Diving Deep Sea

Total Page:16

File Type:pdf, Size:1020Kb

Diving Deep Sea DIVING DEEP SEA and the oceans to people. Visitors will experience the underwa- ter world close up and can discuss it right there on board,” says Salvador, who had previously worked in aerospace for six years. his submersible is a minor miracle that can reach the depths of the sea. It is a highly sensitive tool – a metal capsule, TOURISTS OF THE DEEP yet so ingeniously built that it can carry two people to the ocean The new submersible was pressure-tested on the open sea just bed, 11 kilometers down. The plant where it was serviced after a few days ago. It was a success. None of the interior fittings the successful Five Deeps Expedition is in San Cugat del Vallés have been put in yet. Metal, acrylic glass, and a massive, bolt- near Barcelona. Hector Salvador, general manager of the Span- ed-on porthole give clues to what it will eventually look like. ish branch of the American submersible manufacturer Triton Tourists will spend their leisure time travelling beneath the Submarines, is there when we arrive. He opens the door of the water in it at speeds of up to three knots (5.5 km/h). The loca- production facility and a loud roaring and hammering greets tion for building these submersibles is interesting: “When we us. Every step brings us closer to the beating heart of the plant started on Deep View back then, we looked for the best suppli- with its 15 workers. The latest Triton project is standing there on ers. Surprisingly, we found almost all of them right here around a pedestal: the body of Deep View 100/24. This submersible will us.” Hector Salvador looks pleased about how quickly it all pro- soon be carrying 24 tourists and two crew members to depths gressed. He says it was partly thanks to suppliers like Dräger. of up to 100 meters. “We want to open people up to the oceans – Rafael Mur, the sales manager responsible for the project at STUBBSPHOTO: TAMARA 38 DRÄGER REVIEW 121 | 1 / 2020 SUCCESS DSV Limiting Factor re-emerges. Places unvisited by humans have become rare – except in the endless expanses of the deep sea JOURNEY INTO THE SPACE OF THE DEEP Jules Vernes’ book 20,000 Leagues Under the Sea, or the diving saucer Denise built by Jacques-Ives Cousteau and Jean Mollard – people have always been attracted to the bottom of the ocean. And lately, one such person has established an unusual record. TEXT MATTHIAS LAUERER Dräger, explains: “Our central theme, Technology for Life, real- diving depth in feet – almost 11 kilometers. The second refers ly comes into its own here. We’re part of a project that’s push- to the number of passengers. It is the first commercial sub- ing the limits of the known world – it’s almost like we’re help- mersible to have explored such depths. It is also certified for ing on the Apollo 11 mission.” an “unlimited” diving depth by DNV-GL, the world’s largest General manager Salvador wears a blue polo shirt brand- ship classification association by gross registered tonnage. A ed with another corporate venture. A small, white logo: The 5 glance at the specifications of TRITON 36000/2 shows that the Deeps – In Profundo Cognitio. That expedition took US inves- vessel was something completely new. Its titanium hull does tor and explorer Victor Vescovo to the deepest point in each of not have a single weld in it. The submarine can reach the deep- the five oceans – helped by Triton Submarines and EYOS Expe- est point of the ocean in a matter of hours. It weighs just 12.5 ditions. It all began with a call in summer 2015. Vescovo had metric tons and is powered by ten electric thrusters. The ener- the idea of exploring the depths of the world’s seas – the five gy needed for that is supplied by a new kind of lithium poly- deepest parts, to be precise. He had already climbed all the mer batteries. Even the smallest components were tested over eight-thousanders and gone to both poles. Now he was think- and over again for the five record dives, and some of the test- ing of building a two-man submersible at a cost, including sup- ing was done in two massive pressure chambers. One of these, port vessel, of 48.7 million US dollars. The idea became real- the Triton PC 550, is filled with water, its little sister, the PC 150, ity with the submersible DSV Limiting Factor, also