Thysanoessa Inermis and T. Longicaudata
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Undesirable Substances in Seafood Products – Results from Monitoring Activities in 2006
Undesirable substances in seafood products – Results from monitoring activities in 2006 Ásta Margrét Ásmundsdóttir Vordís Baldursdóttir Sasan Rabieh Helga Gunnlaugsdóttir Matvælaöryggi Skýrsla Matís 17-08 Júlí 2008 ISSN 1670-7192 Titill / Title Undesirable substances in seafood products– results from the monitoring activities in 2006 Höfundar / Authors Ásta Margrét Ásmundsdóttir, Vordís Baldursdóttir, Sasan Rabieh, Helga Gunnlaugsdóttir Skýrsla / Report no. 17 - 08 Útgáfudagur / Date: Júlí 2008 Verknr. / project no. 1687 Styrktaraðilar / funding: Ministry of fisheries Ágrip á íslensku: Árið 2003 hófst, að frumkvæði Sjávarútvegsráðuneytisins, vöktun á óæskilegum efnum í sjávarafurðum, bæði afurðum sem ætlaðar eru til manneldis sem og afurðum lýsis- og mjöliðnaðar. Tilgangurinn með vöktuninni er að meta ástand íslenskra sjávarafurða með tilliti til magns aðskotaefna. Gögnin sem safnað er í vöktunarverkefninu verða einnig notuð í áhættumati og til að hafa áhrif á setningu hámarksgilda óæskilegra efna t.d í Evrópu. Umfjöllun um aðskotaefni í sjávarafurðum, bæði í almennum fjölmiðlum og í vísindaritum, hefur margoft krafist viðbragða íslenskra stjórnvalda. Nauðsynlegt er að hafa til taks vísindaniðurstöður sem sýna fram á raunverulegt ástand íslenskra sjávarafurða til þess að koma í veg fyrir tjón sem af slíkri umfjöllun getur hlotist. Ennfremur eru mörk aðskotaefna í sífelldri endurskoðun og er mikilvægt fyrir Íslendinga að taka þátt í slíkri endurskoðun og styðja mál sitt með vísindagögnum. Þetta sýnir mikilvægi þess að regluleg vöktun fari fram og að á Íslandi séu stundaðar sjálfstæðar rannsóknir á eins mikilvægum málaflokki og mengun sjávarafurða er. Þessi skýrsla er samantekt niðurstaðna vöktunarinnar árið 2006. Það er langtímamarkmið að meta ástand íslenskra sjávarafurða m.t.t. magns óæskilegra efna. Þessu markmiði verður einungis náð með sívirkri vöktun í langan tíma. -
Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area APPENDICES
FMP for Groundfish of the BSAI Management Area Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area APPENDICES Appendix A History of the Fishery Management Plan ...................................................................... A-1 A.1 Amendments to the FMP ......................................................................................................... A-1 Appendix B Geographical Coordinates of Areas Described in the Fishery Management Plan ..... B-1 B.1 Management Area, Subareas, and Districts ............................................................................. B-1 B.2 Closed Areas ............................................................................................................................ B-2 B.3 PSC Limitation Zones ........................................................................................................... B-18 Appendix C Summary of the American Fisheries Act and Subtitle II ............................................. C-1 C.1 Summary of the American Fisheries Act (AFA) Management Measures ............................... C-1 C.2 Summary of Amendments to AFA in the Coast Guard Authorization Act of 2010 ................ C-2 C.3 American Fisheries Act: Subtitle II Bering Sea Pollock Fishery ............................................ C-4 Appendix D Life History Features and Habitat Requirements of Fishery Management Plan SpeciesD-1 D.1 Walleye pollock (Theragra calcogramma) ............................................................................ -
Balaenoptera Bonaerensis – Antarctic Minke Whale
Balaenoptera bonaerensis – Antarctic Minke Whale compared to B. bonaerensis. This smaller form, termed the “Dwarf” Minke Whale, may be genetically different from B. bonaerensis, and more closely related to the North Pacific Minke Whales, and thus has been classified B. acutorostrata (Wada et al. 1991; IWC 2001). This taxonomic position, although somewhat controversial, has been accepted by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), and the Convention on Migratory Species (CMS). Assessment Rationale The current IWC global estimate of abundance of Antarctic Dr. Meike Scheidat Minke Whales is about 500,000 individuals. The abundance estimates declined from about 700,000 for the second circumpolar set of abundance survey cruises Regional Red List status (2016) Least Concern* (1985/86 to 1990/91) to about 500,000 for the third National Red List status (2004) Least Concern (1991/92 to 2003/04). Although this decline was not statistically significant, the IWC Scientific Committee does Reasons for change No change consider these results to reflect a change. However, Global Red List status (2008) Data Deficient whether this change is genuine or attributed to greater proportions of pack ice limiting the survey extent, has not TOPS listing (NEMBA) (2007) None yet been determined. More detailed results from an CITES listing (1986) Appendix I assessment model are available for the mid-Indian to the mid-Pacific region, and suggest that the population Endemic No increased to a peak in 1970 and then declined, with it *Watch-list Data being unclear whether this decline has levelled off or is still continuing past 2000. -
