Nytillkomna Taxa I Artportalen 2019-10-09

Total Page:16

File Type:pdf, Size:1020Kb

Nytillkomna Taxa I Artportalen 2019-10-09 Nytillkomna taxa i Artportalen 2019-10-09 Källa: Dyntaxa, ArtDatabanken SLU Id Vetenskapligt namn Svenskt namn Organismgrupp 6043363 Emberiza cineracea cineracea Gulgrå sparv, underarten cineracea Fåglar 6043364 Emberiza cineracea semenowi Gulgrå sparv, underarten semenowi Fåglar 6045468 Clubiona juvenis Spindeldjur_Spindlar 6043385 Acronirmus Insekter_Djurlöss 6040258 Actornithophilus flumineus Insekter_Djurlöss 6042265 Actornithophilus gracilis Insekter_Djurlöss 6042267 Actornithophilus lyallpurensis Insekter_Djurlöss 6042268 Actornithophilus ochraceus Insekter_Djurlöss 6042269 Actornithophilus patellatus Insekter_Djurlöss 6042270 Actornithophilus piceus Insekter_Djurlöss 6042272 Actornithophilus piceus lari Insekter_Djurlöss 6042271 Actornithophilus piceus piceus Insekter_Djurlöss 6042273 Actornithophilus sedes Insekter_Djurlöss 6043386 Anaticola branderi Insekter_Djurlöss 6043387 Anaticola pseudofuligulae Insekter_Djurlöss 6043388 Anaticola rubromaculata Insekter_Djurlöss 6043389 Anatoecus cygni Insekter_Djurlöss 6043390 Ardeicola ciconiae Insekter_Djurlöss 6043391 Brueelia kluzi Insekter_Djurlöss 6043392 Brueelia kratochvili Insekter_Djurlöss 6043393 Brueelia sibirica Insekter_Djurlöss 6043394 Brueelia straminea Insekter_Djurlöss 6043380 Campanulotes bidentatus Insekter_Djurlöss 6043381 Campanulotes drosti Insekter_Djurlöss 6043395 Carduiceps lapponicus Insekter_Djurlöss 6043334 Ciconiphilus pectiniventris Insekter_Djurlöss 6043382 Coloceras Insekter_Djurlöss 6043383 Coloceras damicorne Insekter_Djurlöss 6043335 Colpocephalum milvi Insekter_Djurlöss 6043396 Columbicola claviformis Insekter_Djurlöss 6043397 Corvonirmus Insekter_Djurlöss 6043398 Corvonirmus argulus Insekter_Djurlöss 6043399 Craspedorrhynchus spathulatus Insekter_Djurlöss 6043400 Cuclotogaster Insekter_Djurlöss 6043401 Cuclotogaster heterogrammicus Insekter_Djurlöss 6043402 Cuclotogaster heterographus Insekter_Djurlöss 6043403 Cummingsiella ambigua Insekter_Djurlöss 6043404 Cummingsiella aurea Insekter_Djurlöss 6044411 Degeeriella aquilarum Insekter_Djurlöss 6044412 Fulicoffula Insekter_Djurlöss 6044413 Fulicoffula lurida Insekter_Djurlöss 6043384 Goniocotes microthorax Insekter_Djurlöss 6043336 Gruimenopon Insekter_Djurlöss 6043337 Gruimenopon longum Insekter_Djurlöss 6044414 Guimaraesiella Insekter_Djurlöss 6044415 Guimaraesiella turdinulae Insekter_Djurlöss 6044416 Hecatrishula Insekter_Djurlöss 6044417 Hecatrishula atherae Insekter_Djurlöss 6045411 Hecatrishula varia Insekter_Djurlöss 6043338 Heleonomus Insekter_Djurlöss 6043339 Heleonomus macilentus Insekter_Djurlöss 6043340 Holomenopon clypeilargum Insekter_Djurlöss 6043341 Holomenopon loomisii Insekter_Djurlöss 6045412 Lunaceps limosella Insekter_Djurlöss 6043342 Menacanthus phasiani Insekter_Djurlöss 6043343 Menacanthus takayamai Insekter_Djurlöss 6043344 Menopon pallens Insekter_Djurlöss 6043345 Myrsidea anaspila Insekter_Djurlöss 6045413 Neophilopterus Insekter_Djurlöss 6045414 Neophilopterus incompletus Insekter_Djurlöss 6045415 Olivinirmus Insekter_Djurlöss 6045416 Olivinirmus glandarii Insekter_Djurlöss 6045417 Ornithobius waterstoni Insekter_Djurlöss 6045418 Oxylipeurus minor Insekter_Djurlöss 6045421 Penenirmus gulosus Insekter_Djurlöss 6045422 Philopterus corvi Insekter_Djurlöss 6045424 Philopterus fringillae Insekter_Djurlöss 6045425 