known as with dielectric oil. General manager Salvador explains: “You TRITON 36000/2. The first number represents its maximum can use them to test components at any pressure you might DRÄGER REVIEW 121 | 1 / 2020 39 UNDER CONSTRUCTION Carrying 24 tourists and two crew members, the Deep View 100/24 is designed to dive to depths of up to 100 meters DEEP SEA: LESS EXPLORED THAN THE SURFACE OF THE MOON encounter when diving.” The tests can last days. Even elec- Failure could be catastrophic. That is why crews debrief after tronic components can be accurately examined hundreds of every dive. They ask themselves questions like: was the latest times under huge pressures. trial successful, and how did the components perform under- The depths of the ocean are less well explored than the sur- water? With them on board the Limiting Factor: a Dräger Oxy- face of the moon, which has already been examined by 12 peo- Line pressure reducer, whose task is to reduce a pressure of ple and numerous unmanned probes. Yet the ocean make up 200 atmospheres to four atmospheres at the outlet of the tanks, 70 percent of the Earth’s surface. Exploring the depths is made while an O flow meter controls the flow of this essential gas more difficult by the fact that it is always dark at the bottom into the cabin and adjusts it to match the crew’s consumption. and only around two degrees Celsius. Then there are enormous pressures of up to 1,100 bar. Anyone who wishes to explore this FIVE DIVES IN NINE MONTHS world has to be able to rely on their materials and instruments. When Victor Vescovo talks about the world beneath the waves, you immediately want to go there with him. “We hope this expe- dition will make history. I have always looked for physical and technical challenges. Now I want to explore the limits of ocean technology.” Biologists, geologists, and cartographers are cur- rently working their way through quantities of recorded data. The team collected samples of sediment and discovered new forms of life. For example, during the four-hour exploration of the seabed in the Mariana Trench, they saw eels with trans- parent heads, and grenadiers. The journey to the five deep- est points in the world’s oceans took the DSV Limiting Factor first to the Atlantic, at a depth of almost 8,400 meters. When Vescovo communicated with his colleagues on the mother ship, it took a good five seconds for the ultrasound signal to reach the modem at the surface. In the Southern Ocean, the submarine descended to around 7,400 meters. In April 2019 they succeeded in touching down on the bottom of the Indian Ocean (around 7,200 meters). The fourth dive took them to the deepest point in the Pacific – almost 11,000 meters below the water’s surface. Then, in August, the adventurer took on the Arctic Ocean – a walk in the park by comparison (5,550 meters). These dives FOCUS The tour of the Mariana Trench took at least 12 hours. No mean feat, glued earned him a place in history. Never before had one person vis- to monitors the whole time ited and reported on all these places in one go. REEVEPHOTOS: JOLLIFFE, PICTURE FIVEALLIANCE / MELCHOR SANGRO, DEEPS EXPEDITION (2) 40 DRÄGER REVIEW 121 | 1 / 2020 DIVING DEEP SEA DYNAMIC DUO The expeditions would not have happened without the supply ship. Using a crane, the crew help the mini-sub into the water from the 68-meter-long DSSV Pressure Drop DREAM OF HUMANKIND Diving to the depths of the sea has long been a dream of humankind. Achieving it first came within reach when Robertus Valturius (1472) designed a submersible vessel. The first actual submarine was built by Cornelius Zacobszoon Drebbel in 1623. It could dive to a maximum depth of 3.6 meters. The general assembly of Germany’s Shipbuilding Engineering Association praised the German Imperial Navy at the end of 1899, “because it had not yet succumbed to costly, time- consuming trials with submarines.” Five years later, however, marine engineer Gustav Berling was commissioned to build an undersea vessel, despite considering submarines “a great folly.” Krupp Germaniawerft in Kiel manu- FISH FOOD factured the “U 1,” which set off on its Bait helps lure some of the maiden voyage in 1906 (see also Dräger unusual creatures of the deep Review 120; page 26 ff.). sea towards the camera lens DRÄGER REVIEW 121 | 1 / 2020 41.
