A Comparative Study of Stigmarian Appendages and Isoetes Roots

Total Page:16

File Type:pdf, Size:1020Kb

A Comparative Study of Stigmarian Appendages and Isoetes Roots CSw Su.OO LL, View metadata, citation and similar papers at core.ac.ukbrought to you by CORE provided by Illinois Digital Environment for... STATE OF ILLINOIS DWIGHT H. GREEN, Governor DEPARTMENT OF REGISTRATION AND EDUCATION FRANK G. THOMPSON, Director DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, Chief URBANA CIRCULAR NO. 133 A COMPARATIVE STUDY OF STIGMARIAN APPENDAGES AND ISOETES ROOTS WILSON N. STEWAKT iom the American Journal op Botany Vol. 34, June 1947 GEOLOGIC^. ,UIN0\S PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS URBANA, ILLINOIS 1947 'MM'Or.^rATL- GEOLOGICAL SURVfiV 3 3051 00004 6486 ; COMPARATIVE STUDY OF STIGMARIAN APPENDAGES AND ISOETES ROOTS 1 Wilson N. Stewart The roots of Isoetes and the appendages of root system similar to that noted in modern swamp Sfif/maria have been studied in an effort to deter- plants. mine whether the stigmarian appendages are spe- The observations made by Williamson (1886) led cialized leaves borne on a rhizome, as suggested by him to conclude that the stigmarian axes were roots. Solms-Laubach (1891) and recently entertained by Subsequent researches have shown the stigmarian Schoute (1938), or true roots arising from a rhi- axes to have stem-like, not root-like characters. zophore, as concluded by Lang (1923), and Scott Many are similar to those of stems of Lepidoden- (1920). The purpose of this paper is to furnish dron as pointed out by Leclerq (1930), Scott (1920) further anatomical evidence on this controversial and Seward (1910). The aerial steins of Lepido- question which has been discussed by many other dendron in common with the stigmarian axes show: eminent botanists and paleobotanists since the time (1) cambial activity producing a large cylinder of of Williamson's monograph on the morphology and secondary wood composed of scalariform tracheids histology of Stigmaria ficoides (1886). Schoute (2) a well developed middle cortex; (3) a thick (1938) has compiled a resume of the literature con- band of so-called "periderm" on the outside. These cerning this problem. and other features have been incorporated in the Materials and methods.—Coal balls containing diagrammatic drawing of the stigmarian axis shown specimens of Stigmaria were studied from sections in fig. 2. prepared by the nitrocellulose "peel" method, essen- The stigmarian appendages.—The appendages tially the same as given by Graham (1933). The of Stigmaria present features of an anomalous type. specimens studied showed excellent preservation of They project from the axis in a spiral arrangement histological detail. which is similar to a phyllotaxis (fig. 2). With the All of the coal balls are of Pennsylvanian age. exception of their arrangement on the axis, the They were obtained from the collection of the Illi- appendages are very root-like in external appear- nois State Geological Survey" which includes speci- ance. They show a dichotomous branching which is mens assembled by the late Professor A. C. Noe characteristic of the roots of many primitive plants. presence or and by Dr. J. M. Schopf. The absence of root hairs and a root cap does not Living material of Isoetes macrospora was col- appear to have been determined with certainty. Schoute lected from Clear Crooked Lake in Vilas County, (1938) reports that they are absent but the evidence is Wisconsin. Anatomical studies of this species of not clear. There is also some controversy Isoetes were made by the author from preparations as to whether the appendages of Stigmaria were endogenous in origin as are made by the paraffin method. the roots of most plants (Lang, The general characteristics of stigmaria.— 1923), or exogenous, similar to ordinary leaves. There is little proof of Stigmaria is a generic name applying to organs be- the nature of the appendages on the basis of these longing to a group of fossil lycopsid plants. They conventional criteria alone. are dichotomizing root-like axes and appendages of The appendage bundle. The appendage bundle the arboreal lycopods of the Carboniferous period. — lies at a wide angle inclined slightly distal with Lack of notable specialized characters has thus far reference to the main axis as seen in fig. 2. The first prevented a satisfactory classification into groups indication of the beginning of the appendage bundle as small as those designated as genera among is with the outward deflection of a solitary proto- modern plants. xylem element. The protoxylem elements lie be- The dichotomous stigmarian axes as described by tween the pith and the larger metaxylem elements Williamson (1886) may attain a length of slightly at the inner edge of the secondary wood (fig. 2). more than 37 ft. A habit sketch is shown in fig. 1. Thus the arrangement of the primary xylem of the The surface of the axes is generally smooth with main axis is endarch. Other protoxylem elements spirally arranged shallow pits which indicate the and larger metaxylem elements are added adjacent points at which the stigmarian appendages were to the deflected protoxylem element as it traverses attached (fig. 2). The habit of the stigmarian axis the broad vascular ray of the secondary xylem of and appendage system suggests a broad shallow the main axis (fig. 11, 13 and 14). As they pass 1 Received for publication January 7, 1947. 