Intentionally Left Blank (Ssc Cover)

Total Page:16

File Type:pdf, Size:1020Kb

Intentionally Left Blank (Ssc Cover) NOTE: INTENTIONALLY LEFT BLANK (SSC COVER) NOTE: INTENTIONALLY LEFT BLANK (SSC INSIDE COVER) Member Agencies: Address Correspondence to: American Bureau of Shipping COMMANDANT (CG-5212/SSC) Defence Research and Development Canada ATTN (EXECUTIVE DIRECTOR/SHIP Maritime Administration STRUCTURE COMMITTEE) Military Sealift Command US COAST GUARD Naval Sea Systems Command 2100 2ND ST SW STOP 7126 Society of Naval Architects & Marine Engineers WASHINGTON DC 20593-7126 Transport Canada Website: http://www.shipstructure.org United States Coast Guard Ship Structure Committee SSC – ### SR – #### MONTH DAY, YEAR TITLE Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc dolor massa, tincidunt ultrices congue scelerisque, tempor sit amet orci. Aenean velit nulla, elementum bibendum scelerisque sed, dapibus ac eros. Pellentesque a ligula magna, vel molestie elit. Aenean vel nisi augue, non elementum felis. Morbi convallis volutpat iaculis. Fusce aliquet dui interdum sem congue non malesuada risus porttitor. Donec libero mi, vehicula et lobortis ultricies, accumsan ut nunc. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Vivamus diam odio, euismod vel volutpat sed, sodales eget eros. Aenean dolor est, imperdiet sed elementum suscipit, posuere sed sem. Nam tellus tortor, adipiscing ut iaculis id, eleifend sit amet lorem. Donec justo lectus, pellentesque ut pellentesque nec, hendrerit eu ligula. Vestibulum iaculis libero eget ipsum consectetur a venenatis velit malesuada. Suspendisse fermentum eleifend gravida. Aenean sed magna diam, vitae faucibus lorem. Aliquam leo elit, ornare vitae luctus in, blandit in leo. Nullam vel lobortis libero. Etiam non tortor id tellus volutpat ultricies. Vestibulum sollicitudin viverra odio, sollicitudin aliquet quam gravida nec. Suspendisse fermentum condimentum mollis. In hac habitasse platea dictumst. Proin urna sem, facilisis ac pharetra sed, posuere eget lacus. Proin lorem lacus, varius ut posuere at, suscipit ut lectus. Donec rutrum suscipit enim. Suspendisse at semper ante. BRIAN M. SALERNO THOMAS ECCLES Rear Admiral, U.S. Coast Guard Rear Admiral, U.S. NAVSEA 05P Co-Chairman, Ship Structure Committee Co-Chairman, Ship Structure Committee DAY MONTH YEAR SSC ### i NOTE: INTENTIONALLY LEFT BLANK (BLANK PAGE) DAY MONTH YEAR SSC ### ii Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient‘s Catalog No. SSC- 4. Title and Subtitle 5. Report Date 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. SR- 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered COMMANDANT (CG-5212/SSC) Final Report ATTN (EXECUTIVE DIRECTOR/SHIP STRUCTURE COMMITTEE) US COAST GUARD 14. Sponsoring Agency Code 2100 2ND ST SW STOP 7126 CG-5 WASHINGTON DC 20593-7126 15. Supplementary Notes Sponsored by the Ship Structure Committee. Jointly funded by its member agencies. 16. Abstract 17. Key Words 18. Distribution Statement Distribution is available to the public through: National Technical Information Service U.S. Department of Commerce Springfield, VA 22151 Ph. (703) 487-4650 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified DAY MONTH YEAR SSC ### iii CONVERSION FACTORS (Approximate conversions to metric measures) To convert from to Function Value LENGTH inches meters divide by 39.3701 inches millimeters multiply by 25.4000 feet meters divide by 3.2808 VOLUME cubic feet cubic meters divide by 35.3149 cubic inches cubic meters divide by 61,024 SECTION MODULUS inches2 feet2 centimeters2 meters2 multiply by 1.9665 inches2 feet2 centimeters3 multiply by 196.6448 inches4 centimeters3 multiply by 16.3871 MOMENT OF INERTIA inches2 feet2 centimeters2 meters divide by 1.6684 inches2 feet2 centimeters4 multiply by 5993.73 inches4 centimeters4 multiply by 41.623 FORCE OR MASS long tons tonne multiply by 1.0160 long tons kilograms multiply by 1016.047 pounds tonnes divide by 2204.62 pounds kilograms divide by 2.2046 pounds Newtons multiply by 4.4482 PRESSURE OR STRESS pounds/inch2 Newtons/meter2 (Pascals) multiply by 6894.757 kilo pounds/inch2 mega Newtons/meter2 multiply by 6.8947 (mega Pascals) BENDING OR TORQUE foot tons meter tons divide by 3.2291 foot pounds kilogram meters divide by 7.23285 foot pounds Newton meters multiply by 1.35582 ENERGY foot pounds Joules multiply by 1.355826 STRESS INTENSITY kilo pound/inch2 inch½(ksi in) mega Newton MNm3/2 multiply by 1.0998 J-INTEGRAL kilo pound/inch Joules/mm2 multiply by 0.1753 kilo pound/inch kilo Joules/m2 multiply by 175.3 DAY MONTH YEAR SSC ### iv Table of Contents Technical Report Documentation Page ....................................................................................................................... iii Conversion Factors .......................................................................................................................................................iv Table of Contents........................................................................................................................................................... v List of Illustrations........................................................................................................................................................ix List of Tables ................................................................................................................................................................ix List of Abbreviations and Symbols ............................................................................................................................... x Introduction ................................................................................................................................................................... 