Philopterus guttatus Insekter_Djurlöss 6045426 Philopterus modularis Insekter_Djurlöss 6045427 Philopterus ocellatus Insekter_Djurlöss 6045428 Philopterus sittae Insekter_Djurlöss 6045429 Philopterus thuringiacus Insekter_Djurlöss 6045430 Picicola snodgrassi Insekter_Djurlöss 6045431 Quadraceps aetherus Insekter_Djurlöss 6045432 Quadraceps decipiens Insekter_Djurlöss 6045433 Quadraceps hiaticulae Insekter_Djurlöss 6045434 Quadraceps lineatus Insekter_Djurlöss 6045435 Quadraceps ochropi Insekter_Djurlöss 6045436 Quadraceps ornatus lineolatus Insekter_Djurlöss 6045437 Quadraceps ornatus ornatus Insekter_Djurlöss 6045438 Quadraceps phaeonotus Insekter_Djurlöss 6045439 Quadraceps punctatus punctatus Insekter_Djurlöss 6045440 Quadraceps punctatus regressus Insekter_Djurlöss 6045441 Quadraceps signatus Insekter_Djurlöss 6045442 Rallicola Insekter_Djurlöss 6045443 Rallicola fulicae Insekter_Djurlöss 6045444 Rhynonirmus helvolus Insekter_Djurlöss 6043378 Ricinus frenatus Insekter_Djurlöss 6043379 Ricinus rubeculae Insekter_Djurlöss 6045445 Rostrinirmus Insekter_Djurlöss 6045446 Rostrinirmus ruficeps Insekter_Djurlöss 6045447 Saemundssonia celidoxa Insekter_Djurlöss 6045448 Saemundssonia inexspectata Insekter_Djurlöss 6045449 Saemundssonia platygaster cordiceps Insekter_Djurlöss 6045450 Saemundssonia platygaster frater Insekter_Djurlöss 6045451 Saemundssonia scolopacisphaeopodis Insekter_Djurlöss 6045452 Saemundssonia scolopacisphaeopodis humeralis Insekter_Djurlöss 6045453 Saemundssonia scolopacisphaeopodis scolopacisphaeopodis Insekter_Djurlöss 6045454 Strigiphilus laticephalus Insekter_Djurlöss 6045455 Strigiphilus pallidus Insekter_Djurlöss 6045456 Struthiolipeurus Insekter_Djurlöss 6045457 Struthiolipeurus struthionis Insekter_Djurlöss 6045458 Turdinirmus Insekter_Djurlöss 6045459 Turdinirmus merulensis Insekter_Djurlöss 6043358 Eupteryx melissae Insekter_Halvvingar 6043359 Psallus pseudoplatani Insekter_Halvvingar 6045470 Chironomus (salinarius aggregate) Chironomus salinarius-typ Insekter_Tvåvingar 6045471 Allium stipitatum Skägglök Kärlväxter 6045465 Anisodontea hypomandarum Kärlväxter 6044406 Quercus palustris × rubra Kärrek × rödek Kärlväxter 261644 Sorbus austriaca Österrikisk oxel Kärlväxter 1010675 Abollifer Alger och mikroorganismer 238610 Abollifer prolabens Alger och mikroorganismer 1010537 Acanthocorbis Alger och mikroorganismer 238089 Acanthocorbis apoda Alger och mikroorganismer 238090 Acanthocorbis asymmetrica Alger och mikroorganismer 238091 Acanthocorbis campanula Alger och mikroorganismer 238092 Acanthocorbis haurakiana Alger och mikroorganismer 238093 Acanthocorbis unguiculata Alger och mikroorganismer 1010538 Acanthoeca Alger och mikroorganismer 238094 Acanthoeca brevipoda Alger och mikroorganismer 238095 Acanthoeca spectabilis Alger och mikroorganismer 2003923 Acanthoecaceae Alger och mikroorganismer 6018120 Acanthoecida Alger och mikroorganismer 1010638 Acanthostomella Alger och mikroorganismer 238502 Acanthostomella norvegica Alger och mikroorganismer 1010628 Achradina Alger och mikroorganismer 238455 Achradina pulchra Alger och mikroorganismer 3000825 Aconchulinida Alger och mikroorganismer 2003657 Acrasiaceae Alger och mikroorganismer 3000826 Acrasiales Akrasider Alger och mikroorganismer 2003248 Actiniscaceae Alger och mikroorganismer 3000624 Actiniscales Alger och mikroorganismer 1010629 Actiniscus Alger och mikroorganismer 238456 Actiniscus pentasterias Alger och mikroorganismer 