Comparative Mitogenomes of Two Coreamachilis Species (Microcoryphia: Machilidae) Along with Phylogenetic Analyses of Microcoryphia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insecta: Phasmatodea) and Their Phylogeny
insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y. -
The Complete Mitochondrial Genome of the Damsel Bug Alloeorhynchus
Int. J. Biol. Sci. 2012, 8 93 Ivyspring International Publisher International Journal of Biological Sciences 2012; 8(1):93-107 Research Paper The Complete Mitochondrial Genome of the Damsel Bug Alloeorhynchus bakeri (Hemiptera: Nabidae) Hu Li1,*, Haiyu Liu1,*, Liangming Cao2, Aimin Shi1, Hailin Yang1, Wanzhi Cai1 1. Department of Entomology, China Agricultural University, Beijing 100193, China 2. The Key Laboratory of Forest Protection of China State Forestry Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China * These authors contributed equally to this work. Corresponding author: Dr. Wanzhi Cai, Department of Entomology, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China. Phone: 86-10-62732885; Fax: 86-10-62732885; Email: [email protected] © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2011.09.17; Accepted: 2011.11.10; Published: 2011.11.24 Abstract The complete sequence of the mitochondrial DNA (mtDNA) of the damsel bug, Al- loeorhynchus bakeri, has been completed and annotated in this study. It represents the first sequenced mitochondrial genome of heteropteran family Nabidae. The circular genome is 15, 851 bp in length with an A+T content of 73.5%, contains the typical 37 genes that are arranged in the same order as that of the putative ancestor of hexapods. Nucleotide composition and codon usage are similar to other known heteropteran mitochondrial genomes. -
Is Ellipura Monophyletic? a Combined Analysis of Basal Hexapod
ARTICLE IN PRESS Organisms, Diversity & Evolution 4 (2004) 319–340 www.elsevier.de/ode Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects Gonzalo Giribeta,Ã, Gregory D.Edgecombe b, James M.Carpenter c, Cyrille A.D’Haese d, Ward C.Wheeler c aDepartment of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA bAustralian Museum, 6 College Street, Sydney, New South Wales 2010, Australia cDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA dFRE 2695 CNRS, De´partement Syste´matique et Evolution, Muse´um National d’Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France Received 27 February 2004; accepted 18 May 2004 Abstract Hexapoda includes 33 commonly recognized orders, most of them insects.Ongoing controversy concerns the grouping of Protura and Collembola as a taxon Ellipura, the monophyly of Diplura, a single or multiple origins of entognathy, and the monophyly or paraphyly of the silverfish (Lepidotrichidae and Zygentoma s.s.) with respect to other dicondylous insects.Here we analyze relationships among basal hexapod orders via a cladistic analysis of sequence data for five molecular markers and 189 morphological characters in a simultaneous analysis framework using myriapod and crustacean outgroups.Using a sensitivity analysis approach and testing for stability, the most congruent parameters resolve Tricholepidion as sister group to the remaining Dicondylia, whereas most suboptimal parameter sets group Tricholepidion with Zygentoma.Stable hypotheses include the monophyly of Diplura, and a sister group relationship between Diplura and Protura, contradicting the Ellipura hypothesis.Hexapod monophyly is contradicted by an alliance between Collembola, Crustacea and Ectognatha (i.e., exclusive of Diplura and Protura) in molecular and combined analyses. -
Sistemática Y Ecología De Las Hormigas Predadoras (Formicidae: Ponerinae) De La Argentina
UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área CIENCIAS BIOLÓGICAS PRISCILA ELENA HANISCH Directores de tesis: Dr. Andrew Suarez y Dr. Pablo L. Tubaro Consejero de estudios: Dr. Daniel Roccatagliata Lugar de trabajo: División de Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Buenos Aires, Marzo 2018 Fecha de defensa: 27 de Marzo de 2018 Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Resumen Las hormigas son uno de los grupos de insectos más abundantes en los ecosistemas terrestres, siendo sus actividades, muy importantes para el ecosistema. En esta tesis se estudiaron de forma integral la sistemática y ecología de una subfamilia de hormigas, las ponerinas. Esta subfamilia predomina en regiones tropicales y neotropicales, estando presente en Argentina desde el norte hasta la provincia de Buenos Aires. Se utilizó un enfoque integrador, combinando análisis genéticos con morfológicos para estudiar su diversidad, en combinación con estudios ecológicos y comportamentales para estudiar la dominancia, estructura de la comunidad y posición trófica de las Ponerinas. Los resultados sugieren que la diversidad es más alta de lo que se creía, tanto por que se encontraron nuevos registros durante la colecta de nuevo material, como porque nuestros análisis sugieren la presencia de especies crípticas. Adicionalmente, demostramos que en el PN Iguazú, dos ponerinas: Dinoponera australis y Pachycondyla striata son componentes dominantes en la comunidad de hormigas. Análisis de isótopos estables revelaron que la mayoría de las Ponerinas ocupan niveles tróficos altos, con excepción de algunas especies arborícolas del género Neoponera que dependerían de néctar u otros recursos vegetales. -
