The Principle of Counter-Directional Morphological Evolution and Its Significance for Construction the Megasystem of Protists and Other Eukaryotes

Total Page:16

File Type:pdf, Size:1020Kb

The Principle of Counter-Directional Morphological Evolution and Its Significance for Construction the Megasystem of Protists and Other Eukaryotes Protistology 2 (1), 6–14 (2001) Protistology April, 2001 The principle of counter-directional morphological evolution and its significance for construction the megasystem of protists and other eukaryotes Lev N. Seravin Biological Research Institute of St. Petersburg State University, St. Petersburg, Russia Summary Summing up, the following conclusions can be made. 1. Evolution of living systems follows the principle (law) of counter-directional morphological evolution, according to which both gradation and degradation of organisms can take place. 2. Combination of progressive and regressive changes in the structure of living creatures leads to the appearance of new taxa of any rank, including very high one (class, phylum, etc.). 3. In different groups of living organisms progressive and regressive morphological changes or their combination can result in the appearance of very similar but not identical taxa (e.g. sister taxa). The law of irreversibility of evolution should be substituted by a broader and more accurate law. It can be called the law of non-identity of similar structural transformations in different taxa of living organisms. Key words: morphological evolution, progressive and regressive evolution, Dollo’s law To construct a natural system of protists the role of Smith’s opinion, are always absent in the true Archezoa. not only progressive but also regressive morphological Thus only three phyla remained in this superkingdom: changes taking place in the process of those organisms’ Archamoeba, Metamonada and Microsporidia – unicellu- evolution should be taken into account. The validity of the lar eukaryotes which, in Cavalier-Smith’s opinion, are above statement can be conveniently demonstrated when initially devoid of mitochondria, chloroplasts, dictyosomes, considering changes upon the megasystem in the works of and any kind of microbodies. Yet soon, under the influ- Cavalier-Smith during the last 15 years. Proceeding from ence of convincing biochemical data, Cavalier-Smith a fairly widely spread point of view that the simpler the (1991, 1993) removes the Entamoebidae from the living organisms are the more originally primitive they Archezoa and includes them in the superkingdom Proto- should be, he united the macrotaxa including the flagel- zoa. lates and amoeboid organisms devoid of mitochondria into In the 90ies a series of studies on nucleotide sequences a single subkingdom Archezoa as a phylogenetically ini- and aminoacid sequences of heat shock proteins in a num- tial state for all the rest of the Protozoa kingdom ber of archezoan representatives appear, which showed (Cavalier-Smith, 1983). The investigator included four distinctly that the ancestors of those organisms had already phyla into this new taxon: Archamoeba (mastigamoebae, possessed mitochondria (Clark and Roger, 1995; Henze entamoebae, Pelomyxa palustris), Metamonada, et al., 1995; Bui et al., 1996). Cavalier-Smith (1996/1997) Microsporidia and Parabasalia (trichomonades, excludes the phylum Archamoeba from archezoans. He hypermastigines). Yet soon, Cavalier-Smith (1987, 1991, divides the Protozoa into two subkingdoms, Eozoa and 1993) drastically isolated Archezoa from all the other eu- Neozoa. He includes the Percolozoa, Euglenozoa and karyotes, elevating the rank of this taxon to that of kingdom Trichozoa phyla in the Eozoa, the Parabasalia being in- and even the superkingdom. At the same time he removed cluded as a subphylum into the Trichozoa. The subphylum the phylum Parabasalia from the Archezoa since its repre- Archamoeba (which also contains the class Entamoebae) sentatives possess hydrogenosomes – microbodies which appeared to be included in the phylum Lobosa, which was appear to be related to mitochondria. Besides, the distinguished from that of the Rhizopoda by this author. Parabasalia possess dictyosomes which, in Cavalier- Thus, after all this transformations, only two phyla, © 2001 by Russia, Protistology. Protistology · 7 Metamonada and Microsporidia remained in the gressive and regressive changes in the process of protists superkingdom and kingdom Archezoa. evolution would be considered. At the same time, this prob- Meanwhile some molecular biological studies have lem has long been under study on multicellular