6001300 Adercotryma Alger och mikroorganismer 6001301 Adercotryma glomerata Alger och mikroorganismer 1013843 Adinimonas Alger och mikroorganismer 1010612 Akashiwo Alger och mikroorganismer 238409 Akashiwo sanguinea Alger och mikroorganismer 1010588 Alexandrium Alger och mikroorganismer 238222 Alexandrium angustitabulatum Alger och mikroorganismer 261361 Alexandrium leei Alger och mikroorganismer 261362 Alexandrium margalefii Alger och mikroorganismer 238223 Alexandrium minutum Alger och mikroorganismer 238224 Alexandrium ostenfeldii Alger och mikroorganismer 238225 Alexandrium pseudogonyaulax Alger och mikroorganismer 238226 Alexandrium tamarense Alger och mikroorganismer 1010676 Allantion Alger och mikroorganismer 238611 Allantion tachyploon Alger och mikroorganismer 6011720 Allogromiida Alger och mikroorganismer 6011759 Alveolata Alger och mikroorganismer 1010677 Amastigomonas Alger och mikroorganismer 238612 Amastigomonas debruynei Alger och mikroorganismer 238613 Amastigomonas mutabilis Alger och mikroorganismer 6001305 Ammodiscidae Alger och mikroorganismer 6001306 Ammodiscus Alger och mikroorganismer 6001307 Ammodiscus catinus Alger och mikroorganismer 6001303 Ammonia Alger och mikroorganismer 6001304 Ammonia beccarii Alger och mikroorganismer 6001299 Ammosphaeroidinidae Alger och mikroorganismer 6038896 Amoebidae Alger och mikroorganismer 2003725 Amoebidiaceae Alger och mikroorganismer 3000726 Amoebidiales Alger och mikroorganismer 1010700 Amoebophrya Alger och mikroorganismer 238655 Amoebophrya ceratii Alger och mikroorganismer 2003593 Amoebophryaceae Alger och mikroorganismer 6009265 Amoebozoa Alger och mikroorganismer 1010539 Amoenoscapa Alger och mikroorganismer 238096 Amoenoscapa caudata Alger och mikroorganismer 6012251 Amphidiniopsidaceae Alger och mikroorganismer 1010572 Amphidiniopsis Alger och mikroorganismer 238169 Amphidiniopsis kofoidii Alger och mikroorganismer 1010608 Amphidinium Alger och mikroorganismer 238364 Amphidinium acutissimum Alger och mikroorganismer 257870 Amphidinium amphidinioides Alger och mikroorganismer 238365 Amphidinium carterae Alger och mikroorganismer 238366 Amphidinium crassum Alger och mikroorganismer 238367 Amphidinium elenkinii Alger och mikroorganismer 6012214 Amphidinium extensum Alger och mikroorganismer 238368 Amphidinium incoloratum Alger och mikroorganismer 238369 Amphidinium klebsii Alger och mikroorganismer 238370 Amphidinium longum Alger och mikroorganismer 238371 Amphidinium operculatum Alger och mikroorganismer 238372 Amphidinium ovoideum Alger och mikroorganismer 238373 Amphidinium pelagicum Alger och mikroorganismer 6012215 Amphidinium poecilochroum Alger och mikroorganismer 238375 Amphidinium rhynchocephalum Alger och mikroorganismer 238377 Amphidinium sphenoides Alger och mikroorganismer 238378
Recommended publications
  • 20. Infome Variabilidad Climatica 2019
    ASPECTOS BIO-OCEANOGRÁFICOS OBSERVADOS EN DOS ESTACIONES 10 MILLAS COSTA AFUERA, DURANTE EL 2019 INTRODUCCIÓN El Instituto Nacional de Pesca (INP) a través de su programa Variabilidad Climática monitorea de manera mensual las condiciones oceanográficas (físico, químicas y biológicas) de dos estaciones ubicadas 10 millas fuera de la costa ecuatoriana; Puerto López y Salinas (Figura 1). El objetivo principal de este programa es analizar los procesos oceanográficos presentes en los ecosistemas marino-costeros, tomando en cuenta las variaciones espacio-temporales y productividad