2 through the vascular ray, these primary elements By cooperative agreement. ,lie Coal Division laborato- ries of the Illinois State Geological Survey have been are in turn supplemented by pitted secondary xylem made available for this investigation. Ihe writer wishes elements which are connected with the surrounding :o express his gratitude to Dr. M. M. Leighton, Chief, secondary wood of the main axis (fig. 11, 13 and who made possible the use of these facilities; to Dr. James continuity M. Schopf whose aid was indispensable in the prepara- 14). The between the pitted elements of tion of this paper. the main axis and the pitted elements of the appen- AMERICAN JOURNAL OF BOTANY AN APPENDAGES AND ISOETES ROOTS 317 dage bundle may indicate the origin of secondary "phloem zone." These deposits, shown in fig. 6, are growth in the appendage bundle. interpreted as callus plugs. In the fossil material It has been pointed out by Williamson (1886) they are translucent and distinguishable from cell and Solms-Laubach (1891) that the arrangement walls and cell contents. A cross-section of the same of the xylem in some of the appendage bundles ap- area shows that the end walls of some of these cells pears to be diarch or even triarch, because of the possess a network of bands which may have sepa- presence of more than one group of small xylem rated the numerous sieve fields of a compound sieve elements lying adjacent to the larger metaxylem plate (fig. 5). There is some evidence that sieve elements (fig. 8). Such "protoxylem" apparently areas are also present on the longitudinal walls of was identified in transverse sections on the basis of the phloem cells as well as on the end walls (fig. < size of the elements alone, without regard to the These characters indicate that the cells can be re- type of wall thickenings. Elements of authentic pro- garded as sieve tube elements and may serve as a toxylem have chiefly annular, sometimes spiral histological basis for the identification of the thickenings on their walls, while secondary xylem phloem. elements show characteristic scalariform pitting Cross sections of the appendage bundles as they (fig. 7). From longitudinal serial sections which pass through the secondary cortex of the main axis have been prepared of similar "polyarch" bundles, also show the presence of phloem. The manner in it has been observed that all but one of the groups which the phloem joins the main axis has not been of small xylem elements of a "polyarch" bundle determined, because tissues are poorly preserved have scalariform pitting of their walls characteristic around the periphery of the woody cylinder in the of secondary xylem elements. Only one group of region of the cambium and phloem. small xylem elements has spiral or annular thick- It is of added interest to note that in both cross enings of protoxylem elements. It is evident that and longitudinal sections of the phloem, there ap- the vascular supply of the stigmarian appendage pear within some of the cells ovoid bodies (fig. 5 is monarch as described by Scott (1920) and not a and 6). The shape, the frequency and the relative polyarch arrangement of the xylem elements. size of these bodies within the phloem suggest The small secondary xylem elements of the ap- nuclei. pendage bundle connect with a layer of small sec- The inner cortex.—The inner cortex of the ap- ondary xylem elements at the periphery of the sec- pendage surrounds the vascular bundle (fig. 15), ondary wood of the main axis. This layer has been and judging from the small size of the cells of called the "growth zone" (fig. 12). It can be con- which it is composed, this tissue is not comparable cluded that the small elements of the appendage with the large cells of the secondary cortex of the bundle which are continuous with the cells of the main axis (fig. 21). It seems probable that this "growth zone" do not constitute additional proto- tissue was laid down by the terminal meristem of xylem points. the appendage, as it grew outward through the tis- The "phloem zone."—Adjacent to the xylem of sues of the main axis. The inner cortex maintains the appendage bundle on the side away from the its position about the appendage bundle as it trav- protoxylem, there is a cap of tissue which has been erses the secondary cortex of the main axis (fig.