Recommended publications
  • Simulation Analysis of Porthole Die Extrusion Process and Die Structure Modifications for an Aluminum Profile with High Length–Width Ratio and Small Cavity
    materials Article Simulation Analysis of Porthole Die Extrusion Process and Die Structure Modifications for an Aluminum Profile with High Length–Width Ratio and Small Cavity Zhiwen Liu 1,2,* ID , Luoxing Li 2,*, Shikang Li 2, Jie Yi 2 and Guan Wang 2 1 School of Mechanical Engineering, University of South China, Hengyang 421001, China 2 State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China; [email protected] (S.L.); [email protected] (J.Y.); [email protected] (G.W.) * Correspondence: [email protected] (Z.L.); [email protected] (L.L.); Tel.: +86-734-857-8031 (Z.L.); +86-731-88-821-571 (L.L.) Received: 26 July 2018; Accepted: 20 August 2018; Published: 23 August 2018 Abstract: The design of a porthole die is one of the key technologies for producing aluminum profiles. For an aluminum profile with high length–width ratio and small cavity, it is difficult to control the metal flow through porthole die with the same velocity to ensure the die’s strength. In the present study, the porthole die extrusion process of aluminum profile with small cavity was simulated using HyperXtrude 13.0 software based on ALE formulation. The simulation results show for the traditional design scheme, the metal flow velocity in porthole die at every stage was severely not uniform. The standard deviation of the velocity (SDV) at the die exit was 19.63 mm/s. The maximum displacement in the small mandrel was 0.0925 mm. Then, aiming at achieving a uniform flow velocity and enough die strength, three kinds of die structure modifications for the porthole die were proposed.
    [Show full text]
  • January Cover.Indd
    Accessories 1:35 Scale SALE V3000S Masks For ICM kit. EUXT198 $16.95 $11.99 SALE L3H163 Masks For ICM kit. EUXT200 $16.95 $11.99 SALE Kfz.2 Radio Car Masks For ICM kit. KV-1 and KV-2 - Vol. 5 - Tool Boxes Early German E-50 Flakpanzer Rheinmetall Geraet sWS with 20mm Flakvierling Detail Set EUXT201 $9.95 $7.99 AB35194 $17.99 $16.19 58 5.5cm Gun Barrels For Trumpter EU36195 $32.95 $29.66 AB35L100 $21.99 $19.79 SALE Merkava Mk.3D Masks For Meng kit. KV-1 and KV-2 - Vol. 4 - Tool Boxes Late Defender 110 Hardtop Detail Set HobbyBoss EUXT202 $14.95 $10.99 AB35195 $17.99 $16.19 Soviet 76.2mm M1936 (F22) Divisional Gun EU36200 $32.95 $29.66 SALE L 4500 Büssing NAG Window Mask KV-1 Vol. 6 - Lubricant Tanks Trumpeter KV-1 Barrel For Bronco kit. GMC Bofors 40mm Detail Set For HobbyBoss For ICM kit. AB35196 $14.99 $14.99 AB35L104 $9.99 EU36208 $29.95 $26.96 EUXT206 $10.95 $7.99 German Heavy Tank PzKpfw(r) KV-2 Vol-1 German Stu.Pz.IV Brumbar 15cm STuH 43 Gun Boxer MRAV Detail Set For HobbyBoss kit. Jagdpanzer 38(t) Hetzer Wheel mask For Basic Set For Trumpeter kit - TR00367. Barrel For Dragon kit. EU36215 $32.95 $29.66 AB35L110 $9.99 Academy kit. AB35212 $25.99 $23.39 Churchill Mk.VI Detail Set For AFV Club kit. EUXT208 $12.95 SALE German Super Heavy Tank E-100 Vol.1 Soviet 152.4mm ML-20S for SU-152 SP Gun EU36233 $26.95 $24.26 Simca 5 Staff Car Mask For Tamiya kit.
