Dean Nicolle Nicolle D (2015) Classification of the Eucalyptsa ( Ngophora, Eucalypts Corymbia and Eucalyptus) Version 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecology Assessment Report Pre-Clearance Survey Report
2 Ecology Assessment Report Pre-clearance Survey Report Consultant/contractor and sub-contractor document review/approval 48DY69, 46DY69, 69DY97, 70DY97, 74DY99, 14DY67, 2RP840942, Warra-Kogan Road reserve, Lot no. Healey's Crossing Road reserve, Dalby-Kogan Road reserve Property name Various Disturbance Tracker no. DP139 Origin/Australia Pacific LNG document no. Q-4331-15-RP-001 Contractor internal reference no. (if 17BRI-7037 applicable) Submitted by (full name of author) Kate Brodie, Loren Appleby, Emma Blacklock Consultant/contractor N/A comments Pre-clearance Survey Report expiry N/A date Technical Revision Date Status Checked Q/A Review 1 12/12/2017 Issued for Use L Appleby L Appleby L Appleby 2 27/08/2018 Issued for Use Liz Fisher Liz Fisher Ailsa Kerswell pp. pp. pp. Template Ref: Q-LNG01-15-AQ-0225 Revision: 2 Approvals, Land and Stakeholder, Australia Pacific LNG Upstream Phase 1 Uncontrolled when printed unless issued and stamped controlled copy. Rev. 0 approved by (name and title) Signature Tim Collins Kainama Development (Stage 1) – Terrestrial Ecology Survey Report Prepared for Origin Energy th 27 August 2018 Kainama Stage 1 Terrestrial Ecology Assessment DOCUMENT TRACKING Item Detail Project Name Kainama Development Stage 1 Ecology Survey Project Number 17BRI-7037 Loren Appleby Project Manager 07 3239 9401 Level 5 / 12 Creek St Brisbane Qld 4000 Prepared by Kate Brodie, Loren Appleby, Emma Blacklock Reviewed by Liz Fisher, Alan House Approved by Ailsa Kerswell Status Final Version Number Revision 2 Last saved on 27th August 2018 Cover Photo Philotheca sporadica and Eucalyputs curtisii, Loren Appleby, 2017. This report should be cited as ‘Eco Logical Australia 2018. -
Eucalyptus Study Group Article
Association of Societies for Growing Australian Plants Eucalyptus Study Group ISSN 1035-4603 Eucalyptus Study Group Newsletter December 2012 No. 57 Study Group Leader Warwick Varley Eucalypt Study Group Website PO Box 456, WOLLONGONG, NSW 2520 http://asgap.org.au/EucSG/index.html Email: [email protected] Membership officer Sue Guymer 13 Conos Court, DONVALE, VICTORIA 3111 Email: [email protected] Contents Do Australia's giant fire-dependent trees belong in the rainforest? By EurekAlert! Giant Eucalypts sent back to the rainforest By Rachel Sullivan Abstract: Dual mycorrhizal associations of jarrah (Eucalyptus marginata) in a nurse-pot system The Eucalypt's survival secret By Danny Kingsley Plant Profile; Corymbia gummifera By Tony Popovich Eucalyptus ×trabutii By Warwick Varley SUBSCRIPTION TIME Do Australia's giant fire-dependent trees belong in the rainforest? By EurekAlert! Australia's giant eucalyptus trees are the tallest flowering plants on earth, yet their unique relationship with fire makes them a puzzle for ecologists. Now the first global assessment of these giants, published in New Phytologist, seeks to end a century of debate over the species' classification and may change the way it is managed in future. Gigantic trees are rare. Of the 100,000 global tree species only 50, less than 0.005 per cent, reach over 70 metres in height. While many of the giants live in Pacific North America, Borneo and similar habitats, 13 are eucalypts endemic to Southern and Eastern Australia. The tallest flowering plant in Australia is Eucalyptus regnans, with temperate eastern Victoria and Tasmania being home to the six tallest recorded species of the genus. -
Myrtus Communis L. En Corse Et En Méditerranée : De Sa Composition Chimique Jusqu’À Ses Utilisations Thérapeutiques Paul Franceschini