Recommended publications
  • Gene Expression Data Support the Hypothesis That Isoetes Rootlets Are True Roots and Not Modifed Leaves Alexander J
    www.nature.com/scientificreports OPEN Gene expression data support the hypothesis that Isoetes rootlets are true roots and not modifed leaves Alexander J. Hetherington1,2, David M. Emms1, Steven Kelly1 & Liam Dolan1,3* Rhizomorphic lycopsids are the land plant group that includes the frst giant trees to grow on Earth and extant species in the genus Isoetes. Two mutually exclusive hypotheses account for the evolution of terminal rooting axes called rootlets among the rhizomorphic lycopsids. One hypothesis states that rootlets are true roots, like roots in other lycopsids. The other states that rootlets are modifed leaves. Here we test predictions of each hypothesis by investigating gene expression in the leaves and rootlets of Isoetes echinospora. We assembled the de novo transcriptome of axenically cultured I. echinospora. Gene expression signatures of I. echinospora rootlets and leaves were diferent. Furthermore, gene expression signatures of I. echinospora rootlets were similar to gene expression signatures of true roots of Selaginella moellendorfi and Arabidopsis thaliana. RSL genes which positively regulate cell diferentiation in roots were either exclusively or preferentially expressed in the I. echinospora rootlets, S. moellendorfi roots and A. thaliana roots compared to the leaves of each respective species. Taken together, gene expression data from the de-novo transcriptome of I. echinospora are consistent with the hypothesis that Isoetes rootlets are true roots and not modifed leaves. Te frst giant (> 50 m) trees to grow on Earth, the arborescent clubmosses, were tethered to the ground by rooting structures termed stigmarian systems whose homology has been debated for more than 150 years1–9. Stigmarian rooting systems consisted of two components, a central axis (rhizomorph) on which developed large numbers of fne axes (rootlets).
    [Show full text]
  • Pennsylvanian Exposures in the White Breast Recreation Area, Marion County, Iowa ______
    Iowa Geological & Water Survey - GSI PENNSYLVANIAN EXPOSURES IN THE WHITE BREAST RECREATION AREA, MARION COUNTY, IOWA ___________________________________________________ John P. Pope, Adrian E. Goettemoeller, and Raymond R. Anderson Geological Society of Iowa Sponsored by the Department of Natural Resources Iowa Geological and Water Survey ______________________________________ April 20, 2013 Guidebook 91 i Guidebook 91 Cover photo shows the field trip stop area, Pennsylvanian exposure on the south-facing shore of the White Breast Recreation area at Lake Red Rock. ii Iowa Geological & Water Survey - GSI PENNSYLVANIAN EXPOSURES IN THE WHITE BREAST RECREATION AREA, MARION COUNTY, IOWA John P. Pope Northwest Missouri State University Dept. Geography/Geology 800 University Drive Maryville, MO 64468-6001 [email protected] Adrian E. Goettemoeller 712 York Court Plattsmouth, NE 68048 [email protected] Raymond R. Anderson Iowa Dept. Natural Resources Geological Survey Bureau Iowa City, IA 52242-1319 [email protected] with contributions by Greg A. Ludvigson Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66047-3724 [email protected] April 20, 2013 Geological Society of Iowa Guidebook 91 Geological Society of Iowa Sponsored by the Department of Natural Resources Iowa Geological and Water Survey Additional Copies of this Guidebook or other GSI Guidebooks May be Ordered from the IGWS Publication page at https://programs.iowadnr.gov/igspubs/listPubs.aspx iii Guidebook 91 iv Iowa Geological & Water Survey - GSI TABLE OF CONTENTS Pennsylvanian Exposures in the White Breast Recreation Area, Marion County, Iowa Introduction to the Field Trip Raymond R. Anderson ................................................................................................................ 1 References ........................................................................................................................... 1 Overview of Lake Red Rock and the White Breast Recreation Area Raymond R.
