Endosymbiotic Methanobrevibacter Species Living in Symbiotic Protists of the Termite Reticulitermes Speratus Detected by Fluorescent in Situ Hybridization

Total Page:16

File Type:pdf, Size:1020Kb

Endosymbiotic Methanobrevibacter Species Living in Symbiotic Protists of the Termite Reticulitermes Speratus Detected by Fluorescent in Situ Hybridization Microbes Environ. Vol. 19, No. 2, 120–127, 2004 http://wwwsoc.nii.ac.jp/jsme2/ Endosymbiotic Methanobrevibacter species Living in Symbiotic Protists of the Termite Reticulitermes speratus Detected by Fluorescent In Situ Hybridization KURT HARA1, NAOYA SHINZATO2, TAIRO OSHIMA1 and AKIHIKO YAMAGISHI1* 1 Department of Molecular Biology, School of Life Science, Tokyo University of Pharmacy and Life Science, 1432–1 Horinouchi, Hachioji, Tokyo 192–0392, Japan 2 Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology (AIST), 1–1 Higashi, Tsukuba, Ibaraki 305–8566, Japan (Received November 12, 2003—Accepted February 18, 2004) Two species of cellulolytic protist, Dinenympha parva and Microjoenia, living in the guts of the lower termite Reticulitermes speratus are known to harbor endosymbiotic methanogens detectable with an epifluorescent mi- croscope. DNA isolated from the guts of worker termites in a colony of R. speratus was amplified using archaea- specific primers and cloned, and partial 16S rRNA gene sequences were obtained. Archaeal PCR clones obtained from the guts of xylophagous insects in this and previous works formed four subgroups within the Methano- brevibacter branch of a phylogenetic tree; the sequences of the clones obtained in this report belonged to sub- groups, designated XSAT1A and XSAT1D. Using a probe specific to each of the subgroups, 50 and 10 endo- symbiotic Methanobrevibacter cells per protist respectively were detected with a probe specific to the subgroup XSAT1A by fluorescent in situ hybridization analysis in D. parva and Microjoenia. There was no observed hybridization to the endosymbiont with other subtype-specific probes including XSAT1D. Based on these results, endosymbionts in D. parva and Microjoenia sp. are proposed to belong to the Methanobrevibacter subgroup XSAT1A. Key words: endosymbiotic Methanobrevibacter, fluorescence in situ hybridization, Reticulitermes speratus, Dinenympha parva, Microjoenia sp. Termites digest cellulose efficiently using a highly duce methane from H2 and CO2. The free-living archaea evolved symbiotic microbial system3) and are claimed to be Methanobrevibacter curvatus, M. cuticularis, and M. one of the most significant methane gas producers on filiformis are the only methanogens to be isolated from Earth14). Termites are divided into 2 groups: lower and high- lower termites10,11). Some protist-associated methanogens er termites. Protists in the guts of lower termites take up and have been identified in the gut of the lower termite by 12,21) digest cellulose, and produce acetate, fatty acids, H2, and microscopic observation . CO2. The complex symbiotic microflora consists of metha- Previously, we investigated archaeal communities using nogens, acetogens, and fermentative bacteria in the gut of PCR of the 16S rRNA gene prepared from whole gut lower termites9). On the other hand, higher termites rely on samples of various termite species18,19) and xylophagous their own cellulase for the digestion of cellulose and no cockroaches6). We identified several clones of methanogens symbiotic protists have been reported. Symbiotic metha- in these xylophagous insects and found that these clones nogens exist in both lower and higher termites, and pro- formed three groups in the phylogenetic tree of methano- gens. These clone groups were named XSAT (Xylophagous 6) * Corresponding author; E-mail: [email protected], Tel: insect Symbiotic Archaeal Type) 1, 2, and 3 . 