animals. been appearing in which it was shown that microsporidia Therefore let us turn to these studies. should be considered as related to higher fungi, simplified Acquaintance with the works of A.N.Severtsov (1912, owing to intracellular parasitism (Katiar et al., 1995; Keel- 1914, 1925, 1939), Schmalhausen (1969, 1983) and other ing and Doolittle, 1996). Therefore Cavalier-Smith (1998) authors who studied seriously the problem of the correla- removed the Microsporidia from the Archezoa. It would tion between progressive and regressive evolution did a seem that this taxon should be liquidated. Yet the investi- lot for my understanding of it but still does not give an- gator acted differently. He completely changed the whole swers to all the questions. One has to support the opinion Eukaryota megasystem, stopped dividing these organisms of those authors (e.g. Fetisenko, 1973 and Georgievsky, into superkingdoms and left only 5 kingdoms: Protozoa, 1985) who suggested that this problem is far from being Animalia, Fungi, Chromista and Plantae. All the former solved, mostly because the problem of regressive evolu- innovations were completely given up. The Protozoa king- tion is insufficiently worked out. Let us try to clarify the dom is now divided into two subkingdoms: Archezoa and reasons for such a situation and find some new approaches Neozoa. Cavalier-Smith abolished the Eozoa subkingdom to the analysis of the correlation between progressive and which he had established only half a year before (Cava- regressive changes in the process of the morphologic evo- lier-Smith, 1996/1997). To the archezoans, besides the lution of living systems. phylum Metamonada, the Trichozoa were also attributed. The complexity of the structural organization of dif- The Parabasalia, which some time before had been the ferent living creatures is so different that long before the first to be removed from the archezoans (Cavalier-Smith, appearance of the evolutionary idea there appeared a con- 1987, 1991), were placed as a subphylum into the ception of some “ladder of life” or “ladder of creatures” Trichozoa.. In the new system the Archamoeba were re- reflecting different levels of the organic world objects’ duced in rank to the non-taxonomical group “infraphylum” organization. For us this conception is usually associated in the new subphylum Conoza (within the phylum with the name the Swiss naturalist and philosopher Charles Amoebozoa). He transfers the Trichozoa phylum (together Bonnet (1720–1793). Lamarck (1809, 1935) showed in with the subphylum Parabasalia) from the Archezoa subk- his “Philosophy of Zoology” that only admission of the ingdom into the reestablished Eozoa kingdom existence of consistent plants and animal evolution allows (Cavalier-Smith, 1998). Therefore only the metamonades to the understand and explain rationally their gradation, remained within the archezoans. i.e. the existence of different levels of their organization Studies of the fine structure of Pelomyxa palustris (lat. gradatio – gradual elevation, gradus – step). (Goodkov and Seravin, 1991, 1995) have shown that this Charles Darwin, in chapter IV of his famous book “The protozoan possesses hydrogenosome-like microbodies and Origin of Species”, reports that when natural selection does dictyosomes. From the above it follows that P. palustris is not work organisms stay practically unchanged for a long not an archamoeba. The performed organellologic analy- time. Under the pressure of selection they evolve, compli- sis of those protozoa which Cavalier-Smith had then cating their organization. Yet the opposite process of the attributed to the Archezoa suggested that all the Archezoa simplification of the organism structure may take place. had sometime originated from ancestor forms which pos- He writes the following: “On the other hand, we can see, sessed mitochondria, i.e. the present protists devoid of these bearing in mind that all organic beings are striving to in- organelles had lost them secondary, having reverted to the crease at a high ratio and to size on every unoccupied or anaerobic or parasitical way of life. On the whole the analy- less well occupied place in the economy of nature, that it sis performed also showed that in the process of evolution is quite possible for nature selection gradually to fit a be- protozoans may lose mitochondria, chloroplasts, flagella, ing to a situation in which several organs would be dictyosomes, and all these organelles, taken together, in superfluous or useless: in such cases there would retro- this way approaching the