    [Show full text]
  • The Carboniferous Evolution of Nova Scotia
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 The Carboniferous evolution of Nova Scotia J. H. CALDER Nova Scotia Department of Natural Resources, PO Box 698, Halifax, Nova Scotia, Canada B3J 2T9 Abstract: Nova Scotia during the Carboniferous lay at the heart of palaeoequatorial Euramerica in a broadly intermontane palaeoequatorial setting, the Maritimes-West-European province; to the west rose the orographic barrier imposed by the Appalachian Mountains, and to the south and east the Mauritanide-Hercynide belt. The geological affinity of Nova Scotia to Europe, reflected in elements of the Carboniferous flora and fauna, was mirrored in the evolution of geological thought even before the epochal visits of Sir Charles Lyell. The Maritimes Basin of eastern Canada, born of the Acadian-Caledonian orogeny that witnessed the suture of Iapetus in the Devonian, and shaped thereafter by the inexorable closing of Gondwana and Laurasia, comprises a near complete stratal sequence as great as 12 km thick which spans the Middle Devonian to the Lower Permian. Across the southern Maritimes Basin, in northern Nova Scotia, deep depocentres developed en echelon adjacent to a transform platelet boundary between terranes of Avalon and Gondwanan affinity. The subsequent history of the basins can be summarized as distension and rifting attended by bimodal volcanism waning through the Dinantian, with marked transpression in the Namurian and subsequent persistence of transcurrent movement linking Variscan deformation with Mauritainide-Appalachian convergence and Alleghenian thrusting. This Mid- Carboniferous event is pivotal in the Carboniferous evolution of Nova Scotia. Rapid subsidence adjacent to transcurrent faults in the early Westphalian was succeeded by thermal sag in the later Westphalian and ultimately by basin inversion and unroofing after the early Permian as equatorial Pangaea finally assembled and subsequently rifted again in the Triassic.
    [Show full text]
  • Retallack 2021 Coal Balls
    Palaeogeography, Palaeoclimatology, Palaeoecology 564 (2021) 110185 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Modern analogs reveal the origin of Carboniferous coal balls Gregory Retallack * Department of Earth Science, University of Oregon, Eugene, Oregon 97403-1272, USA ARTICLE INFO ABSTRACT Keywords: Coal balls are calcareous peats with cellular permineralization invaluable for understanding the anatomy of Coal ball Pennsylvanian and Permian fossil plants. Two distinct kinds of coal balls are here recognized in both Holocene Histosol and Pennsylvanian calcareous Histosols. Respirogenic calcite coal balls have arrays of calcite δ18O and δ13C like Carbon isotopes those of desert soil calcic horizons reflecting isotopic composition of CO2 gas from an aerobic microbiome. Permineralization Methanogenic calcite coal balls in contrast have invariant δ18O for a range of δ13C, and formed with anaerobic microbiomes in soil solutions with bicarbonate formed by methane oxidation and sugar fermentation. Respiro­ genic coal balls are described from Holocene peats in Eight Mile Creek South Australia, and noted from Carboniferous coals near Penistone, Yorkshire. Methanogenic coal balls are described from Carboniferous coals at Berryville (Illinois) and Steubenville (Ohio), Paleocene lignites of Sutton (Alaska), Eocene lignites of Axel Heiberg Island (Nunavut), Pleistocene peats of Konya (Turkey), and Holocene peats of Gramigne di Bando (Italy). Soils and paleosols with coal balls are neither common nor extinct, but were formed by two distinct soil microbiomes. 1. Introduction and Royer, 2019). Although best known from Euramerican coal mea­ sures of Pennsylvanian age (Greb et al., 1999; Raymond et al., 2012, Coal balls were best defined by Seward (1895, p.
    [Show full text]
  • Inferring the Evolutionary Reduction of Corm Lobation in Isoëtes Using Bayesian Model- Averaged Ancestral State Reconstruction
    UC Berkeley UC Berkeley Previously Published Works Title Inferring the evolutionary reduction of corm lobation in Isoëtes using Bayesian model- averaged ancestral state reconstruction. Permalink https://escholarship.org/uc/item/39h708p5 Journal American journal of botany, 105(2) ISSN 0002-9122 Authors Freund, Forrest D Freyman, William A Rothfels, Carl J Publication Date 2018-02-01 DOI 10.1002/ajb2.1024 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE BRIEF COMMUNICATION Inferring the evolutionary reduction of corm lobation in Isoëtes using Bayesian model- averaged ancestral state reconstruction Forrest D. Freund1,2, William A. Freyman1,2, and Carl J. Rothfels1 Manuscript received 26 October 2017; revision accepted 2 January PREMISE OF THE STUDY: Inferring the evolution of characters in Isoëtes has been problematic, 2018. as these plants are morphologically conservative and yet highly variable and homoplasious 1 Department of Integrative Biology, University of California, within that conserved base morphology. However, molecular phylogenies have given us a Berkeley, Berkeley, CA 94720-3140, USA valuable tool for testing hypotheses of character evolution within the genus, such as the 2 Authors for correspondence (e-mail: [email protected], hypothesis of ongoing morphological reductions. [email protected]) Citation: Freund, F. D., W. A. Freyman, and C. J. Rothfels. 2018. METHODS: We examined the reduction in lobe number on the underground trunk, or corm, by Inferring the evolutionary reduction of corm lobation in Isoëtes using combining the most recent molecular phylogeny with morphological descriptions gathered Bayesian model- averaged ancestral state reconstruction. American from the literature and observations of living specimens.