81–426–76–7139, Fax: 81–426–76–7145 The clones in the XSAT1 group belong to the genus Endosymbiotic Methanogen in Protists 121 Methanobrevibacter and are the most common among ra et al.21) have found that 16S rRNA gene clones from methanogens in the lower termite species18,19). Clones be- Microjoenia sp. belong to the XSAT1A subgroup and the longing to the group XSAT1 are further separated into sub- clones from Dinenympha parva belong to the XSAT1A and groups XSAT1A, 1B, 1C, and 1D (Fig. 1). Frohlich et al. 1D subgroups which are the symbiotic protists of a lower and Tokura et al. have amplified, cloned and sequenced termite, Reticulitermes speratus. However, clones in groups DNA of methanogens associated with gut walls and single XSAT1A and 1D were also recovered from the gut wall of cells of protists isolated with a micromanipulator5,21). Toku- R. speratus. Accordingly, endosymbionts in these protists Fig. 1. Phylogenetic tree of 16S rRNA sequences of isolated species and PCR clones in the genus Methanobrevibacter. The clones obtained in this study are shown in red letters. Protist-associated PCR clones from R. speratus21), termite gut wall-attached symbiotic PCR clones from R. speratus21) and clones isolated from other lower termites10,11) are shown in dark blue, light blue, and green letters, respectively. The tree was produced by the neighbor-joining method with Thermococcus celer as an outgroup. The scale bar represents 0.1 substitutions per nucleotide position. Genbank, DDBJ and RDP accession numbers are indicated in the parentheses. 122 HARA et al. are likely to belong to one or two of the Methanobrevi- bacter subgroups. However, protists isolated using a micro- Phylogenetic analysis manipulator may contain ambient free-living microbial Sequence data were aligned with the other archaeal se- cells, so that the endosymbiotic methanogens in two species quences using the CLUSTAL X program20). A phylogenetic of protist, D. parva and Microjoenia, remain unclear. In this tree was constructed by the neighbor-joining distance ma- study, we have investigated the endosymbiotic methano- trix method17) using PHILIP version 3.573 (J. Felsenstein, gens in the protists living in the hindgut of R. speratus by the University of Washington). Bootstrap values were fluorescent in situ hybridization using probes specific to estimated by calculating after 1000 resamplings. The maxi- each of these subgroups. mum likelihood method was also used to confirm the tree topology. Materials and Methods Oligonucleotide probes Sample To design subgroup-specific probes, representative se- One colony of R. speratus wood-feeding termites quences of respective subgroups were aligned with the (RS1400) was collected from wood in Hachioji, Tokyo, sequences of the genus Methanobrevibacter. All probes Japan. They were maintained with wood flakes in plastic were designed targeting the same region, 1001–1019 in the containers at room temperature, until use. Worker termites E. coli 16S rRNA gene (see Results and Table 1). Four Cy3- were rinsed with 70% ethanol to reduce contamination from labeled probes specific to each of the subgroups XSAT1A, bacteria adhering to the surface. The guts were pulled out B, C, and D were synthesized by Amersham Bioscience using sterilized forceps, and the symbiotic microbes were (Tokyo Japan). suspended in a 0.4% NaCl solution. In situ hybridization DNA extraction and PCR amplification Termite gut samples were fixed with 4% paraformalde- DNA extraction and PCR amplification were performed hyde in PBS (137 mM NaCl, 2.68 mM KCl, 8.1 mM 6,18,19) as reported previously . In brief, total DNA was extract- Na2HPO4, 1.47 mM KH2PO4, pH 7.2) at 4LC for 16 h. ed from the whole gut of ten individual R. speratus workers Teflon-coated glass slides (Cel-Line/Erie Scientific, Ports- using a Fast DNA kit (BIO101, Calsbad, CA, USA) and a mouth, NH, USA) were coated with 0.1% gelatin, contain- bead beater Fast Prep system (BIO 101, USA), then purified ing 0.01% KCr (SO4)2. Samples were spotted and air dried, with a Qiagen Blood & Cell Culture DNA Mini kit (Qiagen and dehydrated in a graded ethanol series (50, 80, 100%) for Inc., Hilden, Germany). Symbiotic