Insecta, Apterygota, Microcoryphia)
Miscel.lania Zoologica 20.1 (1997) 119 The antennal basiconic sensilla and taxonomy of Machilinus Silvestri, 1904 (Insecta, Apterygota, Microcoryphia) M. J. Notario-Muñoz, C. Bach de Roca, R. Molero-Baltanás & M. Gaju-Ricart Notario-Muñoz, M. J., Bach de Roca, C., Molero-Baltanás, R. & Gaju-Ricart, M., 1997. The antennal basiconic sensilla and taxonomy of Machilinus Silvestri, 1904 (Insecta, Apterygota, Microcoryphia). Misc. ZOO~.,20.1: 119-123. The antennal basiconic sensilla and taxonomy of Machilinus Silvestri, 1904 (Insecta, Apterygota, Microcoryphia).- Some special antennal sensilla ('rosettenformige' and basiconica) of five species of Mach~fihus(Mei nertellidae): M. casasecai, M. helicopalpus, M. kleinenbergi, M. rupestris gallicus and M. spinifrontis were studied. The distribution patterns of the sensilla are different for each examined species and identical in both sexes. The sensillogram thus provides a good taxonomic characteristic for their identification. Key words: Taxonomy, Antennal sensilla, Basiconic sensilla, Machilinus. (Rebut: 8 VI1 96; Acceptació condicional: 4 XI 96; Acc. definitiva: 17 XII 96) María José Notario-Muñoz, Rafael Molero-Baltanás & Miguel Gaju-Ricart, Depto. de Biología Animal (Zoología), Univ. Córdoba, 14005 Córdoba, España (Spain).- Carmen Bach de Roca, Depto. de Biología Animal, Vegetal y Ecología, Univ. Autónoma de Barcelona, Bellaterra 08193, Barcelona, España (Spain). l This work was supported by Fauna Ibérica III SEUI-DGICYT PB92-0121. O 1997 Museu de Zoologia Notario-Muñoz et al. lntroduction M. casasecai Bach, 1974, 8 88 y 2 99, Lérida (Spain) 28 V 86; M. spinifrontis Bach, The insects' antennae are provided with 1984, 4 88' y 5 99, Jaén (Spain) 11 VI1 82 specialized sensilla which function, rnainly, and 10 X 82. -
From Dryland and Inundation Forests of Central Amazonia
AMAZONIANA X 2 197 - 218 Kiel, Oktober 1987 From cooperation between Max-Planck-Institute for Limnology, Working group "Tropical Ecology", Plön, West Germany, and Instituto Nacional de Pesquisas da Amazônia, Manaus-Amazonas, Brazil Da cooperaçâo ent¡e Max-Planck-Institut für Limnologie, Arbeitsgruppe Tropenökologie, Plön, Alemanha Oc., e Instituto Nacional de Pesquisas da Amazônia, Manaus-Amazonas, Brasil On the naturâl history and ecology of Meinertellidae (Archaeognatha, I nsecta) from dryland and inundation forests of Central Amazonia by Joachim Adis & Helmut Sturm Dr. Joachim Adis, Max-Planck-Institute for Limnology, Tropical Ecology Working Group, Postfach 165, D -2320Hön, F.R.G. Prof. Dr. Helmut Sturm, Hochschule Hildesheim, Marienburger Platz22, D - 3200 Hildesheim, F.R.G. (accepted for publication: May 1987) Abstract The life-cycle and ecology of four nocturnal species of Meinertellidae aregiven and their adaptation from Amazonian dryland to inundation forests is discussed. In primary and secondary dryland forests, Neomachilellus scandens, N. amazonicus and Meínertellus adisi are arboricolous, show no defined reproduction period andjuveniles are found throughout the year. In inundation forests of the Rio Ncgro valley, which are annually flooded for 5 - 6 months,ly'. scandens, N. adísi and, M. adísi liave one generation per year. Annual inundation is considered as the main reason for the acquisition of a seasonal development. InN. scandens, juveniles hatch from previously submerged eggs on the forest floor at the beginning of the non-inundation period and reach maturity after 3 months. Adults propagate in.the litter, where females deposit their eggs which are subject to the next flooding. Both sexes sub- sequently rnigrate into the trunk/canopy area and perish. -
The Early Evolution of Biting–Chewing Performance in Hexapoda
