Technology Roadmap Document for Ska Signal Processing

Total Page:16

File Type:pdf, Size:1020Kb

Technology Roadmap Document for Ska Signal Processing TECHNOLOGY ROADMAP DOCUMENT FOR SKA SIGNAL PROCESSING Document number .................................................................. WP2‐040.030.011‐TD‐001 Revision ........................................................................................................................... 1 Author ................................................................................................................ W.Turner Date ................................................................................................................ 2011‐02‐27 Status ....................................................................................................................... Issued Name Designation Affiliation Date Signature Additional Authors Submitted by: W. Turner Signal Processing SPDO 2011‐03‐26 Domain Specialist Approved by: P. Dewdney Project Engineer SPDO 2010‐03‐29 WP2‐040.030.011‐TD‐001 Revision : 1 DOCUMENT HISTORY Revision Date Of Issue Engineering Change Comments Number 1 ‐ ‐ First issue DOCUMENT SOFTWARE Package Version Filename Wordprocessor MsWord Word 2007 02‐WP2‐040.030.011.TD‐001‐1_SKATechnologyRoadmap Block diagrams Other ORGANISATION DETAILS Name SKA Program Development Office Physical/Postal Jodrell Bank Centre for Astrophysics Address Alan Turing Building The University of Manchester Oxford Road Manchester, UK M13 9PL Fax. +44 (0)161 275 4049 Website www.skatelescope.org 2011‐02‐27 Page 2 of 71 WP2‐040.030.011‐TD‐001 Revision : 1 TABLE OF CONTENTS 1 INTRODUCTION ............................................................................................. 9 1.1 Purpose of the document ....................................................................................................... 9 1.2 Technology Readiness Levels ................................................................................................ 10 2 REFERENCES .............................................................................................. 12 3 PROCESSING .............................................................................................. 14 3.1 General Purpose Processor ................................................................................................... 14 3.1.1 Theoretical Processing Performance ............................................................................ 17 3.1.2 Cost ............................................................................................................................... 17 3.1.3 Thermal Dissipation ...................................................................................................... 17 3.1.4 Scalability ...................................................................................................................... 18 3.2 Graphics Processing Unit ...................................................................................................... 19 3.2.1 Intel ............................................................................................................................... 19 3.2.2 ATI (AMD) ...................................................................................................................... 21 3.2.3 NVIDIA ........................................................................................................................... 22 3.2.4 Theoretical Processing Performance ............................................................................ 23 3.2.5 Cost ............................................................................................................................... 24 3.2.6 Thermal Dissipation ...................................................................................................... 24 3.3 Field Programmable Gate Array............................................................................................ 25 3.3.1 Theoretical Processing Performance ............................................................................ 28 3.3.2 Cost ............................................................................................................................... 28 3.3.3 Thermal Dissipation ...................................................................................................... 30 3.3.4 Hard Copy ...................................................................................................................... 31 3.4 Application Specific Integrated Circuit ASIC ......................................................................... 31 3.4.1 Process Size ................................................................................................................... 31 3.4.2 Masking Costs ............................................................................................................... 35 3.4.3 Yield and Die Costs ........................................................................................................ 35 3.4.4 Prototyping ................................................................................................................... 37 3.5 Gap between FPGAs and ASICS ............................................................................................. 37 3.5.1 Theoretical Processing Performance ............................................................................ 38 3.5.2 Cost ............................................................................................................................... 38 3.5.3 Thermal Dissipation ...................................................................................................... 39 3.6 Network on Chip, NoC........................................................................................................... 39 4 STORAGE .................................................................................................. 42 4.1 SRAM ..................................................................................................................................... 45 4.1.1 SRAM performance ....................................................................................................... 46 4.1.2 SRAM Thermal Dissipation ............................................................................................ 46 4.1.3 SRAM Cost ..................................................................................................................... 46 4.2 Dynamic Random Access Memory, DRAM ........................................................................... 46 2011‐02‐27 Page 3 of 71 WP2‐040.030.011‐TD‐001 Revision : 1 4.2.1 DRAM Performance ...................................................................................................... 47 4.2.2 DRAM Cost .................................................................................................................... 48 4.2.3 DRAM Thermal Dissipation ........................................................................................... 49 4.3 Flash Memory ....................................................................................................................... 50 4.3.1 NAND Cost ..................................................................................................................... 52 4.3.2 NAND Thermal Dissipation ............................................................................................ 52 4.4 Storage Class Memory .......................................................................................................... 52 4.4.1 SCM Performance ......................................................................................................... 53 4.4.2 SCM Cost ....................................................................................................................... 54 4.4.3 SCM Thermal Dissipation .............................................................................................. 54 5 DISK STORAGE ............................................................................................ 54 5.1.1 Disk Performance .......................................................................................................... 55 5.1.2 Disk Thermal Dissipation ............................................................................................... 56 5.1.3 Disk Cost ........................................................................................................................ 56 6 NETWORK ................................................................................................. 57 6.1 Infiniband .............................................................................................................................. 57 6.1.1 Infiniband Performance Roadmap ................................................................................ 57 6.1.2 Host Channel Adapters ................................................................................................. 58 6.1.3 Infiniband switches ....................................................................................................... 58 6.2 Ethernet ................................................................................................................................ 59 6.2.1 100 G bit/s Ethernet Switches ...................................................................................... 60 6.2.2 Terabit Ethernet ............................................................................................................ 60 6.2.3 Ethernet Cost ................................................................................................................ 60 6.2.4 Ethernet Thermal Dissipation ......................................................................................