del océano. De esta manera, se busca relacionar la información obtenida durante las campañas con la distribución, abundancia y biomasa de los recursos pesqueros de interés comercial del país. El mar es un entorno dinámico, influenciado por la geografía del fondo marino y por el clima, de acuerdo a Riley & Chester (1989), los elementos nutritivos, se detectan en el mar en bajas y constantes concentraciones, puesto que las actividades de los organismos vivos produce solo un cambio pequeño o indetectable en su concentración, pero también son los responsables de la eliminación o excreción de cantidades considerables de micronutrientes en relación con la cantidad total presente; para Cushing et al., (1975), las concentraciones registrada de nutrientes, son consecuencia del proceso de producción y no a la inversa, cuya investigación tiene el carácter de una regresión inacabable. Estos constituyentes presentan una marcada variabilidad, la cual restringe la dinámica de exportaciones de nutrientes y carbono orgánico del margen costero ( Helmke et.al., 2005) estableciendo patrones diferentes de distribución que favorecerán la acumulación de nutrientes o la dispersión de los mismos, condiciones influenciadas por los cambios estacionales del viento, situación topográfica, y del sistema de intercambio y/o mezcla con la capa subsuperficial.
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Form and Function of F-Actin During Biomineralization Revealed from Live Experiments on Foraminifera
    Form and function of F-actin during biomineralization revealed from live experiments on foraminifera Jarosław Tyszkaa,1, Ulf Bickmeyerb, Markus Raitzschc,d, Jelle Bijmac, Karina Kaczmarekc, Antje Mewesc, Paweł Topae, and Max Jansef aResearch Centre in Kraków, Institute of Geological Sciences, Polish Academy of Sciences, 31-002 Kraków, Poland; bEcological Chemistry, Alfred-Wegener- Institut Helmholtz-Zentrum für Polar- und Meeresforschung, D-27570 Bremerhaven, Germany; cMarine Biogeosciences, Alfred-Wegener-Institut Helmholtz- Zentrum für Polar- und Meeresforschung, D-27570 Bremerhaven, Germany; dInstitut für Mineralogie, Leibniz Universität Hannover, 30167 Hannover, Germany; eDepartment of Computer Science, AGH University of Science and Technology, 30-052, Kraków, Poland; and fBurgers’ Ocean, Royal Burgers’ Zoo, 6816 SH Arnhem, The Netherlands Edited by Lia Addadi, Weizmann Institute of Science, Rehovot, Israel, and approved January 23, 2019 (received for review June 15, 2018) Although the emergence of complex biomineralized forms has Pioneers who studied living foraminifera described that been investigated for over a century, still little is known on how chamber formation was progressing on what they called “active single cells control morphology of skeletal structures, such as matrix” (15, 16). Hottinger (1) suggested that foraminiferal frustules, shells, spicules, or scales. We have run experiments on chamber morphology depended on the length of rhizopodia the shell formation in foraminifera, unicellular, mainly marine (branching pseudopodia) extruded from the previous chamber organisms that can build shells by successive additions of chambers. and supported by microtubular cytoskeleton. Recent investiga- We used live imaging to discover that all stages of chamber/shell tions on theoretical models of foraminiferal morphogenesis implied formation are controlled by dedicated actin-driven pseudopodial structures.