1 1. Scope .................................................................................................................................................................... 1 2. Referenced Documents ......................................................................................................................................... 1 2.1. International Maritime Organization ............................................................................................................ 1 2.2. American Bureau of Shipping ...................................................................................................................... 1 2.3. Det Norske Veritas ....................................................................................................................................... 1 3. Introduction .......................................................................................................................................................... 1 3.1. Purpose ......................................................................................................................................................... 1 3.2. Historical Perspective................................................................................................................................... 1 3.3. Design Considerations ................................................................................................................................. 2 3.3.1. Fatigue ................................................................................................................................................. 2 3.3.2. Fracture................................................................................................................................................ 2 3.3.3. Corrosion ............................................................................................................................................. 2 3.4. Design Manual Organization ....................................................................................................................... 2 4. Aluminum and Aluminum Alloys ........................................................................................................................ 2 4.1. Aluminum Properties ................................................................................................................................... 2 4.2. Considerations .............................................................................................................................................. 2 4.3. Alloying Elements ........................................................................................................................................ 2 4.3.1. Chromium (Cr) .................................................................................................................................... 2 4.3.2. Copper (Cu) ......................................................................................................................................... 3 4.3.3. Magnesium (Mg) ................................................................................................................................. 3 4.3.4. Manganese (Mn).................................................................................................................................. 3 4.3.5. Scandium (Sc) ..................................................................................................................................... 3 4.3.6. Silicon (Si) ..........................................................................................................................................
Recommended publications
  • Simulation Analysis of Porthole Die Extrusion Process and Die Structure Modifications for an Aluminum Profile with High Length–Width Ratio and Small Cavity
    materials Article Simulation Analysis of Porthole Die Extrusion Process and Die Structure Modifications for an Aluminum Profile with High Length–Width Ratio and Small Cavity Zhiwen Liu 1,2,* ID , Luoxing Li 2,*, Shikang Li 2, Jie Yi 2 and Guan Wang 2 1 School of Mechanical Engineering, University of South China, Hengyang 421001, China 2 State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China; [email protected] (S.L.); [email protected] (J.Y.); [email protected] (G.W.) * Correspondence: [email protected] (Z.L.); [email protected] (L.L.); Tel.: +86-734-857-8031 (Z.L.); +86-731-88-821-571 (L.L.) Received: 26 July 2018; Accepted: 20 August 2018; Published: 23 August 2018 Abstract: The design of a porthole die is one of the key technologies for producing aluminum profiles. For an aluminum profile with high length–width ratio and small cavity, it is difficult to control the metal flow through porthole die with the same velocity to ensure the die’s strength. In the present study, the porthole die extrusion process of aluminum profile with small cavity was simulated using HyperXtrude 13.0 software based on ALE formulation. The simulation results show for the traditional design scheme, the metal flow velocity in porthole die at every stage was severely not uniform. The standard deviation of the velocity (SDV) at the die exit was 19.63 mm/s. The maximum displacement in the small mandrel was 0.0925 mm. Then, aiming at achieving a uniform flow velocity and enough die strength, three kinds of die structure modifications for the porthole die were proposed.