Recommended publications
  • Field Programmable Gate Arrays with Hardwired Networks on Chip
    Field Programmable Gate Arrays with Hardwired Networks on Chip PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 6 november 2012 om 15:00 uur door MUHAMMAD AQEEL WAHLAH Master of Science in Information Technology Pakistan Institute of Engineering and Applied Sciences (PIEAS) geboren te Lahore, Pakistan. Dit proefschrift is goedgekeurd door de promotor: Prof. dr. K.G.W. Goossens Copromotor: Dr. ir. J.S.S.M. Wong Samenstelling promotiecommissie: Rector Magnificus voorzitter Prof. dr. K.G.W. Goossens Technische Universiteit Eindhoven, promotor Dr. ir. J.S.S.M. Wong Technische Universiteit Delft, copromotor Prof. dr. S. Pillement Technical University of Nantes, France Prof. dr.-Ing. M. Hubner Ruhr-Universitat-Bochum, Germany Prof. dr. D. Stroobandt University of Gent, Belgium Prof. dr. K.L.M. Bertels Technische Universiteit Delft Prof. dr.ir. A.J. van der Veen Technische Universiteit Delft, reservelid ISBN: 978-94-6186-066-8 Keywords: Field Programmable Gate Arrays, Hardwired, Networks on Chip Copyright ⃝c 2012 Muhammad Aqeel Wahlah All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without permission of the author. Printed in The Netherlands Acknowledgments oday when I look back, I find it a very interesting journey filled with different emotions, i.e., joy and frustration, hope and despair, and T laughter and sadness.
    [Show full text]
  • NASDAQ Stock Market
    Nasdaq Stock Market Friday, December 28, 2018 Name Symbol Close 1st Constitution Bancorp FCCY 19.75 1st Source SRCE 40.25 2U TWOU 48.31 21st Century Fox Cl A FOXA 47.97 21st Century Fox Cl B FOX 47.62 21Vianet Group ADR VNET 8.63 51job ADR JOBS 61.7 111 ADR YI 6.05 360 Finance ADR QFIN 15.74 1347 Property Insurance Holdings PIH 4.05 1-800-FLOWERS.COM Cl A FLWS 11.92 AAON AAON 34.85 Abiomed ABMD 318.17 Acacia Communications ACIA 37.69 Acacia Research - Acacia ACTG 3 Technologies Acadia Healthcare ACHC 25.56 ACADIA Pharmaceuticals ACAD 15.65 Acceleron Pharma XLRN 44.13 Access National ANCX 21.31 Accuray ARAY 3.45 AcelRx Pharmaceuticals ACRX 2.34 Aceto ACET 0.82 Achaogen AKAO 1.31 Achillion Pharmaceuticals ACHN 1.48 AC Immune ACIU 9.78 ACI Worldwide ACIW 27.25 Aclaris Therapeutics ACRS 7.31 ACM Research Cl A ACMR 10.47 Acorda Therapeutics ACOR 14.98 Activision Blizzard ATVI 46.8 Adamas Pharmaceuticals ADMS 8.45 Adaptimmune Therapeutics ADR ADAP 5.15 Addus HomeCare ADUS 67.27 ADDvantage Technologies Group AEY 1.43 Adobe ADBE 223.13 Adtran ADTN 10.82 Aduro Biotech ADRO 2.65 Advanced Emissions Solutions ADES 10.07 Advanced Energy Industries AEIS 42.71 Advanced Micro Devices AMD 17.82 Advaxis ADXS 0.19 Adverum Biotechnologies ADVM 3.2 Aegion AEGN 16.24 Aeglea BioTherapeutics AGLE 7.67 Aemetis AMTX 0.57 Aerie Pharmaceuticals AERI 35.52 AeroVironment AVAV 67.57 Aevi Genomic Medicine GNMX 0.67 Affimed AFMD 3.11 Agile Therapeutics AGRX 0.61 Agilysys AGYS 14.59 Agios Pharmaceuticals AGIO 45.3 AGNC Investment AGNC 17.73 AgroFresh Solutions AGFS 3.85
    [Show full text]
  • H1 2015-2016 Results
