Diplomova Prace Pavla Smejkalova

Total Page:16

File Type:pdf, Size:1020Kb

Diplomova Prace Pavla Smejkalova Univerzita Karlova v Praze Přírodov ědecká fakulta Katedra parazitologie Evoluce skupiny Retortamonadida (Eukaryota: Excavata: Fornicata) Bc. Pavla Smejkalová Diplomová práce Praha 2010 Vedoucí diplomové práce: RNDr. Ivan Čepi čka, Ph.D. Konzultant: Prof. RNDr. Jaroslav Kulda, CSc. Prohlašuji, že jsem tuto práci vypracovala samostatn ě a uvedla citace všech použitých pramen ů. V Praze, 3. 5. 2010 Pavla Smejkalová 2 Na tomto místě bych cht ěla vyjád řit velké pod ěkování svému školiteli RNDr. Ivanu Čepi čkovi, Ph.D. za vedení b ěhem práce v laborato ři a za mnoho podn ětných p řipomínek při sepisování diplomové práce. D ěkuju Ivane, bez tvé pomoci bych tuto práci nikdy nedopsala. Také bych cht ěla pod ěkovat prof. RNDr. Jaroslavu Kuldovi, CSc. za poskytnuté výsledky ultrastrukturní studie a odborné rady. Děkuji všem lidem z našeho týmu za pomoc a za p říjemn ě strávený čas nejen v laborato ři, ale i mimo ni. V neposlední řad ě bych cht ěla poděkovat svým rodi čů m za podporu b ěhem studia. 3 1. ABSTRAKT .........................................................................................................................6 2. ABSTRAKT .........................................................................................................................7 3. CÍLE......................................................................................................................................8 4. LITERÁRNÍ P ŘEHLED ......................................................................................................9 4.1. Vývoj taxonomie od skupiny Metamonadida k Fornicata........................................... 9 4.1.1. Metamonadida a p ůvodní Metamonada............................................................... 9 4.1.2. Teorie Archezoa................................................................................................. 10 4.1.3. Exkavátní hypotéza............................................................................................ 12 4.1.4. Moderní Metamonada........................................................................................ 14 4.1.5. Fornicata ............................................................................................................ 14 4.2. Fornicata z hlediska morfologie................................................................................. 18 4.2.1. Řád Retortamonadida......................................................................................... 18 4.2.2. Řád Diplomonadida ........................................................................................... 25 4.2.3. Bazální Fornicata ............................................................................................... 26 5. MATERIÁL A METODY..................................................................................................27 5.1. Kultivace a izolace nových izolát ů ............................................................................ 27 5.1.1. Složení a p říprava používaných médií............................................................... 27 5.1.2. Získávání nových izolát ů ................................................................................... 29 5.1.3. Kultivace retortamonád...................................................................................... 30 5.2. Příprava a zpracování trvalých preparát ů .................................................................. 31 5.2.1. Barvení protargolem podle Bodiana.................................................................. 31 5.2.2. Mikroskopické pozorování a zpracovávání preparát ů ....................................... 33 5.3. Izolace DNA .............................................................................................................. 33 5.4. Amplifikace DNA a sekvenace.................................................................................. 33 5.4.1. Amplifikace DNA pomocí specifických primer ů .............................................. 34 5.4.2. Elektroforéza amplifikované DNA.................................................................... 36 5.4.3. Přečišt ění PCR produktu.................................................................................... 