Atlantic "Pelagic" Fish Underwater World
QL DFO - Library / MPO - Bibliothèque 626 U5313 no.3 12064521 c.2 - 1 Atlantic "Pelagic" Fish Underwater World Fish that range the open sea are Pelagic species are generally very Atlantic known as " pelagic" species, to dif streamlined. They are blue or blue ferentiate them from "groundfish" gray over their backs and silvery "Pelagic" Fish which feed and dwell near the bot white underneath - a form of tom . Feeding mainly in surface or camouflage when in the open sea. middle depth waters, pelagic fish They are caught bath in inshore travel mostly in large schools, tu. n and offshore waters, principally with ing and manoeuvring in close forma mid-water trawls, purse seines, gill tion with split-second timing in their nets, traps and weirs. quest for plankton and other small species. Best known of the pelagic popula tions of Canada's Atlantic coast are herring, but others in order of economic importance include sal mon, mackerel , swordfish, bluefin tuna, eels, smelt, gaspereau and capelin. Sorne pelagic fish, notably salmon and gaspereau, migrate from freshwater to the sea and back again for spawning. Eels migrate in the opposite direction, spawning in sait water but entering freshwater to feed . Underwater World Herring comprise more than one Herring are processed and mar Atlantic Herring keted in various forms. About half of (Ctupea harengus) fifth of Atlantic Canada's annual fisheries catch. They are found all the catch is marketed fresh or as along the northwest Atlantic coast frozen whole dressed fish and fillets, from Cape Hatteras to Hudson one-quarter is cured , including Strait. -
Forage Fish Management Plan
Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis .................................................................................................................................... -
The Functional Biology of Krill (Thysanoessa Raschii)
with raschii) fjord The functional biology of krill (Thysanoessa raschii) Greenlandic (Thysanoessa a ‐ with focus on its ecological role in krill of role in a Greenlandic fjord biology Mette Dalgaard Agersted ecological its Supervisor: Torkel Gissel Nielsen on [email protected] functional focus The DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark, Kavalergaarden 6, 2920, Charlottenlund, Denmark. The functional biology of krill (Thysanoessa raschii) with focus on its ecological role in a Greenlandic fjord Outline • • • • • Background Summary Results Materials Aim and –who methods , what, where? Where? 3 NASA The functional biology of krill (Thysanoessa raschii) with focus on its ecological role in a Greenlandic fjord Krill • • • Diel Pelagic Large http://upload.wikimedia.org/wikipedi ‐ vertical Euphausiids schools living a/commons/b/bb/Krillanatomykils.jpg migration ‐ patchy Photo: Russ Hopcroft 4 with Krill in Western Greenland raschii) fjord • 4 species – Thysanoessa raschii Greenlandic (Thysanoessa – T. inermis a in – T. longicaudata krill of role – Meganyctiphanes norvegica biology ecological its on functional focus The wikipedia.org Thysanoessa Meganyctiphanes raschii norvegica Pedersen & Smidt 2000 Thysanoessa Thysanoessa inermis longicaudata 5 Photos: Russ Hopcroft The food web • Arctic krill not so well studied compared to Antarktic krill Phytoplankton • Key role Microplankton Copepods • Knowledge is crucial in understandingDetritus ecosystem dynamics Faecal pellets can sink hundreds of meters a -
The Benefits of Fish Meal in Aquaculture Diets1 R.D
FA122 The Benefits of Fish Meal in Aquaculture Diets1 R.D. Miles and F.A. Chapman2 Introduction sustainable, managed, and monitored fish stocks, reducing the possibility of over-fishing. The supply is presently Fishmeal is recognized by nutritionists as a high-quality, stable at 6.0 to 6.5 million tons annually. Approximately very digestible feed ingredient that is favored for addition 4 to 5 tons of whole fish are required to produce 1 ton of to the diet of most farm animals, especially fish and shrimp. dry fishmeal. Peru produces almost one-third of the total Fishmeal carries large quantities of energy per unit weight world fishmeal supply. Other principal fishmeal-producing and is an excellent source of protein, lipids (oils), minerals, countries