archaeal 16S rRNA 3 min each, then digested with 0.01 mg/ml of Proteinase K genes were amplified by PCR using a pair of archaea- (in 10 mM Tris/HCl, pH 7.5, 1 mM EDTA) at room temper- specific primers6,18,19), ARC856F (5’-TAAAGGAATTG- ature for 3 min, and dehydrated again in a graded ethanol GCGGGGGA-3’) and ARC1354R (5’-TGACGGGCGGT- series (50, 80, 100%) for 3 min each. Samples were hybrid- GTGTGCAAG-3’), with 40 cycles of the following thermal ized with 2 pmol of Cy3-labeled oligonucleotide probe in program: 94LC for 30 s, 60LC for 30 s, and 72LC for 90 s. 10 l of hybridization buffer (0.9 M NaCl, 5 mM EDTA, The amplified DNA fragments were separated by agarose 0.1% SDS, 0.05PPBS, 0.5 mg/ml Poly (A), 10PDenhardt’s) gel electrophoresis and recovered from the gel. The at 30LC for 16 h. Formamide was added at the final concen- fragments were cloned with a TOPO TA Cloning kit trations listed in Table 1. The slides were washed with 10 (Invitrogen, Carlsbad, CA, USA). ml of 6PSSC (0.9 M NaCl, 90 mM Na acetate, pH 7.0) at 35LC for 20 min. The slides were air dried and stained with Sequence analysis 10 l of 10 g/ml DAPI (4',6-diamidino-2-phenylindole) in The nucleotide sequences were determined with a Big distilled water at room temperature for 5 min, and observed Dye Terminator Cycle Sequence kit (Applied Biosystems with an Olympus BX60 microscope (Olympus, Tokyo Japan, Tokyo, Japan) using primers M13pM4 and M13pRV Japan) equipped with a BX-FLA epifluorescence system (Amersham Bioscience Corp., Piscataway, NJ, USA) on with the filter set U-MWU or U-MWIG for DAPI and Cy3 an ABI PRISM 3100 DNA Sequencer (Applied Biosys- fluorescence, respectively. Photographs were taken with tems Japan). The sequences were examined with the an Olympus PM-20 auto photograph system. CHECK CHIMERA program in the ribosomal database project to check for chimeric artifacts13). Endosymbiotic Methanogen in Protists 123 and MD105 amplified from the gut of the Australian Nucleotide sequence accession numbers termite Mastotermes darwiniensis19) were also included in The sequences obtained in this study (RS801 and RS802) the XSAT1D subgroup, although they may form another are available in DDBJ under accession numbers AB096062 subcluster within the subgroup. and AB096063, respectively.
Recommended publications
  • Methanobrevibacter Cuticularis Sp
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Oct. 1996, p. 3620–3631 Vol. 62, No. 10 0099-2240/96/$04.0010 Copyright q 1996, American Society for Microbiology Physiological Ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., Isolated from the Hindgut of the Termite Reticulitermes flavipes JARED R. LEADBETTER AND JOHN A. BREZNAK* Department of Microbiology and Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824-1101 Received 11 January 1996/Accepted 15 July 1996 Two morphologically distinct, H2- and CO2-utilizing methanogens were isolated from gut homogenates of the subterranean termite, Reticulitermes flavipes (Kollar) (Rhinotermitidae). Strain RFM-1 was a short straight rod (0.4 by 1.2 mm), whereas strain RFM-2 was a slightly curved rod (0.34 by 1.6 mm) that possessed polar fibers. Their morphology, gram-positive staining reaction, resistance to cell lysis by chemical agents, and narrow range of utilizable substrates were typical of species belonging to the family Methanobacteriaceae. Analysis of the nearly complete sequences of the small-subunit rRNA-encoding genes confirmed this affiliation and supported their recognition as new species of Methanobrevibacter: M. cuticularis (RFM-1) and M. curvatus (RFM-2). The per cell rates of methanogenesis by strains RFM-1 and RFM-2 in vitro, taken together with their in situ population densities (ca. 106 cells z gut21; equivalent to 109 cells z ml of gut fluid21), could fully account for the rate of methane emission by the live termites. UV epifluorescence and electron microscopy confirmed that RFM-1- and RFM-2-type cells were the dominant methanogens in R.