37 5.4.4. Klonování........................................................................................................... 37 5.4.5. Colony PCR....................................................................................................... 38 5.4.6. Izolace plasmid ů ................................................................................................ 39 5.4.7. Sekvena ční reakce.............................................................................................. 39 5.5. Vyhodnocování sekvencí a fylogenetická analýza .................................................... 40 5.5.1. Tvorba a úprava alignmentu .............................................................................. 40 5.5.2. Tvorba fylogenetických strom ů ......................................................................... 41 6. VÝSLEDKY.......................................................................................................................42 6.1. Izoláty ........................................................................................................................ 42 6.1.1. Vyšet ření hostitelé ............................................................................................. 42 6.1.2. Kultury............................................................................................................... 43 6.2. Fylogenetická analýza................................................................................................ 44 6.3. Porovnání délek a hypervariabilních oblastí u blízce p říbuzných druh ů retortamonád ........ 47 6.4. Morfologie ................................................................................................................. 48 4 7. DISKUZE ...........................................................................................................................52 7.1. Získávání nových izolát ů a sekvence:........................................................................ 52 7.2. Molekulárn ě-fylogenetická analýza........................................................................... 54 7.3. Rod Retortamonas...................................................................................................... 55 7.4. Rod Chilomastix ........................................................................................................ 56 7.5. Řád Retortamonadida................................................................................................. 57 8. ZÁV ĚRE ČNÉ SHRNUTÍ ..................................................................................................59 9. SEZNAM POUŽITÉ LITERATURY ................................................................................60 10. SEZNAM ZKRATEK ........................................................................................................72 5 1. ABSTRAKT Řád Retortamonadida je malou skupinou heterotrofních bi číkovc ů, kte ří se d ělí do dvou rod ů (Chilomastix , Retortamonas ). Zástupci obou rod ů žijí zejména jako st řevní komenzálové obratlovc ů a bezobralých. V nedávné dob ě byl popsán také jeden voln ě žijící druh rodu Chilomastix . Poté, co molekulárn ě-fylogenetické studie prokázaly p říbuznost mezi řádem Retortamonadida, Diplomonadida a voln ě žijícím rodem Carpediemonas , byl vytvo řen taxon Fornicata. V sou časné dob ě tento taxon zahrnuje také voln ě žijící rody Dysnectes , Hicanonectes , Kipferlia a dva doposud nepopsané rody voln ě žijících bi číkovc ů. Řád Retortamonadida byl dlouhou dobu považován za monofyletický taxon. První molekulárn ě-fylogenetická studie, která zahrnovala sekven ční data obou rod ů, ale ukázala, že retortamonády vytvá ří parafyletický taxon, jehož vnit řní skupinou jsou diplomonády. I přesto retortamonády z ůstaly velmi málo prostudovaným taxonem a dodnes mnoho nevíme o příbuzenských vztazích uvnit ř řádu Retortamonadida. Hlavním cílem naší práce bylo získat co nejvíce nových sekven čních dat rodu Retortamonas i Chilomastix . Poda řilo se nám získat nové sekvence 14 kmen ů řádu Retortamonadida (4 kme- ny rodu Chilomastix , 10 kmen ů rodu Retortamonas ) a jednoho doposud nepopsaného rodu enteromonád. Rod Retortamonas vytvo řil v naší