Mitochondrial DNA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Zealand's Genetic Diversity
1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses). -
Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. -
Primary Amoebic Meningoencephalitis Due to Naegleria Fowleri
56 Case report Primary amoebic meningoencephalitis due to Naegleria fowleri A. Angrup, L. Chandel, A. Sood, K. Thakur, S. C. Jaryal Department of Microbiology,Dr. Rajendra Prasad Government Medical College, Kangra at Tanda, Himachal Pradesh, Pin Code- 176001, India. Correspondence to: Dr. Archana Angrup, Department of Microbiology, Dr. Rajendra Prasad Government Medical College, Kangra, Tanda, Himachal Pradesh, Pin Code-176001, India. Phone no. 09418119222, Facsimile: 01892-267115 Email: [email protected] Abstract The genus Naegleria comprises of free living ameboflagellates found in soil and fresh water. More than 30 species have been isolated but only N. fowleri has been associated with human disease. N. fowleri causes primary amoebic meningoencephalitis (PAM), an acute, often fulminant infection of CNS. Here we report a rare and first case of PAM in an immunocompetent elderly patient from this part of the country. Amoeboid and flagellate forms of N. fowleri were detected in the direct microscopic examination of CSF and confirmed by flagellation test in distilled water, demonstrating plaques /clear areas on 1.5% non nutrient agar and its survival at 42°C. Keywords: Meningitis, Naegleria fowleri, primary amoebic meningoencephalitis Introduction of our knowledge, in India, only eight cases have been reported so far .1, 5-8 Infection of the central nervous system (CNS) in human We hereby report a rare case of PAM in elderly beings with free living amoebae is uncommon. Among the immunocompetent patient from the hilly state of Himachal many different genera of amoebae, Naegleria spp, Pradesh (H.P) in Northern India. Acanthamoeba spp and Balamuthia spp are primarily pathogenic to the CNS. -
UNIVERSITE DES ANTILLES Faculté Des Sciences Exactes Et Naturelles École Doctorale Pluridisciplinaire
UNIVERSITE DES ANTILLES Faculté des Sciences Exactes et Naturelles École Doctorale pluridisciplinaire Thèse de Doctorat En Physiologie-biologie des organismes-populations-interactions Mirna MOUSSA Les amibes libres pathogènes des eaux chaudes de la Guadeloupe, étude écologique, caractérisation moléculaire et prophylaxie des zones de baignade Sous la direction de : Jérôme GUERLOTTÉ, Professeur, Université des Antilles Antoine TALARMIN, Docteur, Institut Pasteur de la Guadeloupe Soutenue le 25 Septembre 2015 à l’Institut Pasteur de Guadeloupe N: Jury: GROS Olivier, Pr. Université des Antilles Président HÉCHARD Yann, Pr. Université de Poitiers Rapporteur YERA Hélène , MCU-PH Institut Cochin, Paris Rapporteur ALBINA Emmanuel, Dr. CIRAD Antilles Examinateur DESBOIS Nicole, Dr. CHU de Fort-de-France Examinateur GUERLOTTÉ Jérôme, Pr. Université des Antilles Examinateur 2 A ma famille et mes amis pour leur Amour et leur soutien au quotidien. Vous avez toujours su trouver les mots pour m’encourager dans les moments les plus difficiles. Je ne vous remercierai jamais assez pour tout ce que vous avez fait. Je pense à ma grand-mère en Syrie qui m’a appris la joie de vivre malgré les difficultés. 3 4 Remerciements Je souhaite tout d’abord exprimer ma profonde gratitude au Docteur Antoine Talarmin qui m’a permis de réaliser cette thèse au sein de l’Institut Pasteur de la Guadeloupe ainsi qu’au Professeur Jérôme Guerlotté qui m’a fait l’honneur d’être mon Directeur de thèse durant ces trois années. Je leur suis extrêmement reconnaissante de m’avoir fait confiance et de m’avoir donné des opportunités pour réussir dans ce domaine. Je les remercie pour leur patience, leurs conseils, leur soutien et leur disponibilité. -
Protist Phylogeny and the High-Level Classification of Protozoa
Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane). -
What Substrate Cultures Can Reveal: Myxomycetes and Myxomycete-Like Organisms from the Sultanate of Oman