    [Show full text]
  • The Joggins Cliffs of Nova Scotia: B2 the Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H
    GAC-MAC-CSPG-CSSS Pre-conference Field Trips A1 Contamination in the South Mountain Batholith and Port Mouton Pluton, southern Nova Scotia HALIFAX Building Bridges—across science, through time, around2005 the world D. Barrie Clarke and Saskia Erdmann A2 Salt tectonics and sedimentation in western Cape Breton Island, Nova Scotia Ian Davison and Chris Jauer A3 Glaciation and landscapes of the Halifax region, Nova Scotia Ralph Stea and John Gosse A4 Structural geology and vein arrays of lode gold deposits, Meguma terrane, Nova Scotia Rick Horne A5 Facies heterogeneity in lacustrine basins: the transtensional Moncton Basin (Mississippian) and extensional Fundy Basin (Triassic-Jurassic), New Brunswick and Nova Scotia David Keighley and David E. Brown A6 Geological setting of intrusion-related gold mineralization in southwestern New Brunswick Kathleen Thorne, Malcolm McLeod, Les Fyffe, and David Lentz A7 The Triassic-Jurassic faunal and floral transition in the Fundy Basin, Nova Scotia Paul Olsen, Jessica Whiteside, and Tim Fedak Post-conference Field Trips B1 Accretion of peri-Gondwanan terranes, northern mainland Nova Scotia Field Trip B2 and southern New Brunswick Sandra Barr, Susan Johnson, Brendan Murphy, Georgia Pe-Piper, David Piper, and Chris White The Joggins Cliffs of Nova Scotia: B2 The Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H. Calder, M.R. Gibling, and M.C. Rygel Lyell & Co's "Coal Age Galapagos” B3 Geology and volcanology of the Jurassic North Mountain Basalt, southern Nova Scotia Dan Kontak, Jarda Dostal,
    [Show full text]
  • U.S. GEOLOGICAL SURVEY BULLETIN 21 Cover
    rf Predictive Stratigraphic Analysis- - Concept and Application u.s. GEOLOGICAL SURVEY BULLETIN 21 Cover. Calcic paleo-Vertisol underlying the resistant transgressive marine limestone Little Stone Gap Member of the Hinton Formation (Upper Mississippian) in southwestern West Virginia. This paleosol is indicative of a relatively dry climate when evapotranspira- tion exceeded rainfall for more than 6 months out of the year. The light-gray color at the level of the photograph scale (center) is the result of gleying (bleaching) after burial. A calcified root system, located in the proximity of the scale, branches downward and sug­ gests a well-developed root system for a plant whose stem may have been up to 15 centi­ meters in diameter. Numerous mineralized fossil roots at this level indicate that land plants were very well adapted to seasonally dry conditions in nonwaterlogged environ­ ments by Late Mississippian time. Cross-cutting fractures, known as mukkara structures and caused by seasonal expansion (wet) and contraction (dry), are visible throughout the outcrop beneath the resistant limestone layer except where interrupted or destroyed by paleoroot systems. Predictive Stratigraphic Analysis Concept and Application Edited by C. Blaine Cecil and N. Terence Edgar U.S. GEOLOGICAL SURVEY BULLETIN 2110 A collection of extended abstracts of papers presented at two workshops on the title subject UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY GORDON P. EATON, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center, Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Networks of Highly Branched Stigmarian Rootlets Developed on the First Giant Trees
    Networks of highly branched stigmarian rootlets developed on the first giant trees Alexander J. Hetheringtona, Christopher M. Berryb, and Liam Dolana,1 aDepartment of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom; and bSchool of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, United Kingdom Edited by Peter R. Crane, Yale School of Forestry and Environmental Studies, New Haven, CT, and approved February 29, 2016 (received for review July 22, 2015) Lycophyte trees, up to 50 m in height, were the tallest in the that rootlet abscission resembled foliar abscission (17, 18), obser- Carboniferous coal swamp forests. The similarity in their shoot and vations on well-preserved fossil rhizomorph apices (30–32), and root morphology led to the hypothesis that their rooting (stig- their interpretation within a phylogenetic context (31, 33) led to a marian) systems were modified leafy shoot systems, distinct from complete revival of Schimper’s (27) modified shoot hypothesis. the roots of all other plants. Each consists of a branching main axis The only living relatives of these Carboniferous giant trees are covered on all sides by lateral structures in a phyllotactic arrange- small herbaceous plants in the genus Isoetes (24, 33–35). The rooting ment; unbranched microphylls developed from shoot axes, and system of Isoetes also consists of a rhizomorph meristem that de- largely unbranched stigmarian rootlets developed from rhizomorphs velops rootlets in a regular rhizotaxy (31, 36, 37). Aside from the axes. Here, we reexamined the morphology of extinct stigmarian reduction and modification of the rhizomorph, the rooting systems systems preserved as compression fossils and in coal balls from the of Isoetes and the tree lycopsids are morphologically similar (4, 19, Carboniferous period.