analýze, s vysokou statistickou podporou, sesterskou linii řádu Diplomonadida a rozpadl se na t ři samostatné skupiny A, B a C. Pozice rodu Chilomastix z ůstala nejasná, ale díky nov ě získaným sekvencím se v ětev rodu Chilomastix rozpadla na p ět samostatných linií. Naše studie odhalila u rodu Chilomastix obrovskou mezidruhovou i vnitrodruhovou variabilitu sekvencí genu pro SSU rRNA. Klí čová slova: Fornicata, fylogeneze, Chilomastix, Retortamonas , Retortamonadida, SSU rDNA 6 2. ABSTRAKT Retortamonads (Retortamonadida; genera Chilomastix and Retortamonas ) are a small group of protists comprising intestinal commensals of both vertebrates and invertebrates and one free-living species of the genus Chilomastix . Molecular phylogenetic studies showed that retortamonads are closely related to diplomonads, Carpediemonas , Dysnectes , Hicanonectes , Kipferlia and two undescribed lineages of free-living Carpediemonas -like organisms, together forming the monophyletic excavate group Fornicata. For a long time Retortamonadida have been assumed to be a monophyletic group. However, first molecular phylogenetic study including sequence data from both Retortamonas and
Recommended publications
  • Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
    PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • A Wide Diversity of Previously Undetected Freeliving
    Environmental Microbiology (2010) 12(10), 2700–2710 doi:10.1111/j.1462-2920.2010.02239.x A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitatsemi_2239 2700..2710 Martin Kolisko,1 Jeffrey D. Silberman,2 Kipferlia n. gen. The remaining isolates include rep- Ivan Cepicka,3 Naoji Yubuki,4† Kiyotaka Takishita,5 resentatives of three other lineages that likely repre- Akinori Yabuki,4 Brian S. Leander,6 Isao Inouye,4 sent additional undescribed genera (at least). Small- Yuji Inagaki,7 Andrew J. Roger8 and subunit ribosomal RNA gene phylogenies show that Alastair G. B. Simpson1* CLOs form a cloud of six major clades basal to the Departments of 1Biology and 8Biochemistry and diplomonad-retortamonad grouping (i.e. each of the Molecular Biology, Dalhousie University, Halifax, Nova six CLO clades is potentially as phylogenetically Scotia, Canada. distinct as diplomonads and retortamonads). CLOs 2Department of Biological Sciences, University of will be valuable for tracing the evolution of Arkansas, Fayetteville, AR, USA. diplomonad cellular features, for example, their 3Department of Zoology, Faculty of Science, Charles extremely reduced mitochondrial organelles. It is University in Prague, Prague, Czech Republic. striking that the majority of CLO diversity was unde- 4Institute of Biological Sciences, Graduate School of Life tected by previous light microscopy surveys and and Environmental Sciences and 7Center for environmental PCR studies, even though they inhabit Computational Sciences and Institute of Biological a commonly sampled environment. There is no Sciences, University of Tsukuba, Tsukuba, Ibaraki, reason to assume this is a unique situation – it is Japan. likely that undersampling at the level of major lin- 5Japan Agency for Marine-Earth Science and eages is still widespread for protists.
    [Show full text]
  • Announcements Protists - Outline Reading: Chap
    Announcements Protists - Outline Reading: Chap. 29 • Relevant reading BEFORE lab this week: Ch. 31 I. Introduction • Bring lab atlas AND textbook to lab. A. Diversity of life styles IV. Evolutionary history • Extra credit opportunity: B. Functional classifications A. Kingdom Protista? – Salmon Summit: Wed. 11/3/10, 8-4:45 pm II. Ecological importance B. How are they related St. Luke’s Community Health Education Center to each other? A. Algae C. How did they arise? Bellingham, WA (checking on registration) B. Protozoans D. How are they related III. Life cycles to plants? A. The three basic types B. Examples Diatom I.A. Diversity of life styles Size 1. Size 10 μm 2. Morphology 3. Motility Kelp 4. Energy sources 6 orders of magnitude! 