Mycosphere 6 (3): 356–384(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/3/11 What substrate cultures can reveal: Myxomycetes and myxomycete-like organisms from the Sultanate of Oman Schnittler M1, Novozhilov YK2, Shadwick JDL3, Spiegel FW3, García-Carvajal E4, König P1 1Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University Greifswald, Soldmannstr. 15, D-17487 Greifswald, Germany 2V.L. Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov St. 2, 197376 St. Petersburg, Russia 3University of Arkansas, Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA 4Royal Botanic Garden (CSIC), Plaza de Murillo, 2, Madrid, E-28014, Spain Schnittler M, Novozhilov YK, Shadwick JDL, Spiegel FW, García-Carvajal E, König P 2015 – What substrate cultures can reveal: Myxomycetes and myxomycete-like organisms from the Sultanate of Oman. Mycosphere 6(3), 356–384, doi 10.5943/mycosphere/6/3/11 Abstract A total of 299 substrate samples collected throughout the Sultanate of Oman were analyzed for myxomycetes and myxomycete-like organisms (MMLO) with a combined approach, preparing one moist chamber culture and one agar culture for each sample. We recovered 8 forms of Myxobacteria, 2 sorocarpic amoebae (Acrasids), 19 known and 6 unknown taxa of protostelioid amoebae (Protostelids), and 50 species of Myxomycetes. Moist chambers and agar cultures completed each other. No method alone can detect the whole diversity of myxomycetes as the most species-rich group of MMLO. A significant overlap between the two methods was observed only for Myxobacteria and some myxomycetes with small sporocarps. -
The Revised Classification of Eukaryotes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. -
Protozoologica ACTA Doi:10.4467/16890027AP.17.016.7497 PROTOZOOLOGICA
Acta Protozool. (2017) 56: 181–189 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.17.016.7497 PROTOZOOLOGICA Allovahlkampfia minuta nov. sp., (Acrasidae, Heterolobosea, Excavata) a New Soil Amoeba at the Boundary of the Acrasid Cellular Slime Moulds Alvaro DE OBESO FERNADEZ DEL VALLE, Sutherland K. MACIVER Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Scotland, UK Abstract. We report the isolation of a new species of Allovahlkampfia, a small cyst-forming heterolobosean soil amoeba. Phylogenetic analysis of the 18S rDNA and the internal transcribed spacers indicates that Allovahlkampfia is more closely related to the acrasids than to other heterolobosean groups and indicates that the new strain (GF1) groups with Allovahlkampfia tibetiensisand A. nederlandiensis despite being significantly smaller than these and any other described Allovahlkampfia species. GF1 forms aggregated cyst masses similar to the early stages of Acrasis sorocarp development, in agreement with the view that it shares ancestry with the acrasids. Time-lapse video mi- croscopy reveals that trophozoites are attracted to individuals that have already begun to encyst or that have formed cysts. Although some members of the genus are known to be pathogenic the strain GF1 does not grow above 28oC nor at elevated osmotic conditions, indicating that it is unlikely to be a pathogen. INTRODUCTION and habit. The heterolobosean acrasid slime moulds are very similar to the amoebozoan slime moulds too in life cycle, but these remarkable similarities in ap- The class heterolobosea was first created on mor- pearance and function are most probably due to parallel phological grounds to unite the schizopyrenid amoe- bae/amoeboflagellates with the acrasid slime moulds evolution. -
Author's Manuscript (764.7Kb)
1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses. -
Large-Scale Phylogenetic Analyses Elucidate the Evolutionary Affiliations of Two Novel Microbial Eukaryotes, Tsukubamonas Globosa and Palipitomonas Bilix