    [Show full text]
  • Characteristics of the Mississippian-Pennsylvanian Boundary and Associated Coal-Bearing Rocks in the Southern Appalachians
    CHARACTERISTICS OF THE MISSISSIPPIAN-PENNSYLVANIAN BOUNDARY AND ASSOCIATED COAL-BEARING ROCKS IN THE SOUTHERN APPALACHIANS By Kenneth J. England, William H. Gillespie, C. Blaine Cecil, and John F. Windolph, Jr. U.S. Geological Survey and Thomas J. Crawford West Georgia College with contributions by Cortland F. Eble West Virginia Geological Survey Lawrence J. Rheams Alabama Geological Survey and Roger E. Thomas U.S. Geological Survey USQS Open-File Report 85-577 1985 This report la preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or atratlgraphic nomenclature. CONTENTS Page Characteristics of the Mississippian-Pennsylvanian boundary and associated coal-bearing strata in the central Appalachian basin. Kenneth J. Englund and Roger E. Thomas.................................... 1 Upper Mississippian and Lower Pennsylvanian Series in the southern Appalachians. Thomas J. Crawford........................................................ 9 Biostratigraphic significance of compression-impression plant fossils near the Mississippian-Pennsylvanian boundary in the southern Appalachians. William H. Gillespie, Thomas J. Crawford and Lawrence J. Rheams........... 11 Miospores in Pennsylvanian coal beds of the southern Appalachian basin and their stratigraphic implications. Cortland F. Eble, William H. Gillespie, Thomas J. Crawford, and Lawrence J. Rheams...................................................... 19 Geologic controls on sedimentation and peat formation in the Carboniferous of the Appalachian
    [Show full text]
  • Soft-Bodied Fossils from the Roof Shales of the Wigan Four Foot Coal Seam, Westhoughton, Lancashire, UK
    Geol. Mag. 135 (3), 1999. pp. 321-329. Printed in the United Kingdom © 1999 Cambridge University Press 321 Soft-bodied fossils from the roof shales of the Wigan Four Foot coal seam, Westhoughton, Lancashire, UK L. I. ANDERSON*, J. A. DUNLOPf, R. M. C. EAGARJ, C. A. HORROCKS§ & H. M. WILSON]] "Department of Geology and Petroleum Geology, Meston Building, University of Aberdeen, Aberdeen, AB24 3UE, UK tlnstitiit fiir Systematische Zoologie, Museum fiir Naturkunde, Invalidenstrasse, D-10115, Berlin, Germany ^Honorary Research Associate, The Manchester Museum, The University of Manchester, M13 9PL, UK §24 Lower Monton Road, Eccles, Manchester, M30 ONX, UK ^Department of Earth Sciences, Keele University, Staffordshire, ST5 5BG, UK (Received 10 September 1998; accepted21 January 1999) Abstract - Exceptionally preserved fossils are described from the Westhoughton opencast coal pit near Wigan, Lancashire, UK (uppermost Westphalian A, Lower Modiolaris Chronozone, regularis faunal belt). The fossils occur within sideritic concretions in a 1.5-metre zone above the Wigan Four Foot coal seam. Arthropods dominate the fauna and include arachnids, arthropleurids, crustaceans, eurypterids, euthycarcinoids, millipedes and xiphosurans. Vertebrates are represented by a single palaeoniscid fish, numerous disarticulated scales and coprolites. Upright Sigillaria trees, massive bedded units and a general lack of trace fossils in the roof shales of the Wigan Four Foot coal seam suggest that deposi­ tion of the beds containing these concretions was relatively rapid. Discovery of similar faunas at the equivalent stratigraphic level some distance away point to regional rather than localized controls on exceptional preservation. Prior to Anderson et al. (1997), it was generally 1. Introduction believed that exceptionally preserved fossils in Recent investigations of new Upper Carboniferous Lancashire were restricted to the Sparth Bottoms fossil localities in the West Lancashire Coalfield have brick clay pit, Rochdale and the Soapstone bed of the produced significant results (Anderson et al.