proeukaryotes by their level of gression in the scale of organisation” (Darwin, 1872, p.98). organisation. Here it should be reminded that Margulis Following Ch.Darwin, I.I.Schmalhausen (1969) con- (1981), when P. palustris was hold to be devoid not only siders reverse evolution possible. I.I.Mechnikov in 1876 of mitochondria, but also of all the other main organelles (Mechnikov, 1950) calls regressive evolution reverse of the eukaryotic cell attributed this amoeboid organism movement in the development of organisms. It is true that to the forms evolutionary close to the proeukaryotes. Ch.Darwin (1898) repeatedly emphasized in his “Origin All the above testifies to the fact that regressive evo- of Species”
Recommended publications
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Universidad Autónoma Del Estado De Hidalgo Área Académica De Medicina Instituto De Ciencias De La Salud Maestría En Salud Pública
    UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO ÁREA ACADÉMICA DE MEDICINA INSTITUTO DE CIENCIAS DE LA SALUD MAESTRÍA EN SALUD PÚBLICA Incidencia de parasitosis y su genotipificación dependientes de factores socioambientales como determinantes de la salud en niños de Tlaxcoapan Hidalgo. Proyecto terminal de carácter profesional para obtener el grado de MAESTRA EN SALUD PÚBLICA Presenta: DIANA VERÓNICA SÁNCHEZ MARTÍNEZ Director: D. EN C.S.P. JESÚS CARLOS RUVALCABA LEDEZMA Comité Tutorial: Codirectora: D. en C. MARTHA PONCE MACOTELA Asesora: D. en C. MARÍA DEL CARMEN ALEJANDRA HERNÁNDEZ CERUELOS Asesora: D. en C. CLAUDIA CORONEL OLIVARES ____________________________________________________________ ______________ Pachuca de Soto, Hidalgo. México. Junio, 2018. Dedicatoria Dedico mi trabajo a mis padres y hermanas por estar siempre a mi lado, en cada uno de mis sueños alcanzados… Agradecimientos La vida se encuentra llena de retos y uno de ellos es la realización de un posgrado, sin embargo, en el cumplimiento de estos existen personas que nos motivan de manera incondicional, por lo que deseo agradecer de forma muy especial a mis padres Luis Sánchez López y Teodora Martínez Arellano por darme la vida y estar siempre a mi lado en cada uno de mis fracasos y de mis logros, por apoyarme en cada objetivo que me he propuesto, pues ellos han sido el motivo para superarme y cumplir cada una de mis metas. Del mismo modo a mis hermanas; Dalia Osmara y Lorena; a la pequeña Sophie, gracias por estar conmigo en los momentos más importantes de mi vida. A la Universidad Autónoma del Estado de Hidalgo, por brindar educación de calidad y por todas las facilidades para realizar la estancia nacional, gestión de documentos y asesoría administrativa.
    [Show full text]
  • Rastreio Parasitológico Em Aves Selvagens Ingressadas No Centro De Recuperação E Investigação De Animais Selvagens Da Ria Formosa
    UNIVERSIDADE DE LISBOA Faculdade de Medicina Veterinária RASTREIO PARASITOLÓGICO EM AVES SELVAGENS INGRESSADAS NO CENTRO DE RECUPERAÇÃO E INVESTIGAÇÃO DE ANIMAIS SELVAGENS DA RIA FORMOSA NINA VANESSA AFONSO ZACARIAS CONSTITUIÇÃO DO JÚRI: ORIENTADOR Doutor José Augusto Farraia e Silva Meireles Dr. Hugo Alexandre Romão de Castro Lopes Doutor Luís Manuel Madeira de Carvalho Doutor Jorge Manuel de Jesus Correia COORIENTADOR Doutor Luís Manuel Madeira de Carvalho 2017 LISBOA UNIVERSIDADE DE LISBOA Faculdade de Medicina Veterinária RASTREIO PARASITOLÓGICO EM AVES SELVAGENS INGRESSADAS NO CENTRO DE RECUPERAÇÃO E INVESTIGAÇÃO DE ANIMAIS SELVAGENS DA RIA FORMOSA NINA VANESSA AFONSO ZACARIAS DISSERTAÇÃO DE MESTRADO INTEGRADO EM MEDICINA VETERINÁRIA CONSTITUIÇÃO DO JÚRI: ORIENTADOR Doutor José Augusto Farraia e Silva Meireles Dr. Hugo Alexandre Romão de Castro Lopes Doutor Luís Manuel Madeira de Carvalho Doutor Jorge Manuel de Jesus Correia COORIENTADOR Doutor Luís Manuel Madeira de Carvalho 2017 LISBOA PERSEVERA, PER SEVERA, PER SE VERA. Agradecimentos Ao Orientador Dr. Hugo Alexandre Romão de Castro Lopes. Pela transmissão de conhecimentos e por me ter proporcionado um enriquecimento a nível profissional e pessoal. Ao Co-Orientador Professor Doutor Luís Madeira de Carvalho. Pela compreensão, pelo apoio, pela grande sabedoria e (bom) humor singular. Por ter sido essencial na conclusão do mestrado. À equipa do RIAS. Pela paciência com que me ajudaram na recolha de amostras e me transmitiram saberes. Em especial à Fábia Azevedo pelo espírito alegre, honesto e pelos bons momentos de convívio. À Drª. Lídia Gomes. Por se mostrar sempre disponível para receber, ensinar e ajudar. Ao Professor Telmo Nunes. Por me ter ajudado neste trabalho, com boa disposição.