are Chile, China, Thailand, U.S.A., Iceland, and vitamins; there is very little carbohydrate in fishmeal. Norway, Denmark, and Japan (Table 1). Major groups of industrial fish rendered into fishmeal are anchovies, her- What Is Fishmeal rings, menhaden, sardines, shads, and smelts (Table 2). Fishmeal is a generic term for a nutrient-rich feed ingredi- ent used primarily in diets for domestic animals, sometimes Fish can be processed at sea in factory ships or caught and used as a high-quality organic fertilizer. Fishmeal can be stored until they are transported to a processing facility made from almost any type of seafood but is generally on the coast. Fish is a highly perishable raw material, and manufactured from wild-caught, small marine fish that spoilage will occur if it is not processed in a timely manner. -
Euphausiids Thysanoessa Raschi (M
Growth, development and distribution of the euphausiids Thysanoessa raschi (M. Sars) and Thysanoessa inermis (Kroyer) in the southeastern Bering Sea SHARON L. SMITH Smith, S. L. 1991: Growth, development and distribution of the euphausiids Thysanoessa raschi (M. Sars) and Thysanoessa inermis (Krbyer) in the southeastern Bering Sea. Pp. 461-478 in Sakshaug, E., Hopkins, C. C. E. & 0ritsland, N. A. (eds.): Proceedings of the Pro Mare Symposium on Polar Marine Ecology, Trondheim, 12-16 May 1990. Polar Research lO(2). The distribution and abundance of the euphausiids Thysanoessa raschi and Thysanoessa inermb in the shelf waters of the southeastern Bering Sea were investigated during spring and summer of 1980 and 1981. Experiments were conducted during the study to describe the reproduction, growth and development of these species. T. inermb was the dominant euphausiid species observed over the outer shelf region; it began spawning in early April while T. raschi dominated the euphausiids over the middle shelf and began spawning in mid or late May. The seasonal progression in spawning followed the seasonal development of temperature; however, spawning did not begin earlier in 1981 which was a warmer year than 1980. Average egg production of T. raschi ranged from 3.4% to 3.8% dry body weight of the female per day during the first three days after capture. Secondary production estimates for T. raschi females ranged from 4.2% to 5.2% dry body weight per day in 1980 and 5.9% to 6.0% dry body weight per day in 1981. A sharp decline in the abundance of adolescent and adult euphausiids over the middle shelf during the spring bloom period when food appeared to be abundant suggests that predation by diving birds, pollack, Tanner crabs, whales and seals effectively controls the euphausiid population. -
Implications for Atlantic Salmon Feeding at West Greenland
Vol. 538: 197–211, 2015 MARINE ECOLOGY PROGRESS SERIES Published October 28 doi: 10.3354/meps11470 Mar Ecol Prog Ser Changing trophic structure and energy dynamics in the Northwest Atlantic: implications for Atlantic salmon feeding at West Greenland Mark D. Renkawitz1,*, Timothy F. Sheehan1, Heather J. Dixon2, Rasmus Nygaard3 1National Marine Fisheries Service, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543, USA 2University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada 3Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, 3900 Nuuk, Greenland ABSTRACT: Changes in large-scale climate conditions in the Northwest Atlantic caused a phase shift in productivity, altering trophic pathways that influence the growth, survival, and abundance of many species. Despite diverse population structures and management regimes, concurrent abundance declines in disparate North American and European Atlantic salmon populations sug- gest that conditions experienced at common marine areas may be causative. To understand the trophic mechanisms contributing to population declines, 1451 Atlantic salmon stomachs were col- lected and examined from individuals caught between 2006 and 2011 at the West Greenland feed- ing grounds. Standardized stomach content weights and stomach composition varied among years but not between stock complexes. Atlantic salmon consumed a variety of prey taxa, primarily capelin and Themisto sp., over a broad size spectrum. Standardized stomach content weight and proportions of taxa consumed were similar between historical (1965−1970) and contemporary samples, although lower-quality boreoatlantic armhook squid, nearly absent from historical data, was of moderate importance in contemporary samples, while higher-quality capelin decreased in importance. Furthermore, from 1968−2008 mean energy density estimates of capelin, the regional keystone forage species, decreased approximately 33.7%. -
Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs
little fish BIG IMPACT Managing a crucial link in ocean food webs A report from the Lenfest Forage Fish Task Force The Lenfest Ocean Program invests in scientific research on the environmental, economic, and social impacts of fishing, fisheries management, and aquaculture. Supported research projects result in peer-reviewed publications in leading scientific journals. The Program works with the scientists to ensure that research results are delivered effectively to decision makers and the public, who can take action based on the findings. The program was established in 2004 by the Lenfest Foundation and is managed by the Pew Charitable Trusts (www.lenfestocean.org, Twitter handle: @LenfestOcean). The Institute for Ocean Conservation Science (IOCS) is part of the Stony Brook University School of Marine and Atmospheric Sciences. It is dedicated to advancing ocean conservation through science. IOCS conducts world-class scientific research that increases knowledge about critical threats to oceans and their inhabitants, provides the foundation for smarter ocean policy, and establishes new frameworks for improved ocean conservation. Suggested citation: Pikitch, E., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Essington, T., Heppell, S.S., Houde, E.D., Mangel, M., Pauly, D., Plagányi, É., Sainsbury, K., and Steneck, R.S. 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp. Cover photo illustration: shoal of forage fish (center), surrounded by (clockwise from top), humpback whale, Cape gannet, Steller sea lions, Atlantic puffins, sardines and black-legged kittiwake. Credits Cover (center) and title page: © Jason Pickering/SeaPics.com Banner, pages ii–1: © Brandon Cole Design: Janin/Cliff Design Inc. -
Food for All Small Fish with Big Influence Pacific Herring, British Columbia
CANADA FOOD FOR ALL Small fish with big influence Pacific herring, British Columbia Why do forage fish matter? Photo: © WWF-Canada, National Geographic Stock /Paul Nicklen orage fish, such as herring and capelin, are small to intermediate size marine prey species that are eaten by a huge range of marine predators, including whales, seals, F big fish like tuna and cod, and seabirds. These big predators are key elements in ocean health, and they need a lot of food. Vulnerable Forage fish are often the most abundant component of marine ecosystems by number and weight. However, they remain very vulnerable to overfishing. Worldwide, twice as many small, low-trophic level fish stocks have collapsed compared to large predatory fish stocks (Pinsky et al., 2011). Here is why: • Forage fish abundances can fluctuate greatly from year to year because of changes in environmental conditions. Intense fishing can exacerbate the rate of decline (Essington et al., 2015). • Even when their abundance decreases, forage fish remain easy to harvest as they aggregate in large shoals (Essington et al., 2015). • Conventional management approaches do not account for the large natural fluctuations or the role forage fish play in marine ecosystems. (Pikitch et al., 2012). Atlantic puffin,Commercial Witless Bay Ecological forage fishReserve, species Newfoundland catch and value 2014 in Canada t ATLANTIC HERRING $ t ATLANTIC MACKEREL $ CAPELIN t $ t ALEWIFE $ t metric tonnes $ thousand dollars SMELT t NS QC $ NB NFL t PACIFIC HERRING PEI BC $ 0 20,000 40,000 60,000 -
Low Incidence of Plastic Ingestion Among Three Fish Species Significant
bioRxiv preprint doi: https://doi.org/10.1101/332858; this version posted May 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Low incidence of plastic ingestion among three fish species significant 2 for human consumption on the island of Newfoundland, Canada 3 4 Max Liboiron1,2, Jessica Melvin2, Natalie Richárd1,2, Jacquelyn Saturno2,3, Justine Ammendolia2, 5 France Liboiron2, Louis Charron2, Charles Mather1,2 6 7 1Department of Geography, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada 8 2Civic Laboratory for Environmental Action Research (CLEAR), Memorial University of Newfoundland, St. John’s, 9 Newfoundland A1B 3X9, Canada 10 3School of Fisheries, Marine Institute of Memorial University of Newfoundland, St. John’s, NL A1C 5R3, Canada 11 12 Abstract 13 This study reports the first baselines of plastic ingestion for three fish species that are common 14 food fish in Newfoundland, Canada. Species collections occurred between 2015-2016 for 15 Atlantic cod (Gadus morhua), Atlantic salmon (Salmo salar), and capelin (Mallotus villosus). 16 The frequency of occurrence (%FO) of plastic ingestion for both spawning Atlantic salmon 17 (n=69) and capelin (n=350) was 0%. Of the 1,010 Atlantic cod collected over two years, 17 18 individuals had ingested plastics, a %FO of 1.68%. This is the only multi-year investigation of 19 plastic ingestion in Atlantic cod for the Northwest Atlantic, and the first for capelin and salmon 20 in the region.