    [Show full text]
  • January Cover.Indd
    Accessories 1:35 Scale SALE V3000S Masks For ICM kit. EUXT198 $16.95 $11.99 SALE L3H163 Masks For ICM kit. EUXT200 $16.95 $11.99 SALE Kfz.2 Radio Car Masks For ICM kit. KV-1 and KV-2 - Vol. 5 - Tool Boxes Early German E-50 Flakpanzer Rheinmetall Geraet sWS with 20mm Flakvierling Detail Set EUXT201 $9.95 $7.99 AB35194 $17.99 $16.19 58 5.5cm Gun Barrels For Trumpter EU36195 $32.95 $29.66 AB35L100 $21.99 $19.79 SALE Merkava Mk.3D Masks For Meng kit. KV-1 and KV-2 - Vol. 4 - Tool Boxes Late Defender 110 Hardtop Detail Set HobbyBoss EUXT202 $14.95 $10.99 AB35195 $17.99 $16.19 Soviet 76.2mm M1936 (F22) Divisional Gun EU36200 $32.95 $29.66 SALE L 4500 Büssing NAG Window Mask KV-1 Vol. 6 - Lubricant Tanks Trumpeter KV-1 Barrel For Bronco kit. GMC Bofors 40mm Detail Set For HobbyBoss For ICM kit. AB35196 $14.99 $14.99 AB35L104 $9.99 EU36208 $29.95 $26.96 EUXT206 $10.95 $7.99 German Heavy Tank PzKpfw(r) KV-2 Vol-1 German Stu.Pz.IV Brumbar 15cm STuH 43 Gun Boxer MRAV Detail Set For HobbyBoss kit. Jagdpanzer 38(t) Hetzer Wheel mask For Basic Set For Trumpeter kit - TR00367. Barrel For Dragon kit. EU36215 $32.95 $29.66 AB35L110 $9.99 Academy kit. AB35212 $25.99 $23.39 Churchill Mk.VI Detail Set For AFV Club kit. EUXT208 $12.95 SALE German Super Heavy Tank E-100 Vol.1 Soviet 152.4mm ML-20S for SU-152 SP Gun EU36233 $26.95 $24.26 Simca 5 Staff Car Mask For Tamiya kit.
    [Show full text]
  • Portland Daily Press: April 18, 1898
    PORTLAND DAILY PRESS. ESTABLISHED JUNE 23, 18B2-VOL.35. PORTLAND, MAINE, MONDAY MORNINg”" APRIL 18, 1898. PRICE THREE CENTS^^ ■ .. —i^——... MISCELLANEOUS._ _ MANILA PANIC STRIKEN. THE HOUSE MAY NOT YIELD. SITUATION GRAVE. London, April 18.— A special dispatch from Singa- pore says that the steamship Leo XIII from Manila, has (Special to the Press.) arrived there crowded with Spanish officials anti well to Washington D. c„ April 17.-The situation here do families, who are escaping from the rebel- foeai^ it is Spanish very critical so i’ar as tomorrow's ac- Makes lion which is spreading rapidly in the 110,1 01 ,lle Rouse | Thillipines. They is concerned. There is great report that Manila is panic strikcn. anger that a section of Republicans may vote with I*®mo<:r”ts £t)r Stomachs J"le concurrence in the Senate resolutions. Reed I he Republican | Speaker Confident It Will leaders understand this, and have been actively at work today forming the party lines to stand by ! Over. the Rouse resolution. The Senate INVOKED. resolution is con- DEUS EX MACHINA sidered most ♦ Through the unwise and fraught with troubles for the spurs LAST Stand First future. Ills stomach it builds HOPE. Action. that all Will Save thought of the New J The Only Thins Which Spain- by England con- ♦ the anew. will stand body from War. gressmen by the House resolutions ♦ The ards tomorrow, stomach is although some of the New cleansed and England senators, especially £ Eodgc, Frye and Chandler voted ♦ strengthened, London, April 18.—The Madrid corre- with the “war at once” T the of the Times telegraphing Sun- party in the Senate last night, ft was digestive spondent Autonomists Start for Conference t thought that the fluids are in- House resolutions were X day says: very radical when they passed, ♦ creased, appetite is made keen 4 “In official circles today there is an with but every one looks to them now as and Cubans.
