Assemblage Patterns and Environmental Gradients in The

Total Page:16

File Type:pdf, Size:1020Kb

Assemblage Patterns and Environmental Gradients in The Chapter 5. Effects of grazing and fire on fauna and flora in Eucalyptus similis tropical savanna woodland. “At length, tracing the dry bed of a creek, (Warrigal Creek, from the many Warrigals or dingoes), he crested the forest-clad Main Dividing Range. A curious sight appeared - trees plastered with yellow earth: these trees, called yellowjacks, are soft wood, so white ants enclose them with earth walls and eat the wood out, leaving shells which first strong wind or bush-fire sweeps away. Around these grew gaudy poison-bush.” (p. 49. Bennett 1928). Introduction There is little argument that fire has profoundly influenced the historical evolution and current patterns of biota on the Australian continent. This is clear from the predominance of fire-dependent and promoting flora (Kershaw et al. 2002). Other indications of the importance of fire include systems of biota inexorably linked to fire age (Williams and Gill 1995), and climatic patterns that result in fierce seasonal electrical storms sparking wildfire (Cook and Heerdegen 2001). There is also strong evidence of a long history of prescribed burning by Aboriginal land managers (Hallam 1985; Crowley and Garnett 2000). However with European settlement, there was a rapid cessation of pre-existing regimes (Bowman 2000; Yibarbuk et al. 2001) and a shift to regimes dictated by pastoral land use and human property protection (Crowley and Garnett 2000). There has been vigorous debate on the extent and importance of traditional Aboriginal burning (e.g. Flannery 1994; Benson and Redpath 1997), though there is general acceptance of an impact on biodiversity (Bolton and Latz 1978; Burbidge and McKenzie 1989; Franklin 1999). This has led to recognition of the value of environmental history to inform current land management (Fensham 1999; Crowley and Garnett 2000; Bowman 2001; Vigilante 2001). Regardless of the detail regarding scale, frequency, season and size of the regime change, a wholesale shift is evident, and at least coarsely, this is coincident with changes in species diversity (Burbidge and McKenzie 1989; Franklin 1999). Many plant and animal populations follow clear trajectories of increase or decline with time since fire (Williams and Gill 1995). It follows from this that fire will promote a change in composition of plant and animal assemblages, and changes in the fire regime may Chapter 5. Grazing and fire well have effects on species diversity. The post-European shift has been from fine-scale mosaic burning to one of greater extremes (Burbidge and McKenzie 1989), typically involving one or other of the following: • deliberate fire exclusion to protect property, stock and ground cover; • secondary exclusion via continuous grazing removing fuel load; • complete abandonment of burning in more remote areas, resulting in occasional large-scale fires; or • a greater frequency of hot, extensive fires. These changes in regime have resulted in homogenisation of plant and animal composition, loss of particular resource dependent species and, in some instances, decline of those species needing a longer time lag between burning (Burbidge and McKenzie 1989; Bowman and Panton 1993; Franklin 1999). The historical effects of grazing on Australian ecosystems contrast with those of fire, but they may be equally significant. Since the Late Pleistocene extinction of megafauna, Australia has lacked large native herbivores. The disappearance of the megafauna may have been due to human impact, although this is still debated (Flannery 1994; Horton 2000; Bowman 2000), but it appears to have had little impact on Australian ecosystems. Rather, it has been argued that invertebrates (e.g. termites, ants and grasshoppers) are this continent’s significant herbivores, with a diversity and biomass beyond other comparable systems worldwide (Andersen and Lonsdale 1990). However the current regulatory influence of invertebrates on ecosystem function is still far from being understood (Andersen and Lonsdale 1990; Andersen 2000). The key event regarding grazing impacts is again post-European change and the massive influx of mammalian herbivores, both hard-hoofed ungulates (sheep and cattle) and rabbits (Lunney 2001). Pastoralism is currently the dominant land use across northern Australia, occupying 60% of the total area (Ash et al. 1997) and was introduced to Queensland savannas as early as the 1860’s (May 1984). Grazing alone causes only moderate localised change (such as the removal of ground cover or compaction of soil), but the increasing density of artificial water-points (foci for intense grazing activity) exacerbates these impacts markedly (James et al. 1995). In intact 2 Chapter 5. Grazing and fire environments, this creates a patchwork of piospheres (gradients of intensity of livestock grazing) and ultimately an undifferentiated environment of consistent