    [Show full text]
  • Portland Daily Press: April 18, 1898
    PORTLAND DAILY PRESS. ESTABLISHED JUNE 23, 18B2-VOL.35. PORTLAND, MAINE, MONDAY MORNINg”" APRIL 18, 1898. PRICE THREE CENTS^^ ■ .. —i^——... MISCELLANEOUS._ _ MANILA PANIC STRIKEN. THE HOUSE MAY NOT YIELD. SITUATION GRAVE. London, April 18.— A special dispatch from Singa- pore says that the steamship Leo XIII from Manila, has (Special to the Press.) arrived there crowded with Spanish officials anti well to Washington D. c„ April 17.-The situation here do families, who are escaping from the rebel- foeai^ it is Spanish very critical so i’ar as tomorrow's ac- Makes lion which is spreading rapidly in the 110,1 01 ,lle Rouse | Thillipines. They is concerned. There is great report that Manila is panic strikcn. anger that a section of Republicans may vote with I*®mo<:r”ts £t)r Stomachs J"le concurrence in the Senate resolutions. Reed I he Republican | Speaker Confident It Will leaders understand this, and have been actively at work today forming the party lines to stand by ! Over. the Rouse resolution. The Senate INVOKED. resolution is con- DEUS EX MACHINA sidered most ♦ Through the unwise and fraught with troubles for the spurs LAST Stand First future. Ills stomach it builds HOPE. Action. that all Will Save thought of the New J The Only Thins Which Spain- by England con- ♦ the anew. will stand body from War. gressmen by the House resolutions ♦ The ards tomorrow, stomach is although some of the New cleansed and England senators, especially £ Eodgc, Frye and Chandler voted ♦ strengthened, London, April 18.—The Madrid corre- with the “war at once” T the of the Times telegraphing Sun- party in the Senate last night, ft was digestive spondent Autonomists Start for Conference t thought that the fluids are in- House resolutions were X day says: very radical when they passed, ♦ creased, appetite is made keen 4 “In official circles today there is an with but every one looks to them now as and Cubans.
    [Show full text]
  • Engine Block Materials and Its Production Processes
    ENGINE BLOCK MATERIALS AND ITS PRODUCTION PROCESSES 2.2 THE CAST IRON MONOLITHIC BLOCK The widespread use of cast iron monolithic block is as a result of its low cost and its formidability. This type of block normally comes as the integral type where the engine cylinder and the upper crankcase are joined together as one. The iron used for this block is the gray cast iron having a pearlite-microstructure. The iron is called gray cast iron because its fracture has a gray appearance. Ferrite in the microstructure of the bore wall should be avoided because too much soft ferrite tends to cause scratching, thus increasing blow-by. The production of cast iron blocks using a steel die is rear because its lifecycle is shortened as a result of the repeated heat cycles caused by the molten iron. Sand casting is the method widely used in the production of cast iron blocks. This involves making the mould for the cast iron block with sand. The preparation of sand and the bonding are a critical and very often rate-controlling step. Permanent patterns are used to make sand molds. Usually, an automated molding machine installs the patterns and prepares many molds in the same shape. Molten metal is poured immediately into the mold, giving this process very high productivity. After solidification, the mold is destroyed and the inner sand is shaken out of the block. The sand is then reusable. The bonding of sand is done using two main methods: (i) the green sand mold and (ii) the dry sand mold.
    [Show full text]
  • The Next Generation of Ocean Exploration. Kelly Walsh Repeats Father’S Historic Dive, 60 Years Later, on Father’S Day Weekend
    From father to son; the next generation of ocean exploration. Kelly Walsh repeats father’s historic dive, 60 years later, on Father’s Day weekend DSSV Pressure Drop. Challenger Deep, Mariana Trench 200miles SW of Guam. June 20th, 2020 – Kelly Walsh, 52, today completed a historic dive to approximately 10,925m in the Challenger Deep. The dive location was the Western Pool, the same area that was visited by Kelly’s father, Captain Don Walsh, USN (Ret), PhD, who was the pilot of the bathyscaph ‘Trieste’ during the first dive to the Challenger Deep in 1960. Mr. Walsh’s 12- hour dive, coordinated by EYOS Expeditions, was undertaken aboard the deep-sea vehicle Triton 36000/2 ‘Limiting Factor” piloted by the owner of the vehicle Victor Vescovo, a Dallas, Texas based businessman and explorer. The expedition to the Challenger Deep is a joint venture by Caladan Oceanic, Triton Submarines and EYOS Expeditions. Mr. Vescovo and his team made headlines last year by completing a circumnavigation of the globe that enabled Mr. Vescovo to become the first person to dive to the deepest point of each of the worlds five oceans. The dives by father and son connect a circle of exploration history that spans 60 years. “It was a hugely emotional journey for me,” said Kelly Walsh aboard DSSV Pressure Drop, the expedition’s mothership. “I have been immersed in the story of Dad’s dive since I was born-- people find it fascinating. It has taken 60 years but thanks to EYOS Expeditions and Victor Vescovo we have now taken this quantum leap forward in our ability to explore the deep ocean.