Myrtus communis L. en Corse et en Méditerranée : de sa composition chimique jusqu’à ses utilisations thérapeutiques Paul Franceschini To cite this version: Paul Franceschini. Myrtus communis L. en Corse et en Méditerranée : de sa composition chimique jusqu’à ses utilisations thérapeutiques. Sciences pharmaceutiques. 2016. dumas-01315207 HAL Id: dumas-01315207 https://dumas.ccsd.cnrs.fr/dumas-01315207 Submitted on 12 May 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Victor Segalen Bordeaux 2 U.F.R. DES SCIENCES PHARMACEUTIQUES Année 2016 Thèse n°54 Thèse pour l’obtention du DIPLOME D’ETAT de DOCTEUR EN PHARMACIE Présentée et soutenue publiquement par Paul FRANCESCHINI Né le 25 Janvier 1987 à Ajaccio (Corse du sud) Le 29 Avril 2016 Myrtus communis L. en Corse et en Méditerranée : De sa composition chimique jusqu’à ses utilisations thérapeutiques Directeur de thèse : Mr A. DECENDIT Membres du jury : Mr DECENDIT A., Professeur Président Mr COURTOIS A., Professeur Juge Mr CHABAN M., Pharmacien Juge 2 Remerciement À notre Président du jury et directeur de thèse, Monsieur Alain DECENDIT Maître de Conférences des Universités de Bordeaux Laboratoire des Sciences Végétales, Mycologie et Biotechnologie Pour avoir accepté de m’accompagner au cours de ce travail de thèse, Vous me faites l’honneur de présider ce jury. -
Effects of Sydney Coastal Dry Sclerophyll Forest Litter on Fuels and Fire Behaviour in Hornsby Shire
Effects of Sydney Coastal Dry Sclerophyll Forest Litter on Fuels and Fire Behaviour in Hornsby Shire Angela G. Gormley A thesis submitted to fulfil requirements for the degree of Master of Philosophy School of Life and Environmental Sciences Faculty of Science The University of Sydney February 2019 ii Angela G. Gormley iii O! for a muse of fire, that would ascend the brightest heaven of invention Prologue The Life of King Henry V William Shakespeare iv Acknowledgements Most universities ban their students from setting fire to litter on the campus so it was necessary to transfer to the School of Life and Environmental Sciences, The University of Sydney, halfway through my degree. My supervisors, Assoc. Prof. Tina Bell and Dr Malcolm Possell, solved all my problems during our first meeting. I appreciate their guidance with my research, their support and, they took my research in an interesting direction. I would like to thank Veronica Quintanilla Berjon for help with the burning experiments. The School of Life and Environmental Sciences provided me with the facilities and equipment that were necessary to support my research. I appreciate the financial assistance and networking opportunities provided by the Bushfire and Natural Hazards Cooperative Research Centre. I appreciate the support of Amelia Jones and Michelle Brown from Hornsby Shire Council because they encouraged me to keep trying when it seemed impossible for my research to continue. They assisted me with access to sites, maps, accompanied me on my field trips and provided a lot of useful information. I would like to thank students and staff at the School of Life and Environmental Sciences and the Sydney Institute of Agriculture, The University of Sydney, because a friendly and sociable environment makes studying more enjoyable. -
Downloading Or Purchasing Online At
On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production OCTOBER 2012 RIRDC Publication No. 11/149 On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production by Jonathan Lidbetter October 2012 RIRDC Publication No. 11/149 RIRDC Project No. PRJ-000509 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-328-4 ISSN 1440-6845 On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production Publication No. 11/149 Project No. PRJ-000509 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. -
The First Chloroplast Genome Sequence of Boswellia Sacra, a Resin-Producing Plant in Oman