low ground cover and low plant species richness with a preponderance of less palatable and disturbance- tolerant species (Landsberg et al. 1997). Refuges of unaffected, heterogeneous resource rich habitat become uncommon as the density of artificial watering points is increased (Landsberg and Gillison 1996). Coupled with more serious transformations of the landscape such as tree clearing for non-native pasture development, remnant vegetation becomes fragmented, degraded and species poor (Barrett 2000; Ford et al. 2001). Bird and mammal species that rely on a dense and floristically diverse ground cover have declined under livestock grazing both in Australia and elsewhere (see reviews in Fleischner 1994; James et al. 1999; Woinarski et al. 2001a). Unfortunately the potential of tropical savanna woodlands for pastoralism has been notoriously romanticised (Smith 1994), despite frequent failure of early and current pastoral enterprises (Bennet 1928; Holmes 1996; Ash et al. 1997). The reports of explorers typically emphasised wet season resource abundance, and ignored the dramatic seasonality of tropical savannas and the key period of scarcity prior to the wet season (Smith 1994). The response of pastoralists to this has been to shift stock type (sheep to English cattle breeds to Brahman cattle breeds), and to consistently try to modify the landscape resources to standardise annual conditions for stock. This has been via the provision of more water points, pasture improvement with introduced grasses, addition of lick to increase use of poor forage, and tree-clearing to promote pasture growth (Gardener et al. 1990; Ash et al. 1997). Paradoxically this generally creates degradation and a shift from mixed pasture to a monoculture of perennial grasses, and finally ephemeral grasses or unpalatable species, accentuating the end of dry season resource slump (Ash et al. 1994; Ludwig et al. 1997). Native fauna are adapted to this pattern of seasonality, and utilise strategies that compensate for climatic uncertainty, such as dispersal and resource tracking, resource switching within a mosaic home range, and localised extinction and contraction to refuges ready for post-rainfall irruption (Woinarski 1999a). Fundamental to this is access to heterogenous habitat, at a variety of scales. There is a clear recognition that economically sustainable rangeland management also equates to ecological sustainability, and that future stewardship of tropical savannas should embrace a 3 Chapter 5. Grazing and fire philosophy of land management that in fact creates environments conducive for biodiversity conservation (Ash 1996). Ironically, the conditions most suitable for viable cattle grazing in tropical savannas partly mirror requirements for native fauna (Ludwig et al. 1997), yet management for “conservation” is anathema to many pastoralists, despite the shared goal of healthy landscapes (Landsberg et al. 1998). Cattle-grazing in the Desert Uplands has a long history and is the dominant land use (Smith 1994; Rolfe et al. 2001). However tree clearing for more intensive production is become more widespread, with the south-eastern parts of the bioregion having undergone some of the highest clearing rates in Queensland (Fairfax and Fensham 2000; Rolfe et al. 2001; Neldner et al. 2002). The largest and central sub-region of the bioregion is the Alice Tableland, dominated by sandstone ranges and deep red sandy soils of intact Tertiary sandsheets (Sattler and Williams 1999). This area is also the least developed in the bioregion, due to low fertility, and therefore has few artesian bores and little other infrastructure, with some parts identified nominally as wilderness (Morgan et al. 2002). A single vegetation type - open E. similis woodland with Triodia pungens ground cover (regional ecosystem 10.5.1 sensu Sattler and Williams 1999) - dominates this area and was chosen to examine the effect of grazing and fire on the vertebrates, ants and plants. Despite the aforementioned low fertility, these areas are still actively grazed. This woodland type is also notable in the region in that many properties have long or permanently ungrazed paddocks due to the presence of heartleaf poison bush Gastrolobium grandiflorum, which is toxic to cattle. This plant can only be removed by intensive mechanical means, and though many areas have been treated and are grazed by cattle, many paddocks are left unutilised, or at least used only in extreme circumstances such as drought. Additionally the presence of dense and highly flammable Triodia ground cover results in intentional and unintentional periodic burning, more regularly than in surrounding woodlands with predominantly tussock grass ground
Recommended publications
  • Attachment F - Additional Information on Ecology 2 December 2016 for Macmines Austasia Pty Ltd Page F-I
