FAU Institutional Repository
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001
Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001. Preface This bibliography attempts to list all substantial autobiographies, biographies, festschrifts and obituaries of prominent oceanographers, marine biologists, fisheries scientists, and other scientists who worked in the marine environment published in journals and books after 1922, the publication date of Herdman’s Founders of Oceanography. The bibliography does not include newspaper obituaries, government documents, or citations to brief entries in general biographical sources. Items are listed alphabetically by author, and then chronologically by date of publication under a legend that includes the full name of the individual, his/her date of birth in European style(day, month in roman numeral, year), followed by his/her place of birth, then his date of death and place of death. Entries are in author-editor style following the Chicago Manual of Style (Chicago and London: University of Chicago Press, 14th ed., 1993). Citations are annotated to list the language if it is not obvious from the text. Annotations will also indicate if the citation includes a list of the scientist’s papers, if there is a relationship between the author of the citation and the scientist, or if the citation is written for a particular audience. This bibliography of biographies of scientists of the sea is based on Jacqueline Carpine-Lancre’s bibliography of biographies first published annually beginning with issue 4 of the History of Oceanography Newsletter (September 1992). It was supplemented by a bibliography maintained by Eric L. Mills and citations in the biographical files of the Archives of the Scripps Institution of Oceanography, UCSD. -
Travels on the Backbone Crest (A Group of Embryonic Cells)
BOOKS & ARTS COMMENT EVOLUTION non-deuterostomes. In the most effective section, he strips vertebrates down to their parts, such as the nerve cord, notochord (fore- runner of the vertebral column) and neural Travels on the backbone crest (a group of embryonic cells). He even delves into the largely ignored gut and viscera. Chris Lowe lauds a study of vertebrate origins that Gee discusses how data from living and brings us up to date with a shifting field. fossilized hemichordates and echinoderms have facilitated the search for the origins of the defining chordate anatomies. He ome of the great remaining mysteries groups belong in the highlights how palaeontological, develop- in zoology concern origins — of multi- deuterostome lineage mental and genomic data now all support cellularity, complex nervous systems, of animals alongside the idea that the common ancestor of chor- Slife cycles and sex, for example. The chordates — have dates, hemichordates and echinoderms had evolutionary origin of vertebrates is among largely been resolved. pharyngeal gill slits for filter feeding. That the most intractable of these, despite more Others are as intrac- gives us a glimpse of the early chordate ances- than a century of work spanning a range of table as ever, including tor, which lived around 600 million years ago. disciplines and animal groups. where to place key fos- Other features, such as a complex brain, prob- In Across the Bridge, Henry Gee reviews sil groups such as the ably emerged much later. Having established the most recent research in this area. Gee curious vetulicolians, Across the Bridge: a hazy picture of the earliest chordates, Gee (the senior editor responsible for palae- which lived during Understanding focuses on building vertebrates and their the Origin of the ontology and evolutionary development the Cambrian period, Vertebrates defining features from the basic chordate at Nature) synthesizes contributions from some 541 million to HENRY GEE body plan, for example through spectacular anatomy, developmental biology, genomics, 485 million years ago. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Annelids, Arthropods, Molluscs 2. Very Diverse, Mostly Marine B. Characteristics 1
Molluscs A. Introduction 1. Three big Protostome Phyla - Annelids, Arthropods, Molluscs 2. Very diverse, mostly marine B. Characteristics 1. Bilateral symmetrical, unsegmented with definite head 2. Muscular foot 3. Mantle - mantle cavity a. Secretes shell - Calcium carbonate 4. Ciliated epithelium 5. Coelom reduced - around heart 6. Open circulatory system 7. Gaseous exchange by gills, lung, or just body surface 8. Metanephridia - empty into mantle cavity C. Body Plan 1. Generalized mollusc a. Mantle - secreted shell b. Mantle - cavity has gills - posterior - location important 2. Head-foot a. Head - 1. Radula - rasping tongue a. Mostly for scraping - snails b. Some (Cone shells) modified to a dart and poison b. Foot - Variously modified 1. Ventral sole-like structure - movement 2. May be shaped for burrowing 3. Shell 1. Made of Calcium Carbonate Molluscs 2. Three layers a. Periostracum - organic layer - not always visible b. Prismatic layer - prim-shaped crystals of calcium carbonate 1. Secreted by gladular margin of mantle 2. Grows as animal grows c. Nacreous layer 1. Continuously secreted by mantle on interior of shell 2. Pearls 4. Reproduction a. Larval stages 1. Trochophore - first stage to hatch from egg 2. Veliger - planktonic larva of most marine snails and bivalves a. Beginnings of foot, shell and mantle D. Classes - problem of segmentation - is it the original body plan - have molluscs lost segementation? 