    [Show full text]
  • Engine Block Materials and Its Production Processes
    ENGINE BLOCK MATERIALS AND ITS PRODUCTION PROCESSES 2.2 THE CAST IRON MONOLITHIC BLOCK The widespread use of cast iron monolithic block is as a result of its low cost and its formidability. This type of block normally comes as the integral type where the engine cylinder and the upper crankcase are joined together as one. The iron used for this block is the gray cast iron having a pearlite-microstructure. The iron is called gray cast iron because its fracture has a gray appearance. Ferrite in the microstructure of the bore wall should be avoided because too much soft ferrite tends to cause scratching, thus increasing blow-by. The production of cast iron blocks using a steel die is rear because its lifecycle is shortened as a result of the repeated heat cycles caused by the molten iron. Sand casting is the method widely used in the production of cast iron blocks. This involves making the mould for the cast iron block with sand. The preparation of sand and the bonding are a critical and very often rate-controlling step. Permanent patterns are used to make sand molds. Usually, an automated molding machine installs the patterns and prepares many molds in the same shape. Molten metal is poured immediately into the mold, giving this process very high productivity. After solidification, the mold is destroyed and the inner sand is shaken out of the block. The sand is then reusable. The bonding of sand is done using two main methods: (i) the green sand mold and (ii) the dry sand mold.
    [Show full text]
  • M/OD Hypervelocity Impacts and Protection Research in CAST
    2010 Beijing Orbital Debris Mitigation Workshop 18-19 October, 2010, Beihang University M/OD Hypervelocity Impacts and Protection Research in CAST Zizheng Gong PhD, Professor Leading Scientist of hypervelocity impact research Beijing Institute of Spacecraft Environment Engineering, China Academy of Space Technology(CAST), China China Academy of Space Technology(CAST) • Founded in February 20, 1968 ; • The first president: Chien Hsuch-Sen; • The largest space technology research center in China • The largest Spacecraft development, production base in China. • April 24, 1970 : Chinese first artificial Earth satellite – DFH-1; • October 2003: manned spacecraft – Shenzhou-5; • October 24, 2007: Chinese first lunar detector – Chang'E-1 ; • September 25, 2008: the first Extravehicular activity – Shenzhou-7. • October 1,2010,the second lunar detector Chang'E-2 • Beijing Institute of Spacecraft Environment Engineering • The Spacecraft Environment Engineering department of CAST. Outline §1 Space Debris Environment and Its Risks §2 Space Debris Modeling §3 Orbital Debris impact Risk Assessment in CAST §4 HVI Testing and M/OD Protection in CAST §5 Orbital Debris Mitigation in CAST 2010 Beijing Orbital Debris Mitigation Workshop 18-19 October, 2010, Beihang University § 1 Space Debris Environment and Its Risks Orbital debris : Humankind digs his own grave ! Space debris are all man made objects including fragments and elements thereof, in Earth orbit or re-entering the atmosphere, that are non functional. Obtial debris is the only man-made Space environment. The past 50 years of space exploration has unfortunately generated a lot of junk that threatens the reliability of spacecraft. The Space Debris Environment in 2010 More than 5000 satellite launches since 1957 till the end of October 2010; 245 on-orbit break-ups led to 12,500 objects in the US Space Surveillance catalog; catalog size threshold 10cm; mass on orbit 6,000 tons; catalog orbit distributions: - low Earth orbits 73%; - near-geostationary orbits 8%; - highly eccentric orbits 10%; - other orbits (incl.