    [Show full text]
  • Stigmaria Fossils
    Lycopods Throughout geologic time the seas have undergone transgressions (high sea level) and regressions (low sea level). During times of regression land is exposed, and in the Mississippian and Pennsylvanian there was abundant plant life thriving in subtropical conditions around the world. Most of the plants that grew in swampy areas eventually fell and accumulated in large numbers to ultimately form coal, lending the name Carboniferous Period or coal measures. The dominant trees of this period were the lycopods Lepidodendron and Sigillaria. Other plants that were more common on higher ground and along floodplains are the fossil horsetails called Calamites which were tree-sized plants reaching a height of approximately 20 m. In Arkansas, the best preserved of these fossils are found in Pennsylvanian age rocks from the Arkansas River Valley. Small fragments of plant fossils can be found in Mississippian and Pennsylvanian age rocks in the Ozark Plateaus Region. Lepidodendron, an extinct coal-age tree. Illustrations by Sherrie Shepherd. Sigillaria, an extinct coal-age tree. Illustrations by Sherrie Shepherd. Calamites, an extinct horsetail. Illustrations by Sherrie Shepherd. Stigmaria fossils Plant fossils with small round indentions are usually fossils of the root system called Stigmaria, of either of the trees, Lepidodendron or Sigillaria. The bark of Sigillaria is differentiated by parallel lines between rows of round indentions. The majority of Stigmaria fossils are found in the Pennsylvanian Hartshorne Sandstone and McAlester Shale of the Arkansas River Valley. Stigmaria fossil from Bates, Arkansas Stigmaria fossil from Bates, Arkansas .
    [Show full text]
  • Michael Charles Rygel Curriculum Vitae
    MICHAEL CHARLES RYGEL CURRICULUM VITAE CONTACT INFORMATION Michael C. Rygel, Ph.D., P.G. Department of Geology State University of New York, College at Potsdam 44 Pierrepont Ave. Potsdam, New York, 13676 cell: (315) 212-0963, office: (315) 267-3401, fax: (315) 267-2695 email: [email protected] web page: http://www2.potsdam.edu/rygelmc/Rygel.homepage.htm EDUCATION & CREDENTIALS • Professional Geologist New York License # 000232-1, awarded August 2017 • Doctor of Philosophy (Earth Science) Dalhousie University, 2005 Dissertation: Alluvial sedimentology and basin analysis of Carboniferous strata near Joggins, Nova Scotia, Atlantic Canada • Bachelor of Science (Geology and Planetary Science) University of Pittsburgh at Johnstown, 2000 EXPERTISE • Geoscience education • Basin analysis • Facies analysis of shallow marine and terrestrial • Ichnology strata • Geologic mapping • Fluvial sedimentology and reservoir architecture • Geographic information systems • • Sequence stratigraphy Seismic interpretation PROFESSIONAL EXPERIENCE • Associate Professor State University of New York, College at Potsdam Department of Geology, September 1, 2012 – present Assistant Professor, September 1, 2006 – August 2012 Department Chair, July 2014 - present • Summer Faculty Member Indiana University Indiana University Geologic Field Station, June 2011 – present Michael Rygel, CV 2 • Consultant Devon Energy Geoscience Technology, Strategic Services Division, June 2011 – November 2013 • Post-Doctoral Research Associate University of Nebraska-Lincoln Department
    [Show full text]