    H1 2015-2016 Results November 2015 Safe Harbour Statement This presentation contains forward-looking statements made pursuant to the safe harbour provisions of the Private Securities litigation reform Act of 1995. By nature, forward looking statement represent the judgment regarding future events and are based on currently available information. Although the Company cannot guarantee their accuracy, actual results may differ materially from those the company anticipated due to a number of uncertainties, many of which the Company is not aware. For additional information concerning these and other important factors that may cause the Company’s actual results to differ materially from expectations and underlying assumptions, please refer to the reports filed by the Company with the Autorité des Marchés Financiers (AMF). Soitec – H1 2015-2016 Results – November 2015 2 Agenda 1 Highlights 2 H1 2015-2016 Financial results 3 Outlook 4 Q&A Appendix: Electronics core business Soitec – H1 2015-2016 Results – November 2015 3 H1 2015-2016 - Core Business highlights Communication and Power – Demand remains robust for RF-SOI products in mobile applications; SOI content continues to grow within smartphones due to increased complexity (number of bands and performance) – Bernin 200mm-diameter wafer capacity is almost sold out for CY 2016 – Simgui (Chinese foundry) produced its first 200mm wafers in October 2015 and is now starting customers qualifications – Customers developing successfully 300mm wafers for RF - at least one major fabless and one foundry
    [Show full text]
  • IBIS Open Forum Minutes
    IBIS Open Forum Minutes Meeting Date: March 12, 2010 Meeting Location: Teleconference VOTING MEMBERS AND 2010 PARTICIPANTS Actel (Prabhu Mohan) Agilent Radek Biernacki, Ming Yan, Fangyi Rao AMD Nam Nguyen Ansoft Corporation (Steve Pytel) Apple Computer (Matt Herndon) Applied Simulation Technology (Fred Balistreri) ARM (Nirav Patel) Cadence Design Systems Terry Jernberg*, Wenliang Dai, Ambrish Varma Cisco Systems Syed Huq*, Mike LaBonte*, Tony Penaloza, Huyen Pham, Bill Chen, Ravindra Gali, Zhiping Yang Ericsson Anders Ekholm*, Pete Tomaszewski Freescale Jon Burnett, Om Mandhana Green Streak Programs Lynne Green Hitachi ULSI Systems (Kazuyoshi Shoji) Huawei Technologies (Jinjun Li) IBM Adge Hawes* Infineon Technologies AG (Christian Sporrer) Intel Corporation (Michael Mirmak), Myoung (Joon) Choi, Vishram Pandit, Richard Mellitz IO Methodology Lance Wang* LSI Brian Burdick* Mentor Graphics Arpad Muranyi*, Neil Fernandes, Zhen Mu Micron Technology Randy Wolff* Nokia Siemens Networks GmbH Eckhard Lenski* Samtec (Corey Kimble) Signal Integrity Software Walter Katz*, Mike Steinberger, Todd Westerhoff, Barry Katz Sigrity Brad Brim, Kumar Keshavan Synopsys Ted Mido Teraspeed Consulting Group Bob Ross*, Tom Dagostino Toshiba (Yasumasa Kondo) Xilinx Mike Jenkins ZTE (Huang Min) Zuken Michael Schaeder OTHER PARTICIPANTS IN 2010 AET, Inc. Mikio Kiyono Altera John Oh, Hui Fu Avago Razi Kaw Broadcom Mohammad Ali Curtiss-Wright John Phillips ECL, Inc. Tom Iddings eSilicon Hanza Rahmai Exar Corp. Helen Nguyen Mindspeed Bobby Altaf National Semiconductor Hsinho Wu* NetLogic Microsystems Eric Hsu, Edward Wu Renesas Technology Takuji Komeda Simberian Yuriy Shlepnev Span Systems Corporation Vidya (Viddy) Amirapu Summit Computer Systems Bob Davis Tabula David Banas* TechAmerica (Chris Denham) Texas Instruments Bonnie Baker Independent AbdulRahman (Abbey) Rafiq, Robert Badal In the list above, attendees at the meeting are indicated by *.