    [Show full text]
  • Molecular Analysis of Samples Collected from Humans and Dogs in Jamaica, Giardia, Assemblage a Was the Only Genotype Found
    Genotypic diversity and distribution of Giardia – Central Europe versus the Caribbean Doctoral thesis at the Medical University of Vienna for obtaining the academic degree Doctor of Philosophy Submitted by Ms. Mellesia Lee Supervisor: Associate Professor Dr. Julia Walochnik, MSc, PhD Institute of Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna Kinderspitalgasse 15 A-1090 Vienna, Austria Vienna, March 2017 1 2 Table of Contents TABLE OF CONTENTS ........................................................................................................................... 3 I. DECLARATION ..................................................................................................................................... 7 II. LIST OF FIGURES ............................................................................................................................... 8 III. LIST OF TABLES ................................................................................................................................ 9 IV. SUMMARY ........................................................................................................................................ 10 V. ZUSAMMENFASSUNG ..................................................................................................................... 12 VI. PUBLICATIONS ARISING FROM THE DOCTORAL THESIS .......................................................... 14 VII. ABBREVIATIONS ...........................................................................................................................
    [Show full text]
  • Diplomova Prace Pavla Smejkalova
    Univerzita Karlova v Praze Přírodov ědecká fakulta Katedra parazitologie Evoluce skupiny Retortamonadida (Eukaryota: Excavata: Fornicata) Bc. Pavla Smejkalová Diplomová práce Praha 2010 Vedoucí diplomové práce: RNDr. Ivan Čepi čka, Ph.D. Konzultant: Prof. RNDr. Jaroslav Kulda, CSc. Prohlašuji, že jsem tuto práci vypracovala samostatn ě a uvedla citace všech použitých pramen ů. V Praze, 3. 5. 2010 Pavla Smejkalová 2 Na tomto místě bych cht ěla vyjád řit velké pod ěkování svému školiteli RNDr. Ivanu Čepi čkovi, Ph.D. za vedení b ěhem práce v laborato ři a za mnoho podn ětných p řipomínek při sepisování diplomové práce. D ěkuju Ivane, bez tvé pomoci bych tuto práci nikdy nedopsala. Také bych cht ěla pod ěkovat prof. RNDr. Jaroslavu Kuldovi, CSc. za poskytnuté výsledky ultrastrukturní studie a odborné rady. Děkuji všem lidem z našeho týmu za pomoc a za p říjemn ě strávený čas nejen v laborato ři, ale i mimo ni. V neposlední řad ě bych cht ěla poděkovat svým rodi čů m za podporu b ěhem studia. 3 1. ABSTRAKT .........................................................................................................................6 2. ABSTRAKT .........................................................................................................................7 3. CÍLE......................................................................................................................................8 4. LITERÁRNÍ P ŘEHLED ......................................................................................................9 4.1. Vývoj taxonomie
    [Show full text]
  • Protozoos Flagelados