    [Show full text]
  • SOLAS 2018 Consolidated Edition
    SOLAS 2018 Consolidated Edition CHAPTER I GENERAL PROVISIONS PART A-APPLICATION, DEFINITIONS, ETC. Regulation 1 Application* * Refer to MSC-MEPC.5/Circ.8 on Unified interpretation of the application of regulations governed by the building contract date, the keel laying date and the delivery date for the requirements of the SOLAS and MARPOL Conventions. (a) Unless expressly provided otherwise, the present Regulations apply only to ships engaged on international voyages. (b) The classes of ships to which each Chapter applies are more precisely defined, and the extent of the application is shown, in each Chapter. Regulation 2 Definitions For the purpose of the present regulations, unless expressly provided otherwise: (a) Regulations means the regulations contained in the annex to the present Convention. (b) Administration means the Government of the State whose flag the ship is entitled to fly. (c) Approved means approved by the Administration. (d) International voyage means a voyage from a country to which the present Convention applies to a port outside such country, or conversely. (e) A passenger is every person other than: 1 (i) the master and the members of the crew or other persons employed or engaged in any capacity on board a ship on the business of that ship and (ii) a child under one year of age. (f) A passenger ship is a ship which carries more than twelve passengers. (g) A cargo ship is any ship which is not a passenger ship. (h) A tanker is a cargo ship constructed or adapted for the carriage in bulk of liquid cargoes of an inflammable* nature.
    [Show full text]
  • Tool, Dies and Moulds Report
    TOOL, DIES AND MOULDS REPORT 1. WHAT IS TOOLING? The equipment required to convert raw material into a required shape is commonly referred to as tooling. The process of equipment manufacture that aids in the conversion of a raw material into a required shape is commonly referred to as tool, die and mould making. Materials converted include: • Metals • Aluminium • Polymers (Plastics) Tooling is found in almost all manufacturing industries including: • Automotive • Aerospace • Rail & Marine • Defense • Mining • Agro-processing • Mineral beneficiation • Leisure • Packaging (foodstuffs, consumer goods and electronics) The manufacturing industry is dependant on the availability of a good tool, die and mould making industry. Tools, dies and moulds directly contribute to: • Manufacturing output capacity, • Quality standard of a product produced, • Price competitiveness of the product produced, • Lifecycle cost of a product produced. 1 2. DEFINITION OF INDIVIDUAL AREAS OF TOOL, DIES AND MOULDS. I. WHAT IS A TOOL? A machine tool is a powered mechanical device, typically used to fabricate metal components of machines by machining, which is the selective removal of metal. The term machine tool is usually reserved for tools that used a power source other than human movement, but they can be powered by people if appropriately set up. Many historians of technology consider that the true machine tools were born when direct human involvement was removed from the shaping or stamping process of the different kinds of tools. Machine tools can be powered from a variety of sources. Human and animal power are options, as is energy captured through the use of waterwheels. However, machine tools really began to develop after the development of the steam engine, leading to the Industrial Revolution.
    [Show full text]
  • Diving Deep Sea
    DIVING DEEP SEA and the oceans to people. Visitors will experience the underwa- ter world close up and can discuss it right there on board,” says Salvador, who had previously worked in aerospace for six years. his submersible is a minor miracle that can reach the depths of the sea. It is a highly sensitive tool – a metal capsule, TOURISTS OF THE DEEP yet so ingeniously built that it can carry two people to the ocean The new submersible was pressure-tested on the open sea just bed, 11 kilometers down. The plant where it was serviced after a few days ago. It was a success. None of the interior fittings the successful Five Deeps Expedition is in San Cugat del Vallés have been put in yet. Metal, acrylic glass, and a massive, bolt- near Barcelona. Hector Salvador, general manager of the Span- ed-on porthole give clues to what it will eventually look like. ish branch of the American submersible manufacturer Triton Tourists will spend their leisure time travelling beneath the Submarines, is there when we arrive. He opens the door of the water in it at speeds of up to three knots (5.5 km/h). The loca- production facility and a loud roaring and hammering greets tion for building these submersibles is interesting: “When we us. Every step brings us closer to the beating heart of the plant started on Deep View back then, we looked for the best suppli- with its 15 workers. The latest Triton project is standing there on ers. Surprisingly, we found almost all of them right here around a pedestal: the body of Deep View 100/24.