1. Monoplacophora - genus Neopilina a. Serial repetition in body form b. Single shell c. Interesting story of discovery 2. Polyplacophora - chitons a. Segmented shell - plates b. Multiple gills down side of body - not like generalized plan c. Rock dwellers that use radula to scrape algae off rocks 3. -
Structure and Function of the Digestive System in Molluscs
Cell and Tissue Research (2019) 377:475–503 https://doi.org/10.1007/s00441-019-03085-9 REVIEW Structure and function of the digestive system in molluscs Alexandre Lobo-da-Cunha1,2 Received: 21 February 2019 /Accepted: 26 July 2019 /Published online: 2 September 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The phylum Mollusca is one of the largest and more diversified among metazoan phyla, comprising many thousand species living in ocean, freshwater and terrestrial ecosystems. Mollusc-feeding biology is highly diverse, including omnivorous grazers, herbivores, carnivorous scavengers and predators, and even some parasitic species. Consequently, their digestive system presents many adaptive variations. The digestive tract starting in the mouth consists of the buccal cavity, oesophagus, stomach and intestine ending in the anus. Several types of glands are associated, namely, oral and salivary glands, oesophageal glands, digestive gland and, in some cases, anal glands. The digestive gland is the largest and more important for digestion and nutrient absorption. The digestive system of each of the eight extant molluscan classes is reviewed, highlighting the most recent data available on histological, ultrastructural and functional aspects of tissues and cells involved in nutrient absorption, intracellular and extracellular digestion, with emphasis on glandular tissues. Keywords Digestive tract . Digestive gland . Salivary glands . Mollusca . Ultrastructure Introduction and visceral mass. The visceral mass is dorsally covered by the mantle tissues that frequently extend outwards to create a The phylum Mollusca is considered the second largest among flap around the body forming a space in between known as metazoans, surpassed only by the arthropods in a number of pallial or mantle cavity. -
The Evolutionary Embryologist Gavin Rylands De Beer (1899–1972)
Homology and Heterochrony: The Evolutionary Embryologist Gavin Rylands de Beer (1899–1972) Ingo Brigandt Department of History and Philosophy of Science University of Pittsburgh 1017 Cathedral of Learning Pittsburgh, PA 15260 USA E-mail: [email protected] Preprint of an article published in 2006 in the Journal of Experimental Zoology (Part B: Molecular and Developmental Evolution) 306B: 317–328 www.interscience.Wiley.com GAVIN RYLANDS DE BEER (1899–1972) 2 Abstract The evolutionary embryologist Gavin Rylands de Beer can be viewed as one of the forerunners of modern evolutionary developmental biology in that he posed crucial questions and proposed relevant answers about the causal relationship between ontogeny and phylogeny. In his developmental approach to the phylogenetic phenomenon of homology, he emphasized that homology of morphological structures is to be identified neither with the sameness of the underlying developmental processes nor with the homology of the genes that are in involved in the development of the structures. De Beer’s work on developmental evolution focused on the notion of heterochrony, arguing that paedomorphosis increases morphological evolvability and is thereby an important mode of evolution that accounts for the origin of many taxa, including higher taxa. GAVIN RYLANDS DE BEER (1899–1972) 3 Gavin Rylands de Beer (Fig. 1) was born in England in 1899, but spent the first 13 years of his life in France, where his father worked as a correspondent of a telegraph company. After returning to England, he went to Harrow School, where he became interested in zoology. In 1917 he entered Magdalen College at Oxford, graduating in 1922 after a leave for serving in the British Army during World War I. -
Heterodox Concepts in Modern Evolutionary Embryology, 1900-1950 Andres Galera* Centro De Ciencias Humanas Y Sociales, IH, CSIC, Spain