Chapter 6 The Early Evolution of Biting–Chewing Performance in Hexapoda Alexander Blanke Abstract Insects show a plethora of different mandible shapes. It was advocated that these mandible shapes are mainly a function of different feeding habits. This hypothesis was tested on a larger sampling of non-holometabolan biting–chewing insects with additional tests to understand the interplay of mandible function, feeding guild, and phylogeny. The results show that at the studied systematic level, variation in mandible biting–chewing effectivity is regulated to a large extent by phylogenetic history and the configuration of the mandible joints rather than the food preference of a given taxon. Additionally, lineages with multiple mandibular joints such as primary wingless hexapods show a wider functional space occupation of mandibular effectivity than dicondylic insects (¼ silverfish + winged insects) at significantly different evolutionary rates. The evolution and occupation of a compa- rably narrow functional performance space of dicondylic insects is surprising given the low effectivity values of this food uptake solution. Possible reasons for this relative evolutionary “stasis” are discussed. 6.1 Introduction Insecta sensu lato (¼ Hexapoda) display a high diversity of mouthpart shapes within the early evolved lineages which started to radiate approximately 479 million years ago (Misof et al. 2014). These shape changes were described qualitatively and were often stated to relate mainly to the type of food consumed (Yuasa 1920; Isely 1944; Evans and Forsythe 1985; Chapman and de Boer 1995). To the knowledge of the author, this and related statements regarding mouthpart mechanics being shaped by functional demands have never been tested in a quantitative framework. -
An Overview of Systematics Studies Concerning the Insect Fauna of British Columbia
J ENTOMOL. Soc. B RIT. COLU MBIA 9 8. DECDmER 200 1 33 An overview of systematics studies concerning the insect fauna of British Columbia ROBERT A. CANNINGS ROYAL BRITISI-I COLUMBIA MUSEUM, 675 BELLEVILLE STREET, VICTORIA, BC, CANADA V8W 9W2 GEOFFREY G.E. SCUDDER DEPARTMENT OF ZOOLOGY, UNIVERSITY OF BRITISI-I COLUMBIA, VANCOUVER, BC, CANADA V6T IZ4 INTRODUCTION This summary of insect systematics pertaining to British Co lumbia is not intended as an hi storical account of entomologists and their work, but rath er is an overview of th e more important studies and publications dealing with the taxonomy, identifi cati on, distribution and faunistics of BC species. Some statistics on th e known size of various taxa are also give n. Many of the systematic references to th e province's insects ca nnot be presented in such a short summary as thi s and , as a res ult, the treatment is hi ghl y se lec tive. It deals large ly with publications appearing after 1950. We examine mainly terrestrial groups. Alth ough Geoff Scudder, Professor of Zoo logy at the University of Briti sh Co lumbi a, at Westwick Lake in the Cariboo, May 1970. Sc udder is a driving force in man y facets of in sect systemat ics in Briti sh Co lum bia and Canada. He is a world authority on th e Hemiptera. Photo: Rob Ca nnin gs. 34 J ENTOMOL. Soc BR IT. COLUMBIA 98, DECEMBER200 1 we mention the aquatic orders (those in which the larv ae live in water but the adults are aerial), they are more fully treated in the companion paper on aquatic in sects in thi s issue (Needham et al.) as are the major aquatic families of otherwise terrestrial orders (e.g. -
Arkansas Endemic Biota: an Update with Additions and Deletions H
Journal of the Arkansas Academy of Science Volume 62 Article 14 2008 Arkansas Endemic Biota: An Update with Additions and Deletions H. Robison Southern Arkansas University, [email protected] C. McAllister C. Carlton Louisiana State University G. Tucker FTN Associates, Ltd. Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Botany Commons Recommended Citation Robison, H.; McAllister, C.; Carlton, C.; and Tucker, G. (2008) "Arkansas Endemic Biota: An Update with Additions and Deletions," Journal of the Arkansas Academy of Science: Vol. 62 , Article 14. Available at: http://scholarworks.uark.edu/jaas/vol62/iss1/14 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 62 [2008], Art. 14 The Arkansas Endemic Biota: An Update with Additions and Deletions H. Robison1, C. McAllister2, C. Carlton3, and G. Tucker4 1Department of Biological Sciences, Southern Arkansas University, Magnolia, AR 71754-9354 2RapidWrite, 102 Brown Street, Hot Springs National Park, AR 71913 3Department of Entomology, Louisiana State University, Baton Rouge, LA 70803-1710 4FTN Associates, Ltd., 3 Innwood Circle, Suite 220, Little Rock, AR 72211 1Correspondence: [email protected] Abstract Pringle and Witsell (2005) described this new species of rose-gentian from Saline County glades. -
Description of a New Genus and a New Species of Machilidae (Insecta: Microcoryphia) from Turkey