    [Show full text]
  • An Optimization Study for Bridge Design of a Porthole Extrusion Die
    Advances in Science and Technology Received: 2019.10.18 Revised: 2019.11.15 Research Journal Accepted: 2019.11.30 Volume 13, Issue 4, December 2019, pages 270–275 Available online: 2019.12.21 https://doi.org/10.12913/22998624/111694 An Optimization Study for Bridge Design of a Porthole Extrusion Die Önder Ayer1*, Burcu Gizem Özmen2, İsmail Karakaya2 1 Trakya University, Muhendislik Fakultesi Makina Muhendisligi Bolumu, 22100, Edirne, Turkey 2 “eksenAL” Aluminum Extrusion Die Factory, Istanbul, Turkey * Corresponding author’s e-mail: [email protected] ABSTRACT In this study, a porthole die extrusion simulation was carried out for a box profile by using HyperXtrude Inspire Extrude Metal 2019 which is a FEM based software. Aluminum AA6063 material was the billet material, tempera- ture of the billet was 450 °C and ram speed was selected as 5 mm/sec. The die design was obtained according to the shape of the bridges of the porthole die. Finally, the design optimization was achieved by analyzing FEM results. It was obtained that the dies which have curved bridges offer optimum process conditions. Keywords: Porthole Die Extrusion, FEM, Aluminum 6063, stress distribution, die deflection. INTRODUCTION more often in the last decade. The goal of using FEM simulations is simulations is to predict the Aluminum is the second most plentiful me- temperature distribution, exit velocity of extruded tallic element and has great attention from many product, material flow and the tool deformation. field of industry because of its superior proper- Jie et al. [2] carried out FEM simulations and ties such as recyclability, corrosion resistance, experiments for porthole die to optimize mate- high specific strength and especially for its light rial flow.
    [Show full text]
  • CATALOGUE 2019 WHO WE ARE Contents
    Oceanic Systems CATALOGUE 2019 WHO WE ARE Contents * 1 INTRODUCING POSEIDON® Oceanic Systems (UK) Ltd design and manufacture world-class * 3 POSEIDON® WIRING DIAGRAM marine systems for control and monitoring vessels. Their product range includes fuel and water senders, level gauges, NMEA2000® * 5 POSEIDON® DISPLAYS cabling and connectors, dual and multiple engine displays and their newest launch, Poseidon. * 9 CCTV CAMERAS These NMEA2000® control and monitoring products provide a modular and flexible solution for users to incorporate their functions and capabilities in an economical, easy to install and * 11 MULTIPLE ENGINE DISPLAYS reliable form. The NMEA2000® system allows sensors and other devices to * 13 TANK MANAGEMENT share their information over a single network, with the flexibility to install additional devices as required. * 15 DECK GAUGES The products are designed and manufactured in the United Kingdom and are sold and supported worldwide. The products are * 17 SUBMERSIBLE HYDROSTATIC SENDERS proven to be rugged, robust, and very reliable. * 18 SIDE MOUNT HYDROSTATIC SENDERS * 19 ADAPTORS * 23 AC MONITORING * 24 DC MONITORING * 25 TEMPERATURE MONITORING * 27 PRESSURE MONITORING * 28 AIRFLOW MONITORING * 29 INPUT AND OUTPUT MODULES * 31 CABLES & CONNECTORS INTRODUCING POSEIDON® The most advanced Alarm, Main Features Poseidon is designed with ease of installation in mind. It requires Monitoring and Control minimum cabling to speed installation and reduce the weight and System yet. complexity of this system. Poseidon has a configurable, clean, and modern graphics library with the ability to upload images, view CCTV camera windows, customise floor plans and more. The wide array of Poseidon’s options unite style and function, constantly evolving to meet the user’s requirements.
    [Show full text]
  • Ssc-464 High Speed Aluminum Vessels Design Guide Ship
    NTIS # PB2012- SSC-464 HIGH SPEED ALUMINUM VESSELS DESIGN GUIDE This document has been approved For public release and sale; its Distribution is unlimited SHIP STRUCTURE COMMITTEE 2012 Ship Structure Committee RADM P.F. Zukunft RDML Thomas Eccles U. S. Coast Guard Assistant Commandant, Chief Engineer and Deputy Commander Assistant Commandant for Marine Safety, Security For Naval Systems Engineering (SEA05) and Stewardship Co-Chair, Ship Structure Committee Co-Chair, Ship Structure Committee Mr. H. Paul Cojeen Dr. Roger Basu Society of Naval Architects and Marine Engineers Senior Vice President American Bureau of Shipping Mr. Christopher McMahon Mr. Victor Santos Pedro Director, Office of Ship Construction Director Design, Equipment and Boating Safety, Maritime Administration Marine Safety, Transport Canada Mr. Kevin Baetsen Dr. Neil Pegg Director of Engineering Group Leader - Structural Mechanics Military Sealift Command Defence Research & Development Canada - Atlantic Mr. Jeffrey Lantz, Mr. Edward Godfrey Commercial Regulations and Standards for the Director, Structural Integrity and Performance Division Assistant Commandant for Marine Safety, Security and Stewardship Dr. John Pazik Mr. Jeffery Orner Director, Ship Systems and Engineering Research Deputy Assistant Commandant for Engineering and Division Logistics SHIP STRUCTURE SUB-COMMITTEE AMERICAN BUREAU OF SHIPPING (ABS) DEFENCE RESEARCH & DEVELOPMENT CANADA ATLANTIC Mr. Craig Bone Dr. David Stredulinsky Mr. Phil Rynn Mr. John Porter Mr. Tom Ingram MARITIME ADMINISTRATION (MARAD) MILITARY SEALIFT COMMAND (MSC) Mr. Chao Lin Mr. Michael W. Touma Mr. Richard Sonnenschein Mr. Jitesh Kerai NAVY/ONR / NAVSEA/ NSWCCD TRANSPORT CANADA Mr. David Qualley / Dr. Paul Hess Natasa Kozarski Mr. Erik Rasmussen / Dr. Roshdy Barsoum Luc Tremblay Mr. Nat Nappi, Jr. Mr.