External Review on Center for Computational Sciences, University of Tsukuba Feb. 18-20, 2014 Large-scale phylogenetic analyses elucidate the evolutionary affiliations of two novel microbial eukaryotes, Tsukubamonas globosa and Palipitomonas bilix Yuji Inagaki Graduate School of Life and Environmental Sciences Center for Computational Sciences University of Tsukuba Our goal is A well-resolved global eukaryotic phylogeny Model the evolutions of traits in eukaryotic cells Mitochondria, plastids, other bacterial endosymbionts, translation systems, etc. Novel microbial eukaryotes, which have not been observed (or studied in detail) lots of them in environments Find & isolate Next-generation Cultivate sequencing Characterize Generate large-scale sequence data ‘Phylogenomic’ Determine the phylogenetic position analysis How we find, characterize, and analyze novel eukaryotes Culturing 1 Sampling Microscopic observation 2 Small-scale DNA sequencing Phylogenomic analyses Small subunit Next-generation sequencing rRNA gene 4 3 Large-scale transcriptomic data And/or genome data Two novel eukaryotes Photo by Yabuki Tsukubamonas globosa 1 Photo by N. Yubuki 2 Palpitomonas bilix Adl et al. 2012 J Eukaryot Microbiol 59:429-493 University of Tsukuba: Homo of Tsukubamonas globosa Isolated from Hyoutaro-pond Maintained in UR-YT medium at 20ᵒC since October 2002 Tsukubamonas: How it looks like A fibre Singlet-root associated fibre 10 mm 10 mm 10 mm Right root N, Nucleus; Fv, Food vacuole Singlet root I fibre Posterior basal body B fibre 0.5 mm Posterior Singlet-root basal body associated fibre Backward Posterior Right root Right root basal body Inner right root Mitochondrion Outer Right root B fibre 0.5 mm 2 mm Yabuki et al. -
This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Protein secretion and encystation in Acanthamoeba Alvaro de Obeso Fernández del Valle Doctor of Philosophy The University of Edinburgh 2018 Abstract Free-living amoebae (FLA) are protists of ubiquitous distribution characterised by their changing morphology and their crawling movements. They have no common phylogenetic origin but can be found in most protist evolutionary branches. Acanthamoeba is a common FLA that can be found worldwide and is capable of infecting humans. The main disease is a life altering infection of the cornea named Acanthamoeba keratitis. Additionally, Acanthamoeba has a close relationship to bacteria. Acanthamoeba feeds on bacteria. At the same time, some bacteria have adapted to survive inside Acanthamoeba and use it as transport or protection to increase survival. When conditions are adverse, Acanthamoeba is capable of differentiating into a protective cyst. -
Mitocogs: Clusters of Orthologous Genes from Mitochondria and Implications for the Evolution of Eukaryotes Sivakumar Kannan, Igor B Rogozin and Eugene V Koonin*
Kannan et al. BMC Evolutionary Biology 2014, 14:237 http://www.biomedcentral.com/1471-2148/14/237 RESEARCH ARTICLE Open Access MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes Sivakumar Kannan, Igor B Rogozin and Eugene V Koonin* Abstract Background: Mitochondria are ubiquitous membranous organelles of eukaryotic cells that evolved from an alpha-proteobacterial endosymbiont and possess a small genome that encompasses from 3 to 106 genes. Accumulation of thousands of mitochondrial genomes from diverse groups of eukaryotes provides an opportunity for a comprehensive reconstruction of the evolution of the mitochondrial gene repertoire. Results: Clusters of orthologous mitochondrial protein-coding genes (MitoCOGs) were constructed from all available mitochondrial genomes and complemented with nuclear orthologs of mitochondrial genes. With minimal exceptions, the mitochondrial gene complements of eukaryotes are subsets of the superset of 66 genes found in jakobids. Reconstruction of the evolution of mitochondrial genomes indicates that the mitochondrial gene set of the last common ancestor of the extant eukaryotes was slightly larger than that of jakobids. This superset of mitochondrial genes likely represents an intermediate stage following the loss and transfer to the nucleus of most of the endosymbiont genes early in eukaryote evolution. Subsequent evolution in different lineages involved largely parallel transfer of ancestral endosymbiont genes to the nuclear genome. The intron density in nuclear orthologs of mitochondrial genes typically is nearly the same as in the rest of the genes in the respective genomes. However, in land plants, the intron density in nuclear orthologs of mitochondrial genes is almost 1.5-fold lower than the genomic mean, suggestive of ongoing transfer of functional genes from mitochondria to the nucleus.