    [Show full text]
  • Description of Methanobrevibacter Gottschalkii Sp. Nov
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 819–822 DOI: 10.1099/ijs.0.02022-0 Description of Methanobrevibacter gottschalkii NOTE sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Wadsworth Center, New Terry L. Miller and Chuzhao Lin York State Department of Health, Albany, NY 12201-0509, USA Author for correspondence: Terry L. Miller. Tel: j1 518 474 0015. Fax: j1 518 474 8590. e-mail: terry.miller!wadsworth.org Formal nomenclature is proposed for five methanogens, isolated from horse, pig, cow, goose and sheep faeces, that represent four novel species of the genus Methanobrevibacter. The four species, Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov., are distinguished from each other by a lack of genomic DNA reassociation and from previously described members of the genus on the basis of differences in the sequences of the 16S rRNA genes. Keywords: Methanobrevibacter, faecal methanogens Six of the seven species of Methanobrevibacter were (Conway de Macario et al., 1987; Ko$ nig, 1986; Miller isolated from gastrointestinal ecosystems (Miller, et al., 1986). 2001). Methanobrevibacter ruminantium, the type spe- The coccobacilli isolated from animals are distingui- cies, was isolated from the bovine rumen. Methano- shed from M. arboriphilicus, M. cuticularis, M. curva- brevibacter smithii is the predominant CO -reducing # tus and M. filiformis on the basis of differences in methanogen isolated from the human colon (Miller et morphology and physiology (Table 1). However, the al., 1986; Lin & Miller, 1998). The type strain of M. coccobacilli species of the genus Methanobrevibacter smithii was originally isolated from a municipal sewage and the animal isolates are not easily distinguishable digestor and was probably present in human faeces on the basis of biochemical and physiological charac- entering the treatment facility.
    [Show full text]
  • Genomic and Transcriptomic Analyses of the Subterranean Termite
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.11.451559; this version posted July 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Genomic and transcriptomic analyses of the 2 subterranean termite Reticulitermes speratus: gene 3 duplication facilitates social evolution 4 5 Shuji Shigenobu*+1,2, Yoshinobu Hayashi+3, Dai Watanabe 4,5, Gaku Tokuda6, 6 Masaru Y Hojo6,19, Kouhei Toga5,7, Ryota Saiki5, Hajime Yaguchi5,8, Yudai 7 Masuoka5,9, Ryutaro Suzuki5,10, Shogo Suzuki5, Moe Kimura11, Masatoshi 8 Matsunami4,12, Yasuhiro Sugime4, Kohei Oguchi4,10,13, Teruyuki Niimi2,14, Hiroki 9 Gotoh15,20, Masaru K Hojo8, Satoshi Miyazaki16, Atsushi Toyoda17, Toru Miura*4,13, 10 Kiyoto Maekawa*18 11 12 1) NIBB Research Core Facilities, National Institute for Basic Biology, Okazaki, 13 444-8585 Japan 14 2) Department of Basic Biology, School of Life Science, The Graduate University for 15 Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444- 16 8585, Japan 17 3) Department of Biology, Keio University, Hiyoshi, Yokohama, 223-8521, Japan 18 4) Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 19 Hokkaido, 060-0810, Japan 20 5) Graduate School of Science and Engineering, University of Toyama, Toyama, 21 930-8555, Japan 22 6) Tropical Biosphere Research Center, COMB, University of the Ryukyus, 23 Nishihara, Okinawa 903-0213, Japan 24 7) Department of Biosciences, College of Humanities and Sciences,