RESEARCH ARTICLE The First Chloroplast Genome Sequence of Boswellia sacra, a Resin-Producing Plant in Oman Abdul Latif Khan1, Ahmed Al-Harrasi1*, Sajjad Asaf2, Chang Eon Park2, Gun-Seok Park2, Abdur Rahim Khan2, In-Jung Lee2, Ahmed Al-Rawahi1, Jae-Ho Shin2* 1 UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman, 2 School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea a1111111111 * [email protected] (AAH); [email protected] (JHS) a1111111111 a1111111111 a1111111111 Abstract a1111111111 Boswellia sacra (Burseraceae), a keystone endemic species, is famous for the production of fragrant oleo-gum resin. However, the genetic make-up especially the genomic informa- tion about chloroplast is still unknown. Here, we described for the first time the chloroplast OPEN ACCESS (cp) genome of B. sacra. The complete cp sequence revealed a circular genome of 160,543 Citation: Khan AL, Al-Harrasi A, Asaf S, Park CE, bp size with 37.61% GC content. The cp genome is a typical quadripartite chloroplast struc- Park G-S, Khan AR, et al. (2017) The First ture with inverted repeats (IRs 26,763 bp) separated by small single copy (SSC; 18,962 bp) Chloroplast Genome Sequence of Boswellia sacra, and large single copy (LSC; 88,055 bp) regions. De novo assembly and annotation showed a Resin-Producing Plant in Oman. PLoS ONE 12 the presence of 114 unique genes with 83 protein-coding regions. The phylogenetic analysis (1): e0169794. doi:10.1371/journal.pone.0169794 revealed that the B. sacra cp genome is closely related to the cp genome of Azadirachta Editor: Xiu-Qing Li, Agriculture and Agri-Food indica and Citrus sinensis, while most of the syntenic differences were found in the non-cod- Canada, CANADA ing regions. -
Gum Trees Talk Notes
Australian Plants Society NORTH SHORE GROUP Eucalyptus, Angophora, Corymbia FAMILY MYRTACEAE GUM TREES OF THE KU-RING-GAI WILDFLOWER GARDEN Did you know that: • The fossil evidence for the first known Gum Tree was from the Tertiary 35-40 million years ago. • Myrtaceae is a very large family of over 140 genera and 3000 species of evergreen trees and shrubs. • There are over 900 species of Gum Trees in the Family Myrtaceae in Australia. • In the KWG, the Gum Trees are represented in the 3 genera: Eucalyptus, Angophora & Corymbia. • The name Eucalyptus is derived from the Greek eu = well and kalyptos = covered. BRIEF HISTORY E. obliqua The 18th &19th centuries were periods of extensive land exploration in Australia. Enormous numbers of specimens of native flora were collected and ended up in England. The first recorded scientific collection of Australian flora was made by Joseph Banks and Daniel Solander, during Sir James Cook’s 1st voyage to Botany Bay in April 1770. From 1800-1810, George Caley collected widely in N.S.W with exceptional skill and knowledge in his observations, superb preservation of plant specimens, extensive records and fluent expression in written records. It is a great pity that his findings were not published and he didn’t receive the recognition he deserved. The identification and classification of the Australian genus Eucalyptus began in 1788 when the French botanist Charles L’Heritier de Brutelle named a specimen in the British Museum London, Eucalyptus obliqua. This specimen was collected by botanist David Nelson on Captain Cook’s ill- fated third expedition in 1777 to Adventure Bay on Tasmania’s Bruny Is. -
Toolijooa Stock List Eastern & Western Sydney August 2009
Eastern Sydney Stock August 2009 Genus species hiko tube Provenance Acacia falcata 150 Pittwater Acacia linifolia 50 Warringah Acacia longifolia 300 Warringah Allocasuarina littoralis 250 Willoughby Allocasurina littoralis 500 Warringah Angophora costata 150 North Sydney Baloskion tetraphyllum 300 Warringah Banksia integrifolia 400 200 Pittwater Banksia integrifolia 200 Warringah Callistemon citrinus 400 300 Manly Callistemon linearis 100 Warringah Casuarina glauca 640 150 Warringah Cerratopetalum apetalum 80 Willoughby Commelina cyanea 20 Warringah Corymbia gummifera 100 Warringah Cymbopogon refractus 80 Pittwater Elaeocarpus reticulatus 20 Warringah Eucalyptus pillularis 300 Willoughby Eucalyptus robusta 20 Warringah Eucalyptus saligna 40 Lane Cove Eucalyptus sieberi 200 Warringah Eucalyptus umbra 100 Warringah Ficus coronata 