60 m Filamentous (Golden algae) Morphology Gradient in complexity Unicellular (Euglena) Colonial (Pandorina) Multicellular (kelp) 1 Crawling (pseudopodia) Cell walls – protection & support Planktonic Amoeba Diatoms Cilia Flagella Motility Fastened Amoeba Paramecium Euglena Kelp No cell wall Energy source - photoautotrophs Variation in photosynthetic pigments Energy source - heterotrophs Ingestive feeders Absorptive feeders: decomp., parasites I.B. Functional classifications Particle feeder (Stentor) Protozoans - “animal like” Parasite Algae - “plant-like”, i.e., photosynthetic (Trypanosoma) - Eukaryotic photosynthetic organisms that are not plants Decomposer Mix - simple to bizarre (slime mold Don’t necessarily relate to taxonomic Physarum) (ingestive) relationships and evolutionary history Predator (Amoeba) 2 Cellular slime mold – unicellular or multicellular? Mixotroph example - Euglena Cells (n) aggregate when food is scarce Amoebae (n) Spores germinate Amoebae (n) germinate (n) from zygote from spores SEXUAL ASEXUAL REPRODUCTION REPRODUCTION Fruiting body Stalk Giant cell Migrating individual (2n) (slug) (n) Two cells (n) in aggregation fuse, then consume other cells Fig.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Cyanobacterial contribution to the genomes of the plastid-lacking protists Shinichiro Maruyama*1, Motomichi Matsuzaki1,2,3, Kazuharu Misawa1,3,3 and Hisayoshi Nozaki1 Address: 1Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan, 2Current address: Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113- 0033, Japan and 3Current address: Research Program for Computational Science, Riken, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan Email: Shinichiro Maruyama* - [email protected]; Motomichi Matsuzaki - [email protected]; Kazuharu Misawa - [email protected]; Hisayoshi Nozaki - [email protected] * Corresponding author Published: 11 August 2009 Received: 13 March 2009 Accepted: 11 August 2009 BMC Evolutionary Biology 2009, 9:197 doi:10.1186/1471-2148-9-197 This article is available from: http://www.biomedcentral.com/1471-2148/9/197 © 2009 Maruyama et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Eukaryotic genes with cyanobacterial ancestry in plastid-lacking protists have been regarded as important evolutionary markers implicating the presence of plastids in the early evolution of eukaryotes. Although recent genomic surveys demonstrated the presence of cyanobacterial and algal ancestry genes in the genomes of plastid-lacking protists, comparative analyses on the origin and distribution of those genes are still limited.
    [Show full text]
  • Universidad Autónoma Del Estado De Hidalgo Área Académica De Medicina Instituto De Ciencias De La Salud Maestría En Salud Pública
    UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO ÁREA ACADÉMICA DE MEDICINA INSTITUTO DE CIENCIAS DE LA SALUD MAESTRÍA EN SALUD PÚBLICA Incidencia de parasitosis y su genotipificación dependientes de factores socioambientales como determinantes de la salud en niños de Tlaxcoapan Hidalgo. Proyecto terminal de carácter profesional para obtener el grado de MAESTRA EN SALUD PÚBLICA Presenta: DIANA VERÓNICA SÁNCHEZ MARTÍNEZ Director: D. EN C.S.P. JESÚS CARLOS RUVALCABA LEDEZMA Comité Tutorial: Codirectora: D. en C. MARTHA PONCE MACOTELA Asesora: D. en C. MARÍA DEL CARMEN ALEJANDRA HERNÁNDEZ CERUELOS Asesora: D. en C. CLAUDIA CORONEL OLIVARES ____________________________________________________________ ______________ Pachuca de Soto, Hidalgo. México. Junio, 2018. Dedicatoria Dedico mi trabajo a mis padres y hermanas por estar siempre a mi lado, en cada uno de mis sueños alcanzados… Agradecimientos La vida se encuentra llena de retos y uno de ellos es la realización de un posgrado, sin embargo, en el cumplimiento de estos existen personas que nos motivan de manera incondicional, por lo que deseo agradecer de forma muy especial a mis padres Luis Sánchez López y Teodora Martínez Arellano por darme la vida y estar siempre a mi lado en cada uno de mis fracasos y de mis logros, por apoyarme en cada objetivo que me he propuesto, pues ellos han sido el motivo para superarme y cumplir cada una de mis metas. Del mismo modo a mis hermanas; Dalia Osmara y Lorena; a la pequeña Sophie, gracias por estar conmigo en los momentos más importantes de mi vida. A la Universidad Autónoma del Estado de Hidalgo, por brindar educación de calidad y por todas las facilidades para realizar la estancia nacional, gestión de documentos y asesoría administrativa.