    [Show full text]
  • Histone Variants in Archaea and the Evolution of Combinatorial Chromatin Complexity
    Histone variants in archaea and the evolution of combinatorial chromatin complexity Kathryn M. Stevensa,b, Jacob B. Swadlinga,b, Antoine Hochera,b, Corinna Bangc,d, Simonetta Gribaldoe, Ruth A. Schmitzc, and Tobias Warneckea,b,1 aMolecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom; bInstitute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom; cInstitute for General Microbiology, University of Kiel, 24118 Kiel, Germany; dInstitute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany; and eDepartment of Microbiology, Unit “Evolutionary Biology of the Microbial Cell,” Institut Pasteur, 75015 Paris, France Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved October 28, 2020 (received for review April 14, 2020) Nucleosomes in eukaryotes act as platforms for the dynamic inte- additional histone dimers can be taggedontothistetramertoyield gration of epigenetic information. Posttranslational modifications oligomers of increasing length that wrap correspondingly more DNA are reversibly added or removed and core histones exchanged for (3, 6–9). Almost all archaeal histones lack tails and PTMs have yet to paralogous variants, in concert with changing demands on tran- be reported. Many archaea do, however, encode multiple histone scription and genome accessibility. Histones are also common in paralogs (8, 10) that can flexibly homo- and heterodimerize in
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Susceptibility of Archaea to Antimicrobial Agents: Applications to Clinical Microbiology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW 10.1111/j.1469-0691.2012.03913.x Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology S. Khelaifia and M. Drancourt Unite´ de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236 IRD 3R198, Me´diterrane´e Infection, Faculte´ de Me´decine, Aix-marseille-Universite´, Marseille, France Abstract We herein review the state of knowledge regarding the in vitro and in vivo susceptibility of archaea to antimicrobial agents, including some new molecules. Indeed, some archaea colonizing the human microbiota have been implicated in diseases such as periodontopathy. Archaea are characterized by their broad-spectrum resistance to antimicrobial agents. In particular, their cell wall lacks peptidoglycan, making them resistant to antimicrobial agents interfering with peptidoglycan biosynthesis. Archaea are, however, susceptible to the pro- tein synthesis inhibitor fusidic acid and imidazole derivatives. Also, squalamine, an antimicrobial agent acting on the cell wall, proved effective against human methanogenic archaea. In vitro susceptibility data could be used to design protocols for the decontamination of complex microbiota and the selective isolation of archaea in anaerobic culture. Keywords: Antimicrobial agent, archaea, methanogenic archaea, microbiota, susceptibility testing Article published online: 23 May 2012 Clin Microbiol Infect 2012; 18: 841–848 Corresponding author: M. Drancourt, Unite´ des Rickettsies, Fa- culte´ de Me´decine, 27, Boulevard Jean Moulin-Cedex 5, France E-mail: [email protected] Methanogenic archaea (herein referred to as methano- Introduction gens) are the sole organisms producing methane from H2 +CO2 [6].