100 Pittwater Melaleuca armillaris 100 Warringah Melaleuca linearifolia 900 Warringah Melaleuca stypheloides 200 Warringah Microlaena stipoides 120 Lane Cove Pomaderris intermedia 500 Willoughby Trema aspera 300 Pittwater Tristaniopsis laurina 1000 Marrickville Viola hederacae 40 Warringah Xanthorrhoea arborea 100 Mosman Western Sydney Stock August 2009 Genus species hiko tube Provenance Acacia binervia 200 Bankstown Acacia decurrens 400 Parramatta Acacia elongata 600 Bankstown Acacia falcata 1000 Bankstown Acacia floribunda 100 Hornsby Acacia linifolia 360 Cordeaux Acacia longifolia 200 150 Bankstown Acacia mearnsii 400 Cordeaux Acacia rubida 300 Cordeaux Acacia stricta 600 Hornsby Allocasurina littoralis 2000 -
Brisbane Native Plants by Suburb
INDEX - BRISBANE SUBURBS SPECIES LIST Acacia Ridge. ...........15 Chelmer ...................14 Hamilton. .................10 Mayne. .................25 Pullenvale............... 22 Toowong ....................46 Albion .......................25 Chermside West .11 Hawthorne................. 7 McDowall. ..............6 Torwood .....................47 Alderley ....................45 Clayfield ..................14 Heathwood.... 34. Meeandah.............. 2 Queensport ............32 Trinder Park ...............32 Algester.................... 15 Coopers Plains........32 Hemmant. .................32 Merthyr .................7 Annerley ...................32 Coorparoo ................3 Hendra. .................10 Middle Park .........19 Rainworth. ..............47 Underwood. ................41 Anstead ....................17 Corinda. ..................14 Herston ....................5 Milton ...................46 Ransome. ................32 Upper Brookfield .......23 Archerfield ...............32 Highgate Hill. ........43 Mitchelton ...........45 Red Hill.................... 43 Upper Mt gravatt. .......15 Ascot. .......................36 Darra .......................33 Hill End ..................45 Moggill. .................20 Richlands ................34 Ashgrove. ................26 Deagon ....................2 Holland Park........... 3 Moorooka. ............32 River Hills................ 19 Virginia ........................31 Aspley ......................31 Doboy ......................2 Morningside. .........3 Robertson ................42 Auchenflower -
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands. -
Indicative Planting Lists for the Camden LGA
Indicative Planting Lists for the Camden LGA This list is to offer an indicative guide for trees, shrubs and grasses which do well in the Camden Local Government Area . This list is not exclusive but can be used as a helpful guide . Definitions (For the purpose of the Camden LEP) “tree” means any plant with a sturdy, dominant single main stem and (a) is more than 3 metres high or (b) has a spread of more than 3 metres or (c) has a trunk diameter of more that 150mm measured 1 metre above ground level. “littoral” means the foreshores, riverbanks and the plants of that habitat. “macrophytes” means the conspicuous plants that dominate wetlands, shallow lakes and streams. “salinity” means common salt which is toxic to most land plants when present in high levels in the soil. The selection of street trees should have regard to the following: • Power/Gas/Water/Sewer/Cable Lines • Street Lights • Pruning and shaping resilience of trees • Easements • Driveways & Bus Stops • Pedestrian crossings • House Frontages & Set Backs • Lateral spreading habits of trees • Road Verge & Nature Strip widths • Waste Service collections • Vehicle vision lines • Cultural and Heritage amenity. • Above ground Services. 1 Indicative Nature Strip - Street Tree selection Species Name Common Name Height Width Native Acer palmatum ‘Senkaki’ Coral Bark Maple 4m 3m Acer rubrum ‘October Red Maple 9m 7m Glory’ Acmena smithii ‘Red Red Head Acmena 6m 2m yes Head’ Agonis flexuosa Willow Myrtle 8m 4m yes Angophora costata Dwarf Dwarf Angophora 4m 2m yes ‘Darni’ costata ‘Darni’