    PROTOZOOS FLAGELADOS Los flagelados (Figuras 1 y 2) constituyen un grupo heterogéneo de protozoos, con propiedades morfológicas variables pero caracterizados por la presencia de uno o más flagelos que dotan de movilidad al organismo. Ultraestructuralmente presentan las cualidades típicas de las células eucariotas (Figura 2). La mayoría son uninucleados. Algunas estructuras son muy típicas de este grupo como la membrana ondulante (estructura membranosa que recorre y envuelve el cuerpo), la costa (engrosamiento que se observa en la base de la membrana ondulante), el axostilo (bastoncillo central de sostén), el pelta (orgánulo del que parte el axostilo), el capítulo (engrosamiento anterior del axostilo) o el cuerpo parabasal (orgánulo del que parte el flagelo). Algunos flagelados presentan un orgánulo, situado en la base de implantación del flagelo, formado a partir de mitocondrias modificadas denominado cinetoplasto que es importante en la clasificación. Figura 1: estructura celular de un protozoo flagelado Los flagelados sin cinetoplasto tienen un ciclo biológico simple con fases de quiste y trofozoito (Giardia intestinalis) o únicamente de trofozoito (Trichomonas vaginalis, Dientamoeba fragilis) y se reproducen asexualmente por fisión binaria longitudinal. Suelen tener varios flagelos. Entre los de interés en patología humana su hábitat es el tracto gastrointestinal (Giardia intestinales, Dientamoeba fragilis) o urogenital (Trichomonas vaginalis). Los flagelados con cinetoplasto – cinetoplástidos- poseen ciclos biológicos más complejos en los que participan huéspedes vertebrados e invertebrados (insectos hematófagos). A lo largo de este ciclo muestran grandes variaciones morfológicas: tripomastigote, promastigote, epimastigote y amastigote dependientes del género. También se reproducen asexualmente por fisión binaria. Presentan sólo un flagelo. En patología humana son importantes Trypanosoma spp.
    [Show full text]
  • Dissertation
    DISSERTATION A STUDY OF FACTORS ASSOCIATED WITH GIARDIA AND CRYPTOSPORIDIUM INFECTIONS IN HUMANS, DOGS AND CATS IN THE USA Submitted by Hanaa Thigeel Department of Clinical Sciences In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Fall 2016 Doctoral Committee: Advisor: Michael Lappin Co-Advisor: Francisco Olea-Popelka David Twedt Doreene Hyatt Copyright by Hanaa Thigeel 2016 All Rights Reserved ABSTRACT A STUDY OF FACTORS ASSOCIATED WITH GIARDIA AND CRYPTOSPORIDIUM INFECTIONS IN HUMANS, DOGS AND CATS IN THE USA Giardia spp. and Cryptosporidium spp. are two of the leading causal agents of parasitic diarrhea in humans, dogs and cats. The two pathogens contain both host-adapted and zoonotic strains and dogs and cats can harbor both strains. There is critical need to understand factors potentially associated with the risk and prevalence of infection due to Giardia spp. and Cryptosporidium spp. in dogs, cats and humans. This will ultimately aid in disease management and control. Furthermore, molecular characterization of the human, dog or cat isolates may identify zoonotic genotypes and may provide further information concerning the transmission routes between humans, dogs and cats. In Chapter 1, a review of literature regarding Giardia duodenalis and Cryptosporidium spp. in humans and companion animals (dogs and cats) was conducted. The review involves a brief description of the two pathogens’ current taxonomy, epidemiology, and diagnostic methods. Chapter 2 presents a retrospective study designed to analyze results from dog and cat polymerase chain reaction (PCR) panels from the commercial laboratory, ANTECH Diagnostics. The main purpose of this study was to evaluate associations between the probability of testing positive to Giardia spp.