    [Show full text]
  • First in Situ Observation of Cephalopoda at Hadal Depths (Octopoda: Opisthoteuthidae: Grimpoteuthis Sp.)
    Marine Biology (2020) 167:82 https://doi.org/10.1007/s00227-020-03701-1 SHORT NOTE First in situ observation of Cephalopoda at hadal depths (Octopoda: Opisthoteuthidae: Grimpoteuthis sp.) Alan J. Jamieson1 · Michael Vecchione2 Received: 6 March 2020 / Accepted: 7 May 2020 / Published online: 26 May 2020 © The Author(s) 2020 Abstract The Cephalopoda are not typically considered characteristic of the benthic fauna at hadal depths (depths exceeding 6000 m), yet occasional open-net trawl samples have implied that they might be present to ~ 8000 m deep. Previous in situ photographic evidence has placed the deepest cephalopod at 5145 m. The discrepancies between the two have meant that the maximum depth for cephalopods has gone unresolved. In this study we report on unequivocal sightings, by HD video lander, of a cephalopod at hadal depths. The demersal cirrate octopod Grimpoteuthis sp. was observed at both 5760 and 6957 m in the Indian Ocean. These observations extend the known maximum depth range for cephalopods by 1812 m and increase the potential benthic habitat available to cephalopods from 75 to 99% of the global seafoor. Introduction which are known to attach their eggs to the seafoor, was found in the intestine of the snailfish Pseudoliparis The total bathymetric range of marine organisms is often (Careproctus) amblystomopsis from the same trench at difficult to resolve accurately because sampling effort 7210–7230 m (Birstein and Vinogradov 1955) which also becomes less frequent with increasing depth. One impor- indicated a hadal distribution (Akimushkin 1963). Finally, tant group with ambiguous records of maximum depth is the in 1975 a specimen of Grimpoteuthis sp.
    [Show full text]
  • REPRINT Hadal Manned Submersible
    REPRINT Hadal Manned Submersible Five Deeps Expedition Explores Deepest Point in Every Ocean By Dr. Alan J. Jamieson • John Ramsey • Patrick Lahey he very deepest parts of the world’s oceans are sel- Tdom explored. Four of our five oceans extend to depths exceeding 6,000 m, putting them beyond the reach of most commercially available technologies and certainly beyond all human-occupied vehicles currently in operation. Scientific interest in these ultradeep ecosystems has greatly increased over the last decade, but technological Deeps Expedition) Five (Credit: limitations have favored the use of simple static lander vehicles over remotely operated or human-occupied ex- ploratory vehicles. The Five Deeps Expedition (FDE) is changing all that. In 2015, Victor Vescovo, an American private-equity in- vestor and explorer and founder of Caladan Oceanic, approached Triton Submarines in Florida with a vision to design, engineer, build, test and support a full-ocean- depth-capable and independently accredited two-person manned submersible, which he intended to dive to the deepest point in each of the five oceans over the course of a year-long expedition. In a little over three years, this vision became reality. In December 2018, Vescovo performed his first solo dive in a two-person, full-ocean-depth submersible to 8,376 m in the Puerto Rico Trench, and the expedition is now more than halfway through its journey. The FDE is supported by an international team of scientists, engineers, filmmakers and operational crew (both ship and submersible). The DSV Limiting Factor (Triton 36,000/2) being By the end of 2019, the Five Deeps Expedition, sup- deployed for testing in the Bahamas in 2018.