    [Show full text]
  • TMS-MC-015 Revision 30 Page 2 of 104 01 April 2016 * REVISED ** ADDED ______
    Lockheed Martin Aeronautics Company Supplier Tooling Manual (Tool Manufacturing Specification - Material Control - 015) TMS-MC -015 Applicable to FORT WORTH – MARIETTA - PALMDALE Sites To the extent specified herein REVISION 30 CONTROLLED AND APPROVED BY: Lockheed Martin Aeronautics Company Supplier Quality Management May 2016 IMPORTANT NOTICE: A hard copy of this document may not be the document currently in effect. The current version is ALWAYS the version on the LOCKHEED MARTIN network. TMS-MC-015 Revision 30 Page 2 of 104 01 April 2016 * REVISED ** ADDED _____________________________________________________________________________ TABLE OF CONTENTS PART I. AIRCRAFT ITEMS AND TOOLING - SELLER REQUIREMENTS *1.0 SCOPE Page 5 *2.0 TOOLING DEFINITIONS Page 6 *3.0 INTERCHANGEABLE-REPLACEABLE (I/R) Page 10 4.0 “TO MATCH” HOLE PATTERNS AND OTHER I/R FEATURES Page 10 *5.0 CONTROL OF RECORDS FOR BUYER FURNISHED TOOLING Page 10 *6.0 REPORTING REQUIREMENTS Page 11 *7.0 CONTROL OF BUYER-FURNISHED TOOLS Page 12 8.0 TOOL QUALITY CODE CATEGORIES Page 13 9.0 TOOL PROTECTION AND STORAGE REQUIREMENTS Page 14 *10.0 SHIPPING AND RECEIVING INSTRUCTIONS Page 14 *11.0 TOOLING PERIODIC INSPECTION AND RE-VERIFICATION Page 16 (PI/V) *12.0 TOOLING PERIODIC INSPECTION AND RE-VERIFICATION Page 18 (PI/V) RECORDS 13.0 BUYER FURNISHED AND SELLER TO SELLER TRANSFER OF TOOLS Page 19 14.0 LOCKHEED MARTIN SUBCONTRACT SOURCE BOOKS Page 19 *15.0 BASIC PRINCIPLES FOR PRODUCTION USE OF TOOLING Page 19 PART II. MANUFACTURED SPECIAL TOOLING ONLY – SELLER REQUIREMENTS 1.0 GENERAL Page 20 *2.0 NON-RECURRING TOOL MANUFACTURING Page 20 3.0 SPECIAL TOOLING INSPECTION AND QUALITY REQUIREMENTS Page 21 *4.0 TOOL IDENTIFICATION AND SHIPPING REQUIREMENTS Page 23 5.0 PROCESS FOR TRANSFER OF TOOL DESIGNS FROM SELLER Page 24 TO BUYER 6.0 SEALING CRITICAL LOCATORS Page 24 *7.0 DUPLICATE TOOL MANUFACTURING Page 24 8.0 INTERCHANGEABLE- REPLACEABLE (I/R) DESIGN AND MANUFACTURING Page 24 9.0 NON (I/R) DESIGN AND MANUFACTURING Page 25 PART III.
    [Show full text]