    [Show full text]
  • Multiprocessing Contents
    Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References .............................................
    [Show full text]
  • HEP Computing Trends
    HEP Computing Trends Andrew Washbrook University of Edinburgh ATLAS Software & Computing Tutorials 19th January 2015 UTFSM, Chile Introduction • I will cover future computing trends for High Energy Physics with a leaning towards the ATLAS experiment • Some examples of non-LHC experiments where appropriate • This is a broad subject area (distributed computing, storage, I/O) so here I will focus on the readiness of HEP experiments to changing trends in computing architectures • Also some shameless promotion of work I have been involved in.. Many thanks to all the people providing me with material for this talk! LHC Context Run 2 • Increase in centre of mass energy 13TeV • Increase in pile up from ~20 to ~50 • Increase in Trigger rate up to 1 KHz RAW to ESD • More computing resources required to Reconstruction reconstruct events Time High Luminosity LHC • HL-LHC starts after LS3 (~2022) • Aim to provide 300[-1 per year • Pileup of 150 expected • 200 PB/year of extra storage HL-LHC Timeline CPU Evolution • Die shrink getting smaller • Research down to 5nm depending on lithography and materials • Clock speed improvement has slowed • More cores per socket • Server at the Grid computing centre has at least 16 cores, typically more • Extrapolation from 2013 predicts 25% server performance improvement per year Processor scaling trends 1e+06 Transistors ● Clock Power ● Performance ● Performance/W ● ● ● ● ● ● ●●● ● ● ● ●●● ● ● ●●● ●● ●●●●● ● ● ●●●●● ●●●●●●●●● ●●●● ● ● ●●●● ●●●●●●●● ●●●●●● ● ●● ● ● ●● ● ●●●● ●●●●●●●●●●●● ● ● ● ●● ●●●● ●●●●●●●●●●●●●●●●●
    [Show full text]
  • Efpgas : Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies Syed Zahid Ahmed
    eFPGAs : Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies Syed Zahid Ahmed To cite this version: Syed Zahid Ahmed. eFPGAs : Architectural Explorations, System Integration & a Visionary Indus- trial Survey of Programmable Technologies. Micro and nanotechnologies/Microelectronics. Université Montpellier II - Sciences et Techniques du Languedoc, 2011. English. tel-00624418 HAL Id: tel-00624418 https://tel.archives-ouvertes.fr/tel-00624418 Submitted on 16 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Montpellier 2 (UM2) École Doctorale I2S LIRMM (Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier) Domain: Microelectronics PhD thesis report for partial fulfillment of requirements of Doctorate degree of UM2 Thesis conducted in French Industrial PhD (CIFRE) framework between: Menta & LIRMM lab (Dec.2007 – Feb. 2011) in Montpellier, FRANCE “eFPGAs: Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies” eFPGAs: Explorations architecturales, integration système, et une enquête visionnaire industriel des technologies programmable by Syed Zahid AHMED Presented and defended publically on: 22 June 2011 Jury: Mr. Guy GOGNIAT Prof. at STICC/UBS (Lorient, FRANCE) President Mr. Habib MEHREZ Prof. at LIP6/UPMC (Paris, FRANCE) Reviewer Mr.
    [Show full text]
  • Drive for Better Vision
    Drive for better vision 2011 Annual Report Dear Shareholders, 2011 was a year of transition for Himax as we made significant progress in expanding our sales and customer base for our small and medium-sized driver IC and non-driver businesses. The small-medium driver segment has become our single largest revenue contributor, overtaking the large panel driver business. Revenues from the non-driver businesses exceeded 10% of total revenues in 2011, also the first time in our history. Seeing strong fundamentals across many of our product lines, we are confident that we are in a position to deliver positive revenue and earnings growth in 2012. Our 2011 revenues totaled $633 million, representing a slight 1.5% decline from the previous year due to the drop-off in the large-panel driver category. This was mainly because of our loss of market share in one of our major customers who decided to diversify their driver IC supply base. However, we see significant growth opportunities in China, where panel manufacturers are aggressively expanding their large panel capacity. Small and medium-sized drivers grew strongly in 2011, thanks mainly to phenomenal demand in smartphones, which tend to require better displays and thus higher end driver ICs. We enjoy a strong position in the smartphone sector as a result of our leading technologies, competitive products and solid customer base. We expect the strong growth momentum for small and medium-sized drivers to continue into 2012, driven by growing markets such as smartphones, tablets and displays used in the automotive industry. Non-driver product sales increased even further in 2011 with several product segments experiencing significant shipment and revenue growth from last year.