    [Show full text]
  • M/OD Hypervelocity Impacts and Protection Research in CAST
    2010 Beijing Orbital Debris Mitigation Workshop 18-19 October, 2010, Beihang University M/OD Hypervelocity Impacts and Protection Research in CAST Zizheng Gong PhD, Professor Leading Scientist of hypervelocity impact research Beijing Institute of Spacecraft Environment Engineering, China Academy of Space Technology(CAST), China China Academy of Space Technology(CAST) • Founded in February 20, 1968 ; • The first president: Chien Hsuch-Sen; • The largest space technology research center in China • The largest Spacecraft development, production base in China. • April 24, 1970 : Chinese first artificial Earth satellite – DFH-1; • October 2003: manned spacecraft – Shenzhou-5; • October 24, 2007: Chinese first lunar detector – Chang'E-1 ; • September 25, 2008: the first Extravehicular activity – Shenzhou-7. • October 1,2010,the second lunar detector Chang'E-2 • Beijing Institute of Spacecraft Environment Engineering • The Spacecraft Environment Engineering department of CAST. Outline §1 Space Debris Environment and Its Risks §2 Space Debris Modeling §3 Orbital Debris impact Risk Assessment in CAST §4 HVI Testing and M/OD Protection in CAST §5 Orbital Debris Mitigation in CAST 2010 Beijing Orbital Debris Mitigation Workshop 18-19 October, 2010, Beihang University § 1 Space Debris Environment and Its Risks Orbital debris : Humankind digs his own grave ! Space debris are all man made objects including fragments and elements thereof, in Earth orbit or re-entering the atmosphere, that are non functional. Obtial debris is the only man-made Space environment. The past 50 years of space exploration has unfortunately generated a lot of junk that threatens the reliability of spacecraft. The Space Debris Environment in 2010 More than 5000 satellite launches since 1957 till the end of October 2010; 245 on-orbit break-ups led to 12,500 objects in the US Space Surveillance catalog; catalog size threshold 10cm; mass on orbit 6,000 tons; catalog orbit distributions: - low Earth orbits 73%; - near-geostationary orbits 8%; - highly eccentric orbits 10%; - other orbits (incl.
    [Show full text]
  • SOLAS 2018 Consolidated Edition
    SOLAS 2018 Consolidated Edition CHAPTER I GENERAL PROVISIONS PART A-APPLICATION, DEFINITIONS, ETC. Regulation 1 Application* * Refer to MSC-MEPC.5/Circ.8 on Unified interpretation of the application of regulations governed by the building contract date, the keel laying date and the delivery date for the requirements of the SOLAS and MARPOL Conventions. (a) Unless expressly provided otherwise, the present Regulations apply only to ships engaged on international voyages. (b) The classes of ships to which each Chapter applies are more precisely defined, and the extent of the application is shown, in each Chapter. Regulation 2 Definitions For the purpose of the present regulations, unless expressly provided otherwise: (a) Regulations means the regulations contained in the annex to the present Convention. (b) Administration means the Government of the State whose flag the ship is entitled to fly. (c) Approved means approved by the Administration. (d) International voyage means a voyage from a country to which the present Convention applies to a port outside such country, or conversely. (e) A passenger is every person other than: 1 (i) the master and the members of the crew or other persons employed or engaged in any capacity on board a ship on the business of that ship and (ii) a child under one year of age. (f) A passenger ship is a ship which carries more than twelve passengers. (g) A cargo ship is any ship which is not a passenger ship. (h) A tanker is a cargo ship constructed or adapted for the carriage in bulk of liquid cargoes of an inflammable* nature.
    [Show full text]
  • In Depth July 2021
    MAPPING THE FLOOR OF OUR OCEANS Newsletter of The Nippon Foundation-GEBCO Seabed 2030 Project Click herfe EDITORIAL Increasing the momentum The UN Decade of Ocean Science for Sustainable Development has been off to an eventful start for Seabed 2030. In addition to being one of the first Actions officially endorsed as part of the Decade, Seabed 2030 has also signed a Memorandum of Arrangement with a Government – the first of its kind to date. Following the MOA, New Zealand’s Government officially joins us as a partner, but as a host of one of our Regional Centers, New Zealand has already provided steadfast support to Seabed 2030 from the outset. This adds to the significant support that we already receive from a number of Member States of both IHO and IOC, and we look forward to encouraging further partnerships across the world to drive forward our mission. Seabed 2030 has also been selected as one of 80 projects to be showcased at this year’s Paris Peace Forum. Since its creation, the Forum has supported and accompanied more than 300 projects that respond to the cross-border challenges of our time. I’d also like to congratulate the International Hydrographic Organization (IHO) on its 100th anniversary, which was celebrated on World Hydrography Day on 21 June. It was IHO which, with the Intergovernmental Oceanographic Commission of UNESCO (IOC), helped to inspire and develop the General Bathymetric Chart of the Oceans (GEBCO). GEBCO was formed in 1903 in Monaco as an initiative led by Prince Albert I to produce “a high-resolution digital map from the coast to the deepest trench of the ocean that enables scientists to explore and understand how the works” - this will also inform policy, and supply the management of natural maritime resources for a sustainable blue economy.