    PROJECT CHINA STONE Attachment MineF Additional Waste Information Storage Facilityon Ecology Conceptual Design Report F PROJECT CHINA STONE ADDITIONAL INFORMATION ON ECOLOGY COMMERCIAL IN CONFIDENCE INFORMATION HAS BEEN REDACTED Prepared by: HANSEN BAILEY Level 15, 215 Adelaide Street Brisbane QLD 4000 14 July 2017 For: MacMines Austasia Pty Ltd Suite 17, Level 9, 320 Adelaide Street Brisbane QLD 4000 Project China Stone Attachment F - Additional Information on Ecology 2 December 2016 for MacMines Austasia Pty Ltd Page F-i TABLE OF CONTENTS 1 INTRODUCTION ........................................................................................................... 1 1.1 OVERVIEW ................................................................................................................................ 1 1.2 PURPOSE AND SCOPE............................................................................................................ 1 1.3 DOCUMENT STRUCTURE ....................................................................................................... 2 2 HABITAT MODELLING FOR THREATENED FAUNA SPECIES.................................. 2 2.1 INTRODUCTION ........................................................................................................................ 2 2.2 BLACK THROATED-FINCH....................................................................................................... 2 2.2.1 Introduction ...................................................................................................... 2 2.2.2
    [Show full text]
  • National Parks and Wildlife Act 1972.PDF
    Version: 1.7.2015 South Australia National Parks and Wildlife Act 1972 An Act to provide for the establishment and management of reserves for public benefit and enjoyment; to provide for the conservation of wildlife in a natural environment; and for other purposes. Contents Part 1—Preliminary 1 Short title 5 Interpretation Part 2—Administration Division 1—General administrative powers 6 Constitution of Minister as a corporation sole 9 Power of acquisition 10 Research and investigations 11 Wildlife Conservation Fund 12 Delegation 13 Information to be included in annual report 14 Minister not to administer this Act Division 2—The Parks and Wilderness Council 15 Establishment and membership of Council 16 Terms and conditions of membership 17 Remuneration 18 Vacancies or defects in appointment of members 19 Direction and control of Minister 19A Proceedings of Council 19B Conflict of interest under Public Sector (Honesty and Accountability) Act 19C Functions of Council 19D Annual report Division 3—Appointment and powers of wardens 20 Appointment of wardens 21 Assistance to warden 22 Powers of wardens 23 Forfeiture 24 Hindering of wardens etc 24A Offences by wardens etc 25 Power of arrest 26 False representation [3.7.2015] This version is not published under the Legislation Revision and Publication Act 2002 1 National Parks and Wildlife Act 1972—1.7.2015 Contents Part 3—Reserves and sanctuaries Division 1—National parks 27 Constitution of national parks by statute 28 Constitution of national parks by proclamation 28A Certain co-managed national
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.
    [Show full text]
  • Impacts of Land Clearing
    Impacts of Land Clearing on Australian Wildlife in Queensland January 2003 WWF Australia Report Authors: Dr Hal Cogger, Professor Hugh Ford, Dr Christopher Johnson, James Holman & Don Butler. Impacts of Land Clearing on Australian Wildlife in Queensland ABOUT THE AUTHORS Dr Hal Cogger Australasian region” by the Royal Australasian Ornithologists Union. He is a WWF Australia Trustee Dr Hal Cogger is a leading Australian herpetologist and former member of WWF’s Scientific Advisory and author of the definitive Reptiles and Amphibians Panel. of Australia. He is a former Deputy Director of the Australian Museum. He has participated on a range of policy and scientific committees, including the Dr Christopher Johnson Commonwealth Biological Diversity Advisory Committee, Chair of the Australian Biological Dr Chris Johnson is an authority on the ecology and Resources Study, and Chair of the Australasian conservation of Australian marsupials. He has done Reptile & Amphibian Specialist Group (IUCN’s extensive research on herbivorous marsupials of Species Survival Commission). He also held a forests and woodlands, including landmark studies of Conjoint Professorship in the Faculty of Science & the behavioural ecology of kangaroos and wombats, Mathematics at the University of Newcastle (1997- the ecology of rat-kangaroos, and the sociobiology of 2001). He is a member of the International possums. He has also worked on large-scale patterns Commission on Zoological Nomenclature and is a in the distribution and abundance of marsupial past Secretary of the Division of Zoology of the species and the biology of extinction. He is a member International Union of Biological Sciences. He is of the Marsupial and Monotreme Specialist Group of currently the John Evans Memorial Fellow at the the IUCN Species Survival Commission, and has Australian Museum.