    [Show full text]
  • What Substrate Cultures Can Reveal: Myxomycetes and Myxomycete-Like Organisms from the Sultanate of Oman
    Mycosphere 6 (3): 356–384(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/3/11 What substrate cultures can reveal: Myxomycetes and myxomycete-like organisms from the Sultanate of Oman Schnittler M1, Novozhilov YK2, Shadwick JDL3, Spiegel FW3, García-Carvajal E4, König P1 1Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University Greifswald, Soldmannstr. 15, D-17487 Greifswald, Germany 2V.L. Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov St. 2, 197376 St. Petersburg, Russia 3University of Arkansas, Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA 4Royal Botanic Garden (CSIC), Plaza de Murillo, 2, Madrid, E-28014, Spain Schnittler M, Novozhilov YK, Shadwick JDL, Spiegel FW, García-Carvajal E, König P 2015 – What substrate cultures can reveal: Myxomycetes and myxomycete-like organisms from the Sultanate of Oman. Mycosphere 6(3), 356–384, doi 10.5943/mycosphere/6/3/11 Abstract A total of 299 substrate samples collected throughout the Sultanate of Oman were analyzed for myxomycetes and myxomycete-like organisms (MMLO) with a combined approach, preparing one moist chamber culture and one agar culture for each sample. We recovered 8 forms of Myxobacteria, 2 sorocarpic amoebae (Acrasids), 19 known and 6 unknown taxa of protostelioid amoebae (Protostelids), and 50 species of Myxomycetes. Moist chambers and agar cultures completed each other. No method alone can detect the whole diversity of myxomycetes as the most species-rich group of MMLO. A significant overlap between the two methods was observed only for Myxobacteria and some myxomycetes with small sporocarps.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Mitochondrial DNA
    GBE Missing Genes, Multiple ORFs, and C-to-U Type RNA Editing in Acrasis kona (Heterolobosea, Excavata) Mitochondrial DNA Cheng-Jie Fu1,*, Sanea Sheikh1, Wei Miao2, Siv G.E. Andersson3, and Sandra L. Baldauf1,* 1Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden 2Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China 3Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden *Corresponding author: E-mail: [email protected], [email protected]; [email protected]. Accepted: August 18, 2014 Data deposition: The Acrasis kona mitochondrial genome sequence and annotation have been deposited at GenBank under the accession KJ679272. Downloaded from Abstract Discoba(Excavata)isanancientgroupof eukaryotes withgreatmorphological andecologicaldiversity.Unlikethe other major divisions http://gbe.oxfordjournals.org/ of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT- rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion.
    [Show full text]
  • Protozoologica ACTA Doi:10.4467/16890027AP.17.016.7497 PROTOZOOLOGICA
    Acta Protozool. (2017) 56: 181–189 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.17.016.7497 PROTOZOOLOGICA Allovahlkampfia minuta nov. sp., (Acrasidae, Heterolobosea, Excavata) a New Soil Amoeba at the Boundary of the Acrasid Cellular Slime Moulds Alvaro DE OBESO FERNADEZ DEL VALLE, Sutherland K. MACIVER Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Scotland, UK Abstract. We report the isolation of a new species of Allovahlkampfia, a small cyst-forming heterolobosean soil amoeba. Phylogenetic analysis of the 18S rDNA and the internal transcribed spacers indicates that Allovahlkampfia is more closely related to the acrasids than to other heterolobosean groups and indicates that the new strain (GF1) groups with Allovahlkampfia tibetiensisand A. nederlandiensis despite being significantly smaller than these and any other described Allovahlkampfia species. GF1 forms aggregated cyst masses similar to the early stages of Acrasis sorocarp development, in agreement with the view that it shares ancestry with the acrasids. Time-lapse video mi- croscopy reveals that trophozoites are attracted to individuals that have already begun to encyst or that have formed cysts. Although some members of the genus are known to be pathogenic the strain GF1 does not grow above 28oC nor at elevated osmotic conditions, indicating that it is unlikely to be a pathogen. INTRODUCTION and habit. The heterolobosean acrasid slime moulds are very similar to the amoebozoan slime moulds too in life cycle, but these remarkable similarities in ap- The class heterolobosea was first created on mor- pearance and function are most probably due to parallel phological grounds to unite the schizopyrenid amoe- bae/amoeboflagellates with the acrasid slime moulds evolution.
    [Show full text]
  • Author's Manuscript (764.7Kb)
    1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.
    [Show full text]