    [Show full text]
  • An Optimization Study for Bridge Design of a Porthole Extrusion Die
    Advances in Science and Technology Received: 2019.10.18 Revised: 2019.11.15 Research Journal Accepted: 2019.11.30 Volume 13, Issue 4, December 2019, pages 270–275 Available online: 2019.12.21 https://doi.org/10.12913/22998624/111694 An Optimization Study for Bridge Design of a Porthole Extrusion Die Önder Ayer1*, Burcu Gizem Özmen2, İsmail Karakaya2 1 Trakya University, Muhendislik Fakultesi Makina Muhendisligi Bolumu, 22100, Edirne, Turkey 2 “eksenAL” Aluminum Extrusion Die Factory, Istanbul, Turkey * Corresponding author’s e-mail: [email protected] ABSTRACT In this study, a porthole die extrusion simulation was carried out for a box profile by using HyperXtrude Inspire Extrude Metal 2019 which is a FEM based software. Aluminum AA6063 material was the billet material, tempera- ture of the billet was 450 °C and ram speed was selected as 5 mm/sec. The die design was obtained according to the shape of the bridges of the porthole die. Finally, the design optimization was achieved by analyzing FEM results. It was obtained that the dies which have curved bridges offer optimum process conditions. Keywords: Porthole Die Extrusion, FEM, Aluminum 6063, stress distribution, die deflection. INTRODUCTION more often in the last decade. The goal of using FEM simulations is simulations is to predict the Aluminum is the second most plentiful me- temperature distribution, exit velocity of extruded tallic element and has great attention from many product, material flow and the tool deformation. field of industry because of its superior proper- Jie et al. [2] carried out FEM simulations and ties such as recyclability, corrosion resistance, experiments for porthole die to optimize mate- high specific strength and especially for its light rial flow.
    [Show full text]
  • CATALOGUE 2019 WHO WE ARE Contents
    Oceanic Systems CATALOGUE 2019 WHO WE ARE Contents * 1 INTRODUCING POSEIDON® Oceanic Systems (UK) Ltd design and manufacture world-class * 3 POSEIDON® WIRING DIAGRAM marine systems for control and monitoring vessels. Their product range includes fuel and water senders, level gauges, NMEA2000® * 5 POSEIDON® DISPLAYS cabling and connectors, dual and multiple engine displays and their newest launch, Poseidon. * 9 CCTV CAMERAS These NMEA2000® control and monitoring products provide a modular and flexible solution for users to incorporate their functions and capabilities in an economical, easy to install and * 11 MULTIPLE ENGINE DISPLAYS reliable form. The NMEA2000® system allows sensors and other devices to * 13 TANK MANAGEMENT share their information over a single network, with the flexibility to install additional devices as required. * 15 DECK GAUGES The products are designed and manufactured in the United Kingdom and are sold and supported worldwide. The products are * 17 SUBMERSIBLE HYDROSTATIC SENDERS proven to be rugged, robust, and very reliable. * 18 SIDE MOUNT HYDROSTATIC SENDERS * 19 ADAPTORS * 23 AC MONITORING * 24 DC MONITORING * 25 TEMPERATURE MONITORING * 27 PRESSURE MONITORING * 28 AIRFLOW MONITORING * 29 INPUT AND OUTPUT MODULES * 31 CABLES & CONNECTORS INTRODUCING POSEIDON® The most advanced Alarm, Main Features Poseidon is designed with ease of installation in mind. It requires Monitoring and Control minimum cabling to speed installation and reduce the weight and System yet. complexity of this system. Poseidon has a configurable, clean, and modern graphics library with the ability to upload images, view CCTV camera windows, customise floor plans and more. The wide array of Poseidon’s options unite style and function, constantly evolving to meet the user’s requirements.
    [Show full text]