    [Show full text]
  • “Júlio De Mesquita Filho” Faculdade De Medicina
    RESSALVA Atendendo solicitação do(a) autor(a), o texto completo desta tese será disponibilizado somente a partir de 28/08/2021. UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” FACULDADE DE MEDICINA Ana Paula Oliveira Arbex Infecção por Giardia duodenalis e diversidade da microbiota intestinal em crianças de 0 a 6 anos de idade Tese apresentada à Faculdade de Medicina, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de Botucatu, para obtenção do título de Doutora em Doenças Tropicais. Orientadora: Profa. Dra. Semíramis Guimarães Ferraz Viana Coorientadora: Profa. Dra. Érica Boarato David Botucatu 2019 Ana Paula Oliveira Arbex Infecção por Giardia duodenalis e diversidade da microbiota intestinal em crianças de 0 a 6 anos de idade Tese apresentada à Faculdade de Medicina, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Câmpus de Botucatu, para obtenção do título de Doutora em Doenças Tropicais Orientadora: Profa. Dra. Semíramis Guimarães Ferraz Viana Coorientadora: Profa. Dra. Érica Boarato David Botucatu 2019 FICHA CATALOGRÁFICA ELABORADA PELA SEÇÃO TÉC. AQUIS. TRATAMENTO DA INFORM. DIVISÃO TÉCNICA DE BIBLIOTECA E DOCUMENTAÇÃO - CÂMPUS DE BOTUCATU - UNESP BIBLIOTECÁRIA RESPONSÁVEL: LUCIANA PIZZANI-CRB 8/6772 Arbex, Ana Paula Oliveira. Infecção por Giardia duodenalis e diversidade da microbiota intestinal em crianças de 0 a 6 anos de idade / Ana Paula Oliveira Arbex. - Botucatu, 2019 Tese (doutorado) - Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Medicina de Botucatu Orientador: Semíramis Guimarães Ferraz Viana Coorientador: Érica Boarato David Capes: 40101096 1. Crianças. 2. Giardia. 3. Microbiota. Palavras-chave: Crianças; Diversidade bacteriana; Giardia duodenalis; Microbiota intestinal. Dedicatória Aos meus Pais: Paulo e Elisete, que, de maneira excepcional, me ensinaram sobre respeito, coragem, humildade, amor e dedicação.
    [Show full text]
  • Parasitológico Coproparasitológico
    PARASITOLÓGICO COPROPARASITOLÓGICO CBHPM 4.03.03.11-0 AMB 28.03.014-1 CBHPM 4.03.03.12-8 Sinonímia: EPF. Exame Parasitológico de Fezes. Coproparasitológico. Protoparasitológico. ProtoParasitológico de Fezes. PPF. Exame de fezes. Exame de fezes 3, 5 ou “N” amostras. Pesquisa de Ovos e Protozoários. POP. Exame Parasitológico. EP. Exame de fezes MIF 3, 5 ou “N” amostras. Fisiologia: TAXONOMIA GERAL DOS ENTEROPARASITAS. PROTOZOÁRIOS. Domínio Eukaryotae, Reino Protozoa. Balantidium coli (patogênico) Sub-reino Biciliata, Infra-reino Alveolata, Filo Ciliophora, Subfilo Intramacronucleata, Classe Litostomatea, Subclasse Trichostomatia, Ordem Vestibuliferida, Família Balantidiidae, Gênero Balantidium, Espécie coli. http://www.cdfound.to.it/HTML/bal1.htm Blastocystis hominis (patogênico?) Sub-reino Biciliata, Infra-reino Alveolata, Filo Myzozoa, Subfilo Apicomplexa, Classe Blastocystea, Gênero Blastocystis, Espécie hominis. http://www.cdfound.to.it/HTML/bla1.htm Chilomastix mesnili (patogênico) Sub-reino Biciliata, Infra-reino Excavata, Filo Metamonada, Subfilo Trichozoa, Superclasse Eopharyngia, Classe Retortamonadea, Ordem Retortamonadida, Família Retortamonadidae, Gênero Chilomastix, Espécie mesnili. http://www.cdfound.to.it/HTML/chi1.htm Cyclospora cayetanensis - Ver título próprio. Cryptosporidium parvum - Ver título próprio. Dientamoeba fragilis (patogênico) Sub-reino Biciliata, Infra-reino Excavata, Filo Metamonada, Subfilo Trichozoa, Superclasse Parabasalia, Classe Trichomonadea, Ordem Trichomonadida, Família Monocercomonadidae, Subfamília