    [Show full text]
  • Ultrastructure and Molecular Phylogenetic Position of a New Marine Sand-Dwelling Dinoflagellate from British Columbia, Canada: Pseudadenoides Polypyrenoides Sp
    European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: http://www.tandfonline.com/loi/tejp20 Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae) Mona Hoppenrath, Naoji Yubuki, Rowena Stern & Brian S. Leander To cite this article: Mona Hoppenrath, Naoji Yubuki, Rowena Stern & Brian S. Leander (2017) Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae), European Journal of Phycology, 52:2, 208-224, DOI: 10.1080/09670262.2016.1274788 To link to this article: http://dx.doi.org/10.1080/09670262.2016.1274788 View supplementary material Published online: 03 Mar 2017. Submit your article to this journal Article views: 25 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tejp20 Download by: [The University of British Columbia] Date: 13 April 2017, At: 11:37 EUROPEAN JOURNAL OF PHYCOLOGY, 2017 VOL. 52, NO. 2, 208–224 http://dx.doi.org/10.1080/09670262.2016.1274788 Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae) Mona Hoppenratha,b, Naoji Yubukia,c, Rowena Sterna,d and Brian S. Leandera aDepartments of Botany and Zoology,
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • 1 1 Diversity and Spatial Patterns Of
    1 1 Diversity and spatial patterns of foraminiferal assemblages in the eastern Clarion– 2 Clipperton Zone (abyssal eastern equatorial Pacific) 3 4 5 6 7 Aurélie Goineaua, Andrew J Gooday* 8 9 10 11 National Oceanography Centre, Southampton, University of Southampton Waterfront Campus, 12 European Way, Southampton SO14 3ZH, UK 13 14 15 16 17 18 a Present address: 1, Rue du Champ de Foire, 44530 Guenrouët, France 19 20 *Corresponding author. E-mail address: [email protected] (A.J. Gooday) 21 22 2 24 Abstract 25 Foraminifera are a major component of the abyssal meiofauna in parts of the eastern Pacific 26 Clarion-Clipperton Zone (CCZ) licensed by the International Seabed Authority for polymetallic 27 nodule exploration. We analysed the diversity and distribution of stained (‘live’) and unstained 28 (dead) assemblages (0-1 cm layer, >150-µm sieve fraction) in megacorer samples from 11 sites 29 (water depths 4051 - 4235 m) within three 30 x 30 km ‘strata’ in the United Kingdom 1 (UK1 30 Strata A and B; 5 and 3 samples, respectively) and Ocean Minerals Singapore (3 samples) 31 license areas and separated by distances of up to 28 km within a stratum and 224 km between 32 strata. Foraminiferal assemblage density, diversity and composition at the higher 33 taxon/morphogroup level were largely consistent between samples. Stained assemblages were 34 dominated (>86%) by single-chambered monothalamids, mainly spheres, tubes, komokiaceans 35 and forms that are difficult to categorise morphologically. Hormosinaceans were the most 36 common multichambered group (~10%), while calcareous taxa (mainly rotaliids) represented 37 only ~3.5% of stained tests.
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • Next-Generation Environmental Diversity Surveys of Foraminifera: Preparing the Future Jan Pawlowski, Franck Lejzerowicz, Philippe Esling
    Next-Generation Environmental Diversity Surveys of Foraminifera: Preparing the Future Jan Pawlowski, Franck Lejzerowicz, Philippe Esling To cite this version: Jan Pawlowski, Franck Lejzerowicz, Philippe Esling. Next-Generation Environmental Diversity Sur- veys of Foraminifera: Preparing the Future . Biological Bulletin, Marine Biological Laboratory, 2014, 227 (2), pp.93-106. 10.1086/BBLv227n2p93. hal-01577891 HAL Id: hal-01577891 https://hal.archives-ouvertes.fr/hal-01577891 Submitted on 28 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/268789818 Next-Generation Environmental Diversity Surveys of Foraminifera: Preparing the Future Article in Biological Bulletin · October 2014 Source: PubMed CITATIONS READS 26 41 3 authors: Jan Pawlowski Franck Lejzerowicz University of Geneva University of Geneva 422 PUBLICATIONS 11,852 CITATIONS 42 PUBLICATIONS 451 CITATIONS SEE PROFILE SEE PROFILE Philippe Esling Institut de Recherche et Coordination Acoust… 24 PUBLICATIONS 551 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: UniEuk View project KuramBio II (Kuril Kamchatka Biodiversity Studies II) View project All content following this page was uploaded by Jan Pawlowski on 30 December 2015.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]