    [Show full text]
  • Australian Vegetation Classification and the International Vegetation Classification Framework: an Overview with Case Studies
    Australian Journal of Botany © CSIRO 2021 https://doi.org/10.1071/BT20076_AC Supplementary material Australian Vegetation Classification and the International Vegetation Classification framework: an overview with case studies Esteban H. MuldavinA,G, Eda AddicottB,F, John T. HunterC, Donna LewisD and Don Faber-LangendoenE ANatural Heritage New Mexico, Biology Department, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA. BQueensland Herbarium, Department of Environmental Science, Brisbane Botanic Gardens Mount Coot-tha, Mt Coot-tha Road, Toowong Qld 40066, Australia. CSchool of Environmental & Rural Science, Natural Resources Building, University of New England, Armidale, NSW 2351, Australia. DNorthern Territory Herbarium, Department of Environment, Parks and Water Security, PO Box 496, Palmerston, NT 0831, Australia. ENatureServe, 2550 South Clark Street, Suite 930, Arlington, VA 22202, USA. FAustralian Tropical Herbarium, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia. GCorresponding author. Email: [email protected] Page 1 of 14 Characterising species for Australian Darwin Stringybark Scleromorphic Woodland Macrogroup (Eucalyptus tetrodonta Scleromorphic Woodland macrogroup), Groups and Alliances Methods for determining Characterising species are outlined in the Methods section of the manuscript. Table S1. Characterising species for Australian Darwin Stringybark Scleromorphic Woodland Macrogroup (Eucalyptus tetrodonta Scleromorphic Woodland Macrogroup) and for Corymbia ferruginea and Eucalyptus tetrodonta
    [Show full text]
  • Approved EMP Appendices 1 to 12
    Appendix 1. Field Management Plans Environmental Management/ Control Monitoring Monitoring Report Objective Impact Activity Reporting Action Responsibility Value Strategy Action Frequency Frequency Flora/fauna No permanent Loss of protected • All vegetation Ensure all necessary Visual Weekly Corrective action record as Induction Person in charge detrimental flora species, clearing permits and approvals are required training impact to essential habitat • Removal of fertile in place and compliance Prior to start of biodiversity or and biodiversity topsoil obligations communicated work ecological to site personnel prior to function commencing vegetation clearing Mark the boundary of the Visual weekly Corrective action record as Monthly Person in charge work program area with required (summary in tape and/ or hi-viz fencing monthly designated for ‘No Go report) Zones’ and monitor integrity Ensure site specific fire Audit At start of new Audit report As required Person in charge management plans are in work and place quarterly Weed invasion/ • All vegetation Upgrade existing tracks Visual Weekly Corrective action record as Monthly Weeds Officer infestation and / clearing where practical to required increased • Accessing site by accommodate the heavy occurrence or vehicle vehicle traffic (including abundance of widening). feral animals Vehicle wash down prior Weed certificate Prior to Certificate At Weeds Officer to entering the area mobilization commencemen t Vehicle wash down for the Weed certificate As required Self-assessment As required
    [Show full text]
  • Environmental Impact Report – 1 MW Geothermal Power Plant At
    Appendix A Vegetation survey – Fatchen 2002 VEGETATION, LANDFORM AND HABITAT PROPOSED DEEP DRILLING AND ASSOCIATED DEVELOPMENT NEAR MCLEOD 1 WELL, INNAMINCKA AREA Author: TJ Fatchen Prepared for Geodynamics Limited by Fatchen Environmental Pty Ltd Adelaide, May 2002 GDY-02-01 G eodynamics -- Vegetation and landform CONTENTS 1. INTRODUCTION.......................................................................................................................................1 1.1 SCOPE.................................................................................................................................................1 1.2 PROPOSED DRILLING AND REQUIREMENTS .............................................................................................1 1.3 PROPOSED DAM AND REQUIREMENTS ....................................................................................................1 1.4 INSPECTION .........................................................................................................................................1 2. SUMMARY OF LOCAL BIOPHYSICAL ENVIRONMENT .......................................................................2 2.1 REGIONAL CONTEXT .............................................................................................................................2 2.1.1 Land use .....................................................................................................................................2 2.1.2 Landform and soils......................................................................................................................2
    [Show full text]
  • A LIST of the VERTEBRATES of SOUTH AUSTRALIA