    [Show full text]
  • Systema Naturae∗
    Systema Naturae∗ A. B. Shipunov 9.01.1998 v4.9 Regnum Monera Phylum 1. Gracilicutes 1 Classis 1(1). Chlamydia 2 2(2). Spirobacteria 3(3). Proteobacteria 3 4(4). Chlorobacteria 4 Phylum 2. Firmicutes Classis 1(5). Firmibacteria 5 2(6). Thallobacteria Phylum 3. Tenericutes Classis 1(7). Mycoplasmatae Phylum 4. Mendosicutes Classis 1(8). Methanobacteria 6 2(9). Thermobacteria ∗Правка 29.09.98 (Taxoidae, Ephedra), 22.12.98 (Myxozoa, Xenoturbellea, Polychaeta), 18.01.99 (Monera, Tardigrada) 06.02.99 (Oomycetes). 1Существует ряд групп неопределенного положения, не нашедших места в клас- сификации. 2Incl. Planktomyces. 3Rhodospirillales и многие группы хемосинтезирующих бактерий. 4Incl. Chlorobiaceae, Chlorophlexaceae, Heliobacteriaceae, Cyanobacteria, Prochlorales. 5Incl. Rickettsia. 6Incl. Thermoplasma, Halobacteria. 1 Regnum Protista Superphylum Microsporonta Phylum 5. Microsporidia Classis 1(10). Microsporea Superphylum Sarcomastigonta Phylum 6. Archezoa Classis 1(11). Archamoebae 7 2(12). Metamonadea 8 Phylum 7. Sarcomonada Classis 1(13). Multiciliatea? 9 2(14). Phytomyxea 10 3(15). Trichozoa 11 4(16). Sarcomonadea 12 5(17). Myxomycetea 6(18). Reticuloplastea 13 7(19). Foraminiferea 14 8(20). Xenophyophorea 15 9(21). Rhizopodea 16 10(22). Heliophlagellatea 17 11(23). Taxopodea? 18 7?Entamoeba, Mastigamoeba, Mastigina, Mastigella,?Pelomyxa,?Phreatamoeba. 8Diplomonadida, Oxymonadida, Hypermastigida. 9Multicilia. 10Phagodinium,?Nephromyces, Plasmodiophorida. 11Trichomonadida, Retortamonadida, Trimastix, Carpedieomonas. 12Jacobida (Jacoba,
    [Show full text]
  • Endosymbiotic Methanobrevibacter Species Living in Symbiotic Protists of the Termite Reticulitermes Speratus Detected by Fluorescent in Situ Hybridization
    Microbes Environ. Vol. 19, No. 2, 120–127, 2004 http://wwwsoc.nii.ac.jp/jsme2/ Endosymbiotic Methanobrevibacter species Living in Symbiotic Protists of the Termite Reticulitermes speratus Detected by Fluorescent In Situ Hybridization KURT HARA1, NAOYA SHINZATO2, TAIRO OSHIMA1 and AKIHIKO YAMAGISHI1* 1 Department of Molecular Biology, School of Life Science, Tokyo University of Pharmacy and Life Science, 1432–1 Horinouchi, Hachioji, Tokyo 192–0392, Japan 2 Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology (AIST), 1–1 Higashi, Tsukuba, Ibaraki 305–8566, Japan (Received November 12, 2003—Accepted February 18, 2004) Two species of cellulolytic protist, Dinenympha parva and Microjoenia, living in the guts of the lower termite Reticulitermes speratus are known to harbor endosymbiotic methanogens detectable with an epifluorescent mi- croscope. DNA isolated from the guts of worker termites in a colony of R. speratus was amplified using archaea- specific primers and cloned, and partial 16S rRNA gene sequences were obtained. Archaeal PCR clones obtained from the guts of xylophagous insects in this and previous works formed four subgroups within the Methano- brevibacter branch of a phylogenetic tree; the sequences of the clones obtained in this report belonged to sub- groups, designated XSAT1A and XSAT1D. Using a probe specific to each of the subgroups, 50 and 10 endo- symbiotic Methanobrevibacter cells per protist respectively were detected with a probe specific to the subgroup XSAT1A by fluorescent in situ hybridization analysis in D. parva and Microjoenia. There was no observed hybridization to the endosymbiont with other subtype-specific probes including XSAT1D. Based on these results, endosymbionts in D.
    [Show full text]