate Vulnerability Rank: Moderate (92% certainty from bootstrap analysis). Climate Exposure: High. Two exposure factors contributed to this score: Ocean Surface Temperature (3.9) and Ocean Acidification (4.0). All life stages of Atlantic Hagfish use marine habitats. Biological Sensitivity: Moderate. Two sensitivity attributes scored above 2.5: Adult Mobility (3.0) and Dispersal and Early Life History (2.7).
    [Show full text]
  • Department of ZOOLOGY Museum Specimens
    P.E. Society’s Modern College of Arts, Science and Commerce Ganesh-Khind, Pune – 411 053 http://www.moderncollegegk.org Department of ZOOLOGY Museum Specimens 1 Phylum Porifera 2 SyconSycon n Kingdom: Animalia n Phylum: Porifera n Class: Pharetronida n Order: Sycettida n Genus: Sycon n General Characteristics: Sycon is a genus of calcareous sponges. These sponges are small, growing up to 5 cm in total length, and are tube- shaped and often white to cream in colour. The surface is hairy and spiky tufts of stiff spicules surround the osculum. 3 SpongillaSpongilla n Kingdom: Animalia n Phylum: Porifera n Class: Demospongiae n Order: Haplosclerida n Genus: Spongilla n General Characteristics: Spongilla dwells in lakes and slow streams. Spongilla attach themselves to rocks and logs and filter the water for various small aquatic organisms such as protozoa, bacteria, and other free-floating pond life. fresh-water sponges are exposed to far more adverse and variable environmental conditions, and therefore they have developed gemmules as a means of dormancy. When exposed to excessively cold or otherwise harsh situations, the sponges form these gemmules, which are highly resistant "buds" that can live dormantly after the mother sponge has died. When conditions improve, the gemmules will "germinate" and a new sponge is born. 4 Phylum Coelenterata 5 JellyJelly fishfish n Kingdom: Animalia n Phylum: Coelentrata n Subphylum: Medusozoa n Class: Scyphozoa n Order: Semaeostomeae n Genus: Aurelia n General Characteristics: Jellyfish are free-swimming members. Jellyfish have several different morphologies that represent several different cnidarian Jellyfish are found in every ocean, from the surface to the deep sea.
    [Show full text]