Electronic Journal of Biology, 2016, Vol.12(3): 309-313 Heterodox Concepts in Modern Evolutionary Embryology, 1900-1950 Andres Galera* Centro de Ciencias Humanas y Sociales, IH, CSIC, Spain. *Corresponding author. Tel: (+34) 916022462; E-mail: [email protected] Citation: Galera A. Heterodox Concepts in Modern Evolutionary Embryology, 1900-1950. Electronic J Biol, 12:4 Received: May 31, 2016; Accepted: June 24, 2016; Published: July 01, 2016 Review Article embryogenesis as a telling of the evolutionary Abstract history of a species, exploded, under different titles, during the early 1800s. The theory soon became Whatever the evolutionary model we adopt, in the part of embryological knowledge, but its strongest case of sexual reproduction, the process has an involvement in the evolutionary debate took place in embryological significance because this is the way the 1860s. It is well known that most of the credit to generate individuals and to perpetuate the life. belongs to the German zoologist Ernst Haeckel and The connection between evolution and embryology his book Generelle Morphologie der Organismen, is a necessary event. In this evolutionary context, the published in 1866 [1]. Known as the biogenetic law, key question is: how two species are formed from Haeckel’s theory states that the different embryonic the same biological unit? During the first half of the states represent the different adult forms adopted 20th century embryologists as Richard Goldschmidt, by the species along its evolutionary path. In brief, Conrad Waddington, and Walter Garstang answered ontogeny recapitulates phylogeny. This statement the question from a heterodox point of view. They is as widespread as it is erroneous. -
Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin
California State University, Monterey Bay Digital Commons @ CSUMB Capstone Projects and Master's Theses Capstone Projects and Master's Theses Summer 2020 Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin Kenji Jordi Soto California State University, Monterey Bay Follow this and additional works at: https://digitalcommons.csumb.edu/caps_thes_all Recommended Citation Soto, Kenji Jordi, "Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin" (2020). Capstone Projects and Master's Theses. 892. https://digitalcommons.csumb.edu/caps_thes_all/892 This Master's Thesis (Open Access) is brought to you for free and open access by the Capstone Projects and Master's Theses at Digital Commons @ CSUMB. It has been accepted for inclusion in Capstone Projects and Master's Theses by an authorized administrator of Digital Commons @ CSUMB. For more information, please contact [email protected]. HYDROTEHRMAL VENT PERIPHERY INVERTEBRATE COMMUNITY HABITAT PREFERENCES OF THE LAU BASIN _______________ A Thesis Presented to the Faculty of Moss Landing Marine Laboratories California State University Monterey Bay _______________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Marine Science _______________ by Kenji Jordi Soto Spring 2020 CALIFORNIA STATE UNIVERSITY MONTEREY BAY The Undersigned Faculty Committee Approves the Thesis of Kenji Jordi Soto: HYDROTHERMAL VENT PERIPHERY INVERTEBRATE COMMUNITY HABITAT PREFERENCES OF THE LAU BASIN _____________________________________________ -
Spencer Box 1 G Misc
Pitt Rivers Museum ms collections Spencer papers Box 1 G Miscellaneous Warning: species names etc may not be transcribed accurately Letter G1 Cher Monsieur J’ai reçu remerciement votre lettre, et les specimens que vous avez en l'obligeance de m’envoyer et pour lesquels je vous adresse mes meilleurs remerciements. Ils sont arrivés en bon état, mais le bouchon de liège était probablement mauvais, car il ne restait plus d'alcool dans la bouteille. Cependant les spécimens ne me paraissent pas avoir souffert, et leur étude m'intéressera beaucoup. J’aurais voulu vous envoyer en retour la forme d’hydroide alliée aux Ceratillives dont je vous avais parlé, mais je rien possède malheureusement qu’un bien petit spécimen et je n’ai pas encore eu le temps de l'inventorier. Mais j'espère beaucoup que nous en retrouver d’autres à Naples cet hiver, et je me ferais alors un plaisir de vous en envoyer un échantillon. Si au contraire nous n'en retrouvons pas, je vous enverrai la moitié de mon specimen dès que je l’aurai étudié. En attendant, je vous expédie dans un bocal quelques formes d’hydroides de la Méditerranée qui pourront peut-être trouver une place dans votre musée. J'espère qu'ils arriveront en bon état. Si vous désirez avoir certaines espèces particulières soit d’hydroides soit d'autres Invertébrés marins veuillez me l'écrire et je ferai mon possible pour vous les procurer. N’oubliez pas aussi que tous les myrroides (même déjà connus) que vous pourrez m’envoyer me feront le plus grand plaisir, et me seront d’une grand utilité pour ma monographie. -
CHAPTER 35 SECTION 1 MOLLUSCA OBJECTIVES ● Describe the Key Characteristics of Despite Their Very Different Appearances, Invertebrates Such As Mollusks