    [Show full text]
  • Architecture Exploration of FPGA Based Accelerators for Bioinformatics Applications Springer Series in Advanced Microelectronics
    Springer Series in Advanced Microelectronics 55 B. Sharat Chandra Varma Kolin Paul M. Balakrishnan Architecture Exploration of FPGA Based Accelerators for BioInformatics Applications Springer Series in Advanced Microelectronics Volume 55 Series editors Kukjin Chun, Seoul, Korea, Republic of (South Korea) Kiyoo Itoh, Tokyo, Japan Thomas H. Lee, Stanford, CA, USA Rino Micheloni, Vimercate (MB), Italy Takayasu Sakurai, Tokyo, Japan Willy M.C. Sansen, Leuven, Belgium Doris Schmitt-Landsiedel, München, Germany The Springer Series in Advanced Microelectronics provides systematic information on all the topics relevant for the design, processing, and manufacturing of microelectronic devices. The books, each prepared by leading researchers or engineers in their fields, cover the basic and advanced aspects of topics such as wafer processing, materials, device design, device technologies, circuit design, VLSI implementation, and subsystem technology. The series forms a bridge between physics and engineering and the volumes will appeal to practicing engineers as well as research scientists. More information about this series at http://www.springer.com/series/4076 B. Sharat Chandra Varma Kolin Paul • M. Balakrishnan Architecture Exploration of FPGA Based Accelerators for BioInformatics Applications 123 B. Sharat Chandra Varma M. Balakrishnan Department of Electrical and Electronic Department of Computer Science Engineering and Engineering The University of Hong Kong Indian Institute of Technology Delhi Hong Kong New Delhi, Delhi Hong Kong India Kolin Paul Department of Computer Science and Engineering Indian Institute of Technology Delhi New Delhi, Delhi India ISSN 1437-0387 ISSN 2197-6643 (electronic) Springer Series in Advanced Microelectronics ISBN 978-981-10-0589-3 ISBN 978-981-10-0591-6 (eBook) DOI 10.1007/978-981-10-0591-6 Library of Congress Control Number: 2016931344 © Springer Science+Business Media Singapore 2016 This work is subject to copyright.
    [Show full text]
  • Run-Time Dynamically-Adaptable FPGA-Based Architecture for High-Performance Autonomous Distributed Systems
    Departamento de Automática, Ingeniería Eléctrica y Electrónica e Informática Industrial Escuela Técnica Superior de Ingenieros Industriales Run-Time Dynamically-Adaptable FPGA-Based Architecture for High-Performance Autonomous Distributed Systems Autor: Juan Valverde Alcalá Ingeniero Industrial por la Universidad Politécnica de Madrid Directores: Jorge Portilla Berrueco Doctor por la Universidad Politécnica de Madrid en Ingeniería Electrónica Eduardo de la Torre Arnanz Doctor Ingeniero Industrial por la Universidad Politécnica de Madrid 2015 Tribunal Tribunal nombrado por el Excmo. y Magfco. Sr. Rector de la Universidad Politécnica de Madrid, el día 6 de Noviembre de 2015. Presidente: Carlos López Barrio, Universidad Politécnica de Madrid Vocales: Roberto Sarmiento Rodríguez, Universidad de Las Palmas de Gran Canaria Christian De Schryver, Universidad Kaiserslautern Secretario: Teresa Riesgo Alcaide, Universidad Politécnica de Madrid Suplentes: Marta Portela García, Universidad Carlos III de Madrid Ángel de Castro Martín, Universidad Autónoma de Madrid Realizado el acto de lectura y defensa de la Tesis Doctoral el día 16 de Diciembre de 2015 en la Escuela Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid. Calificación: EL PRESIDENTE LOS VOCALES EL SECRETARIO Посвета Ова докторска теза је посвећена мом животном партнеру. Зато што само са њом уживам у сваком тренутку свог живота. Зато што ме она учи како да будем снажан без обзира шта се деси. Зато што, кад сам са њом, знам да је све савршено и да сам спокојан. Зато што смо победили време и раздаљину и сада можемо да радимо шта год пожелимо. Agradecimientos A mis padres, mi hermana y Estefa, por traerme hasta aquí día tras día viéndome sufrir y trabajar, y diciéndome, “venga, otro pasito más”.