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Universidad Autónoma Del Estado De Hidalgo Área Académica De Medicina Instituto De Ciencias De La Salud Maestría En Salud Pública
    UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO ÁREA ACADÉMICA DE MEDICINA INSTITUTO DE CIENCIAS DE LA SALUD MAESTRÍA EN SALUD PÚBLICA Incidencia de parasitosis y su genotipificación dependientes de factores socioambientales como determinantes de la salud en niños de Tlaxcoapan Hidalgo. Proyecto terminal de carácter profesional para obtener el grado de MAESTRA EN SALUD PÚBLICA Presenta: DIANA VERÓNICA SÁNCHEZ MARTÍNEZ Director: D. EN C.S.P. JESÚS CARLOS RUVALCABA LEDEZMA Comité Tutorial: Codirectora: D. en C. MARTHA PONCE MACOTELA Asesora: D. en C. MARÍA DEL CARMEN ALEJANDRA HERNÁNDEZ CERUELOS Asesora: D. en C. CLAUDIA CORONEL OLIVARES ____________________________________________________________ ______________ Pachuca de Soto, Hidalgo. México. Junio, 2018. Dedicatoria Dedico mi trabajo a mis padres y hermanas por estar siempre a mi lado, en cada uno de mis sueños alcanzados… Agradecimientos La vida se encuentra llena de retos y uno de ellos es la realización de un posgrado, sin embargo, en el cumplimiento de estos existen personas que nos motivan de manera incondicional, por lo que deseo agradecer de forma muy especial a mis padres Luis Sánchez López y Teodora Martínez Arellano por darme la vida y estar siempre a mi lado en cada uno de mis fracasos y de mis logros, por apoyarme en cada objetivo que me he propuesto, pues ellos han sido el motivo para superarme y cumplir cada una de mis metas. Del mismo modo a mis hermanas; Dalia Osmara y Lorena; a la pequeña Sophie, gracias por estar conmigo en los momentos más importantes de mi vida. A la Universidad Autónoma del Estado de Hidalgo, por brindar educación de calidad y por todas las facilidades para realizar la estancia nacional, gestión de documentos y asesoría administrativa.
    [Show full text]
  • Evaluation of Methanobrevibacter Smithii As a Human-Specific Marker
    The University of Southern Mississippi The Aquila Digital Community Presentations Microbial Source Tracking 2005 Evaluation of Methanobrevibacter smithii as a Human-Specific aM rker of Fecal Pollution Jennifer A. Ufnar University of Southern Mississippi Shiao Y. Wang University of Southern Mississippi R.D. Ellender University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/mst_presentations Recommended Citation Ufnar, Jennifer A.; Wang, Shiao Y.; and Ellender, R.D., "Evaluation of Methanobrevibacter smithii as a Human-Specific aM rker of Fecal Pollution" (2005). Presentations. 5. https://aquila.usm.edu/mst_presentations/5 This Poster is brought to you for free and open access by the Microbial Source Tracking at The Aquila Digital Community. It has been accepted for inclusion in Presentations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. Evaluation of Methanobrevibacter smithii as a Human-Specific Q-311 For More Information Contact: Marker of Fecal Pollution Dr. R.D. Ellender University of Southern Mississippi Department of Biological Sciences Jennifer A. Ufnar, Shiao Y. Wang, and R.D. Ellender 118 College Drive #5018 Hattiesburg, MS 39406-0001 University of Southern Mississippi, Hattiesburg, MS 601-266-4720 or 601-266-4752(lab) Results Abstract Primers specific for the Methanobrevibacter genus (MET) amplified a product of 282bp. The Mnif primers amplified a 222bp product. The MET primers were Microbial source tracking has historically focused on the origin of traditional enteric indicators including coliforms, enterococci, or Escherichia coli. Recently, positive for all Methanobrevibacter species, and did not amplify a product in any other bacterial or methanogen genus.