CHAPTER35 MMOLLUSKSOLLUSKS AND AND AANNELIDSNNELIDS This Caribbean reef octopus, Octopus briareus, is an active predator with a complex brain. SECTION 1 Mollusca Biology Virtual Investigations SECTION 2 Annelida Respiration in Invertebrates 704 CHAPTER 35 SECTION 1 MOLLUSCA OBJECTIVES ● Describe the key characteristics of Despite their very different appearances, invertebrates such as mollusks. ● Describe the body plan of clams, snails, slugs, and octopuses belong to the same phylum, mollusks. Mollusca (muh-LUHS-kuh). Members of this phylum are called ● Name the characteristics of three mollusks, a name that comes from the Latin molluscus, which major classes of mollusks. ● Compare the body plans of means “soft.” Although some mollusks have soft bodies, most gastropods, bivalves, and have a hard shell that protects them. cephalopods. VOCABULARY CHARACTERISTICS OF trochophore visceral mass MOLLUSKS mantle mantle cavity The phylum Mollusca is a diverse group of more than 112,000 ganglion species. Among animals, only the phylum Arthropoda has more radula species. Some mollusks are sedentary filter feeders, while others gastropod are fast-moving predators with complex nervous systems. hemolymph Mollusks are among several phyla of animals known as hemocoel coelomates. Coelomates are so named because they have a true bivalve coelom, a hollow, fluid-filled cavity that is completely surrounded incurrent siphon by mesoderm. Coelomates differ from pseudocoelomates, such as excurrent siphon roundworms, which have a Body cavity lined By mesoderm on the cephalopod outside and endoderm on the inside. A coelom has several advantages over a pseudocoelom. With a coelom, the muscles of the Body wall are separated from FIGURE 35-1 those of the gut. -
Tunicata 4 Alberto Stolfi and Federico D
Tunicata 4 Alberto Stolfi and Federico D. Brown Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger. A. Stolfi Department of Biology , Center for Developmental Genetics, New York University , New York , NY , USA F. D. Brown (*) EvoDevo Laboratory, Departamento de Zoologia , Instituto de Biociências, Universidade de São Paulo , São Paulo , SP , Brazil Evolutionary Developmental Biology Laboratory, Department of Biological Sciences , Universidad de los Andes , Bogotá , Colombia Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM) , Escuela Superior Politécnica del Litoral (ESPOL) , San Pedro , Santa Elena , Ecuador e-mail: [email protected] A. Wanninger (ed.), Evolutionary Developmental Biology of Invertebrates 6: Deuterostomia 135 DOI 10.1007/978-3-7091-1856-6_4, © Springer-Verlag Wien 2015 [email protected] 136 A. Stolfi and F.D. Brown Above all , perhaps , I am indebted to a decidedly the phylogenetic relationships between the three vegetative , often beautiful , and generally obscure classes and many orders and families have yet to group of marine animals , both for their intrinsic interest and for the enjoyment I have had in search- be satisfactorily settled. Appendicularia, ing for them . N. J. Berrill (1955) Thaliacea, and Ascidiacea remain broadly used in textbooks and scientifi c literature as the three classes of tunicates; however, recent molecular INTRODUCTION phylogenies have provided support for the mono- phyly of only Appendicularia and Thaliacea, but Tunicates are a group of marine fi lter-feeding not of Ascidiacea (Swalla et al. 2000 ; animals1 that have been traditionally divided into Tsagkogeorga et al. 2009 ; Wada 1998 ). A para- three classes: (1) Appendicularia, also known as phyletic Ascidiacea calls for a reevaluation of larvaceans because their free-swimming and tunicate relationships. -
Effects of Pressure on Swimming Behavior in Planula Larvae of the Coral Porites Astreoides (Cnidaria, Scleractinia)
Joumlllof EXPERIMENTAL MARINE BIOLOGY Journal of Experimental Marine Biology and Ecology AND ECOLOGY ELSEVIER 288 (2003) 181 - 20 1 www.elscvicr.com/locatc/jcmbc Effects of pressure on swimming behavior in planula larvae of the coral Porites astreoides (Cnidaria, Scleractinia) Joel L. Stake *, Paul W. Sammarco Department of B;%g,J: University ofLouisiana lit LlIli,yelle. Lafayette, LA 7115114. USA Louisiana Universities Marine Consortium (LUMCON). 8/24 Ilwv. 56. Chauvin, LA 711344. USA Received 8 August 2002 ; received in revised form 20 November 2002 ; accepted 15 December 2002 Abstract Mechanisms governing the behavior of coral planulae are not well understood. particularly those manifesting themselves between the time when the larvae are released and when they settle. Larvae from the hermatypic coral Porites astreoides Lamarck were exposed to different levels of hydrostatic pressure- J03.4, 206.9. 310.3, 413.8. and 517.1 kPa (including ambient pressure). Data were collected at stops of the above pressures for 15 min each, respectively. This was done in both an increasing sequence and a decreasing one. When exposed to increases in pressure from 103.4 kl'a, larvae swam upward (negative barotaxis) in a spiraling motion. Upon exposure to decreasing pressure [rom 517.1 kl'a, larvae moved downward (positive barotaxis). but the magnitude of the vertical movement was much less than in the case of increasing pressure. This suggests that these larvae are more sensitive to increased pressure than decreasing pressure. High variance was also observed in the responses of these larvae at both the intra- and inter-colony levels. Thus. this behavioral trait is variable within the population.