85 (1) · April 2013 pp. 31–39 Description of a new genus and a new species of Machilidae (Insecta: Microcoryphia) from Turkey Carmen Bach de Roca1,*, Pietro-Paolo Fanciulli2, Francesco Cicconardi2, Rafael Molero- Baltanás3 and Miguel Gaju-Ricart3 1 Department of Animal and Vegetal Biology and Ecology, Autonomous University of Barcelona, 08193 Bellaterra (Barcelona), Spain 2 Dipartimento di Biologia Evolutiva, University of Siena, Via Aldo Moro, 2 - 53100 Siena, Italy 3 Department of Zoology, University of Córdoba, C-1 Campus Rabanales, 14014 Córdoba, Spain * Corresponding author, e-mail: [email protected] Received 20 March 2013 | Accepted 04 April 2013 Published online at www.soil-organisms.de 29 April 2013 | Printed version 30 April 2013 Abstract A new species and a new genus of Microcoryphia from Turkey are described. The new genus, named Turquimachilis has, as its most important distinctive feature, the presence in the male of unique parameres on the IXth urostemite, with proximal protuberances and chaetotaxy. They are different from all the other genera of the order. This alone is sufficient to allow the creation of a new genus. We add other anatomical characteristics that allow us to differentiate the new genus from the closest known genera. The type species is described. Keywords Turquimachilis mendesi | new genus | new species | Charimachilis | Turkey 1. Introduction 2. Material and methods Knowledge of Turkish Microcoryphia is scarce, We received the specimens from the Museum of because since Wygodzinsky (1959) no further work Natural History of Verona. They were collected in 1969 has been published referring to this country. The two (one sample) and 1972 (remaining samples), all of them known families of Microcoryphia are represented conserved in ethanol. -
Marine Insects
UC San Diego Scripps Institution of Oceanography Technical Report Title Marine Insects Permalink https://escholarship.org/uc/item/1pm1485b Author Cheng, Lanna Publication Date 1976 eScholarship.org Powered by the California Digital Library University of California Marine Insects Edited by LannaCheng Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92093, U.S.A. NORTH-HOLLANDPUBLISHINGCOMPANAY, AMSTERDAM- OXFORD AMERICANELSEVIERPUBLISHINGCOMPANY , NEWYORK © North-Holland Publishing Company - 1976 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the prior permission of the copyright owner. North-Holland ISBN: 0 7204 0581 5 American Elsevier ISBN: 0444 11213 8 PUBLISHERS: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY LTD. - OXFORD SOLEDISTRIBUTORSFORTHEU.S.A.ANDCANADA: AMERICAN ELSEVIER PUBLISHING COMPANY, INC . 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 Library of Congress Cataloging in Publication Data Main entry under title: Marine insects. Includes indexes. 1. Insects, Marine. I. Cheng, Lanna. QL463.M25 595.700902 76-17123 ISBN 0-444-11213-8 Preface In a book of this kind, it would be difficult to achieve a uniform treatment for each of the groups of insects discussed. The contents of each chapter generally reflect the special interests of the contributors. Some have presented a detailed taxonomic review of the families concerned; some have referred the readers to standard taxonomic works, in view of the breadth and complexity of the subject concerned, and have concentrated on ecological or physiological aspects; others have chosen to review insects of a specific set of habitats. -
Work Journal 2019
January Monday, January 1 I rose early this morning and worked on cleaning up my late 2018 work journal, working for an hour on this. Wednesday, January 3 We stopped by work this afternoon so that I could pick up my most recent SF50 and other documentation requisite for my unemployment application. I had received a box containing 199 Archaeognatha specimens in 88 vials. Monday, January 28 To do: Time sheet AKES meeting arrangements. Associate travel card with Concur account. Refuge Notebook catch-up Biology News entries, new literature to add to Bio publications bibliography page. Biota of Canada post to akentsoc.org Finish late 2018 work journal. Look over bristletails received. I worked on adding images and scripts to my 2018 work journal, trying to finalize it. John asked me to post the recent Refuge Notebook articles from December, so I formatted and posted these. I also made posts to Biology News. Tuesday, January 29 To do: AKES meeting arrangements. STDP Final Report to Liz Figure out AKES meeting topic and get going on presentation. Restart AWCC slurm job that was canceled on 26.Dec.2018. Take care of vehicle. New literature to add to Bio publications bibliography page and to our literature database. Biota of Canada post to akentsoc.org Finish late 2018 work journal. Arrange for return shipping of Betula specimens. Look over bristletails received. Debbie helped me make travel arrangements for Fairbanks, so this is a go. Now I need to figure out my talk since I was not able to work on the alpine defoliation project in January as I had intended.