    [Show full text]
  • Rastreio Parasitológico Em Aves Selvagens Ingressadas No Centro De Recuperação E Investigação De Animais Selvagens Da Ria Formosa
    UNIVERSIDADE DE LISBOA Faculdade de Medicina Veterinária RASTREIO PARASITOLÓGICO EM AVES SELVAGENS INGRESSADAS NO CENTRO DE RECUPERAÇÃO E INVESTIGAÇÃO DE ANIMAIS SELVAGENS DA RIA FORMOSA NINA VANESSA AFONSO ZACARIAS CONSTITUIÇÃO DO JÚRI: ORIENTADOR Doutor José Augusto Farraia e Silva Meireles Dr. Hugo Alexandre Romão de Castro Lopes Doutor Luís Manuel Madeira de Carvalho Doutor Jorge Manuel de Jesus Correia COORIENTADOR Doutor Luís Manuel Madeira de Carvalho 2017 LISBOA UNIVERSIDADE DE LISBOA Faculdade de Medicina Veterinária RASTREIO PARASITOLÓGICO EM AVES SELVAGENS INGRESSADAS NO CENTRO DE RECUPERAÇÃO E INVESTIGAÇÃO DE ANIMAIS SELVAGENS DA RIA FORMOSA NINA VANESSA AFONSO ZACARIAS DISSERTAÇÃO DE MESTRADO INTEGRADO EM MEDICINA VETERINÁRIA CONSTITUIÇÃO DO JÚRI: ORIENTADOR Doutor José Augusto Farraia e Silva Meireles Dr. Hugo Alexandre Romão de Castro Lopes Doutor Luís Manuel Madeira de Carvalho Doutor Jorge Manuel de Jesus Correia COORIENTADOR Doutor Luís Manuel Madeira de Carvalho 2017 LISBOA PERSEVERA, PER SEVERA, PER SE VERA. Agradecimentos Ao Orientador Dr. Hugo Alexandre Romão de Castro Lopes. Pela transmissão de conhecimentos e por me ter proporcionado um enriquecimento a nível profissional e pessoal. Ao Co-Orientador Professor Doutor Luís Madeira de Carvalho. Pela compreensão, pelo apoio, pela grande sabedoria e (bom) humor singular. Por ter sido essencial na conclusão do mestrado. À equipa do RIAS. Pela paciência com que me ajudaram na recolha de amostras e me transmitiram saberes. Em especial à Fábia Azevedo pelo espírito alegre, honesto e pelos bons momentos de convívio. À Drª. Lídia Gomes. Por se mostrar sempre disponível para receber, ensinar e ajudar. Ao Professor Telmo Nunes. Por me ter ajudado neste trabalho, com boa disposição.
    [Show full text]
  • Morphometric Analysis of Coptotermes Spp. Soldier Caste (Blattodea: Rhinotermitidae) in Indonesia and Evidence of Coptotermes Gestroi Extreme Head-Capsule Shapes
    insects Article Morphometric Analysis of Coptotermes spp. Soldier Caste (Blattodea: Rhinotermitidae) in Indonesia and Evidence of Coptotermes gestroi Extreme Head-Capsule Shapes Bramantyo Wikantyoso 1,2,*, Shu-Ping Tseng 3, Setiawan Khoirul Himmi 2 , Sulaeman Yusuf 2 and Tsuyoshi Yoshimura 1 1 Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; [email protected] 2 Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI) Jl. Raya Bogor km 46 Cibinong, Bogor 16911, Indonesia; [email protected] (S.K.H.); [email protected] (S.Y.) 3 Department of Entomology, University of California, 900 University Avenue, Riverside, CA 92521, USA; [email protected] * Correspondence: [email protected] Simple Summary: The morphological characteristics of the soldier caste in termites provide valuable taxonomic information at the species level. Head-shape variation in soldiers was often used as an indicative characteristic in some genera. While species with egg-shaped and waterdrop-shaped head capsule (HC), Coptotermes gestroi and C. curvignathus, respectively, are familiar in Indonesia, neither a measurement nor head index may avoid the subjectivity of shape interpretation. We conducted linear Citation: Wikantyoso, B.; Tseng, S.-P.; and geometric morphometrics analyses of soldiers’ HC of Coptotermes spp. obtained from various Himmi, S.K.; Yusuf, S.; Yoshimura, T. locations in Indonesia. Although subtle differences were observed, the posterior parts of the HC Morphometric Analysis of laterally expanded in a gradual manner in C. gestroi, C. sepangensis, and C. curvignathus in that order. Coptotermes spp. Soldier Caste Furthermore, three extreme head-shape variations of C.
    [Show full text]