    [Show full text]
  • Since the Advent of Integrated Circuit Technology in 1958, the Integration Has Been Primarily Monolithic
    Opening Keynote #1 Extending Moore’s Law with Advanced Packages Abstract: Since the advent of integrated circuit technology in 1958, the integration has been primarily monolithic. Unfortunately, due to physical and economic reasons, the vast majority of analog chips, digital chips, and memory chips are each built on separate technologies. Therefore, in order to deliver optimum system performance, power, and cost, it is desirable to integrate multiple different die, each using its own optimized technology, in a single package. Advanced packaging technologies, e.g. 3DIC, SSIT(stacked silicon Interconnect technology) etc., have been developed to extend scaling beyond the Moore’s Law to achieve higher transistor count, increased functionality and superior performance. Xilinx is the leading provider of all programmable FPGA (Field Programmable Gate Array) products. To achieve high performance, but low power and cost, Xilinx has developed an innovative SSIT technology that employs microbumps and through-silicon vias (TSVs) to integrate multiple FPGA die slices placed side-by-side on a passive silicon interposer, and successfully delivered the industry’s first 28nm homogeneous SSIT device. This technology is further developed for advanced technical nodes (20nm, 16nm and beyond) to allow integrating heterogeneous components such as Processor, FPGA, GPU, Memory, Serdes, etc. on the same interposer die enabling faster computing through reduced latency. The advance of packaging and assembly technology will be introduced, and the benefits of advanced packaging to the various products will be highlighted. Successful qualification of these products is driving the high growth in the applications e.g. cloud computing, embedded vision, industrial IOT, and 5G wireless etc.
    [Show full text]
  • IBIS Open Forum Minutes
    IBIS Open Forum Minutes Meeting Date: September 10, 2010 Meeting Location: Teleconference VOTING MEMBERS AND 2010 PARTICIPANTS Agilent Radek Biernacki, Ming Yan, Fangyi Rao, Gilbert Berger, Amolak Badeasa, Jose Pino, Junaid Khan AMD Nam Nguyen* Ansys (Ansoft Corporation) Danil Kirsanov Apple Computer (Matt Herndon) Applied Simulation Technology (Fred Balistreri) ARM (Nirav Patel) Cadence Design Systems Terry Jernberg*, Wenliang Dai, Ambrish Varma Cisco Systems Syed Huq, Mike LaBonte*, Tony Penaloza, Huyen Pham, Bill Chen, Ravindra Gali, Zhiping Yang Ericsson Anders Ekholm*, Pete Tomaszewski Freescale Jon Burnett, Om Mandhana Green Streak Programs Lynne Green Hitachi ULSI Systems Yutaka Uematsu Huawei Technologies (Jinjun Li) IBM Adge Hawes, Greg Edlund* Infineon Technologies AG Christian Sporrer Intel Corporation Michael Mirmak*, Myoung (Joon) Choi, Vishram Pandit, Richard Mellitz IO Methodology Lance Wang* LSI Brian Burdick* Mentor Graphics Arpad Muranyi*, Neil Fernandes, Zhen Mu Micron Technology Randy Wolff* Nokia Siemens Networks GmbH Eckhard Lenski* Samtec (Corey Kimble) Signal Integrity Software Walter Katz*, Mike Steinberger, Todd Westerhoff, Barry Katz Sigrity Brad Brim, Kumar Keshavan, Srdjan Djordjevic, Ben Franklin Synopsys Ted Mido, Paul Lo, Geoffrey Ying, Frank Lee Teraspeed Consulting Group Bob Ross*, Tom Dagostino Texas Instruments Bonnie Baker* Toshiba Yoshihiro Hamaji Xilinx Mike Jenkins ZTE (Huang Min) Zuken Michael Schaeder, Ralf Bruening OTHER PARTICIPANTS IN 2010 Actel (Prabhu Mohan) AET, Inc. Mikio Kiyono Altera
    [Show full text]