    A LIST of the VERTEBRATES of SOUTH AUSTRALIA updates. for Edition 4th Editors See A.C. Robinson K.D. Casperson Biological Survey and Research Heritage and Biodiversity Division Department for Environment and Heritage, South Australia M.N. Hutchinson South Australian Museum Department of Transport, Urban Planning and the Arts, South Australia 2000 i EDITORS A.C. Robinson & K.D. Casperson, Biological Survey and Research, Biological Survey and Research, Heritage and Biodiversity Division, Department for Environment and Heritage. G.P.O. Box 1047, Adelaide, SA, 5001 M.N. Hutchinson, Curator of Reptiles and Amphibians South Australian Museum, Department of Transport, Urban Planning and the Arts. GPO Box 234, Adelaide, SA 5001updates. for CARTOGRAPHY AND DESIGN Biological Survey & Research, Heritage and Biodiversity Division, Department for Environment and Heritage Edition Department for Environment and Heritage 2000 4thISBN 0 7308 5890 1 First Edition (edited by H.J. Aslin) published 1985 Second Edition (edited by C.H.S. Watts) published 1990 Third Edition (edited bySee A.C. Robinson, M.N. Hutchinson, and K.D. Casperson) published 2000 Cover Photograph: Clockwise:- Western Pygmy Possum, Cercartetus concinnus (Photo A. Robinson), Smooth Knob-tailed Gecko, Nephrurus levis (Photo A. Robinson), Painted Frog, Neobatrachus pictus (Photo A. Robinson), Desert Goby, Chlamydogobius eremius (Photo N. Armstrong),Osprey, Pandion haliaetus (Photo A. Robinson) ii _______________________________________________________________________________________ CONTENTS
    [Show full text]
  • Jewel Bugs of Australia (Insecta, Heteroptera, Scutelleridae)1
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Jewel Bugs of Australia (Insecta, Heteroptera, Scutelleridae)1 G. CASSIS & L. VANAGS Abstract: The Australian genera of the Scutelleridae are redescribed, with a species exemplar of the ma- le genitalia of each genus illustrated. Scanning electron micrographs are also provided for key non-ge- nitalic characters. The Australian jewel bug fauna comprises 13 genera and 25 species. Heissiphara is described as a new genus, for a single species, H. minuta nov.sp., from Western Australia. Calliscyta is restored as a valid genus, and removed from synonymy with Choerocoris. All the Australian species of Scutelleridae are described, and an identification key is given. Two new species of Choerocoris are des- cribed from eastern Australia: C. grossi nov.sp. and C. lattini nov.sp. Lampromicra aerea (DISTANT) is res- tored as a valid species, and removed from synonymy with L. senator (FABRICIUS). Calliphara nobilis (LIN- NAEUS) is recorded from Australia for the first time. Calliphara billardierii (FABRICIUS) and C. praslinia praslinia BREDDIN are removed from the Australian biota. The identity of Sphaerocoris subnotatus WAL- KER is unknown and is incertae sedis. A description is also given for the Neotropical species, Agonoso- ma trilineatum (FABRICIUS); a biological control agent recently introduced into Australia to control the pasture weed Bellyache Bush (Jatropha gossypifolia, Euphorbiaceae). Coleotichus borealis DISTANT and C. (Epicoleotichus) schultzei TAUEBER are synonymised with C. excellens (WALKER). Callidea erythrina WAL- KER is synonymized with Lampromicra senator. Lectotype designations are given for the following taxa: Coleotichus testaceus WALKER, Coleotichus excellens, Sphaerocoris circuliferus (WALKER), Callidea aureocinc- ta WALKER, Callidea collaris WALKER and Callidea curtula WALKER.
    [Show full text]
  • D.Nicolle, Classification of the Eucalypts (Angophora, Corymbia and Eucalyptus) | 2
    Taxonomy Genus (common name, if any) Subgenus (common name, if any) Section (common name, if any) Series (common name, if any) Subseries (common name, if any) Species (common name, if any) Subspecies (common name, if any) ? = Dubious or poorly-understood taxon requiring further investigation [ ] = Hybrid or intergrade taxon (only recently-described and well-known hybrid names are listed) ms = Unpublished manuscript name Natural distribution (states listed in order from most to least common) WA Western Australia NT Northern Territory SA South Australia Qld Queensland NSW New South Wales Vic Victoria Tas Tasmania PNG Papua New Guinea (including New Britain) Indo Indonesia TL Timor-Leste Phil Philippines ? = Dubious or unverified records Research O Observed in the wild by D.Nicolle. C Herbarium specimens Collected in wild by D.Nicolle. G(#) Growing at Currency Creek Arboretum (number of different populations grown). G(#)m Reproductively mature at Currency Creek Arboretum. – (#) Has been grown at CCA, but the taxon is no longer alive. – (#)m At least one population has been grown to maturity at CCA, but the taxon is no longer alive. Synonyms (commonly-known and recently-named synonyms only) Taxon name ? = Indicates possible synonym/dubious taxon D.Nicolle, Classification of the eucalypts (Angophora, Corymbia and Eucalyptus) | 2 Angophora (apples) E. subg. Angophora ser. ‘Costatitae’ ms (smooth-barked apples) A. subser. Costatitae, E. ser. Costatitae Angophora costata subsp. euryphylla (Wollemi apple) NSW O C G(2)m A. euryphylla, E. euryphylla subsp. costata (smooth-barked apple, rusty gum) NSW,Qld O C G(2)m E. apocynifolia Angophora leiocarpa (smooth-barked apple) Qld,NSW O C G(1) A.
    [Show full text]
  • Rangelands, Western Australia
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]