Jewel Bugs of Australia (Insecta, Heteroptera, Scutelleridae)1

Total Page:16

File Type:pdf, Size:1020Kb

Jewel Bugs of Australia (Insecta, Heteroptera, Scutelleridae)1 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Jewel Bugs of Australia (Insecta, Heteroptera, Scutelleridae)1 G. CASSIS & L. VANAGS Abstract: The Australian genera of the Scutelleridae are redescribed, with a species exemplar of the ma- le genitalia of each genus illustrated. Scanning electron micrographs are also provided for key non-ge- nitalic characters. The Australian jewel bug fauna comprises 13 genera and 25 species. Heissiphara is described as a new genus, for a single species, H. minuta nov.sp., from Western Australia. Calliscyta is restored as a valid genus, and removed from synonymy with Choerocoris. All the Australian species of Scutelleridae are described, and an identification key is given. Two new species of Choerocoris are des- cribed from eastern Australia: C. grossi nov.sp. and C. lattini nov.sp. Lampromicra aerea (DISTANT) is res- tored as a valid species, and removed from synonymy with L. senator (FABRICIUS). Calliphara nobilis (LIN- NAEUS) is recorded from Australia for the first time. Calliphara billardierii (FABRICIUS) and C. praslinia praslinia BREDDIN are removed from the Australian biota. The identity of Sphaerocoris subnotatus WAL- KER is unknown and is incertae sedis. A description is also given for the Neotropical species, Agonoso- ma trilineatum (FABRICIUS); a biological control agent recently introduced into Australia to control the pasture weed Bellyache Bush (Jatropha gossypifolia, Euphorbiaceae). Coleotichus borealis DISTANT and C. (Epicoleotichus) schultzei TAUEBER are synonymised with C. excellens (WALKER). Callidea erythrina WAL- KER is synonymized with Lampromicra senator. Lectotype designations are given for the following taxa: Coleotichus testaceus WALKER, Coleotichus excellens, Sphaerocoris circuliferus (WALKER), Callidea aureocinc- ta WALKER, Callidea collaris WALKER and Callidea curtula WALKER. A discussion of the higher classifica- tion of scutellerids is given, and diagnoses of the subfamilies natively present in Australia are provided. A new term, the ejaculatory apparatus is introduced for the subdistal elaboration of the ductus seminis, to include the ventral conducting canal, ejaculatory reservoir and dorsal conducting canal. A survey of male pheromonal glands found on the pregenital abdominal sterna was undertaken, recognising two ty- pes, androconial glands (present in Odontotarsinae and Tectocorinae) and setose sternal glands (Elvi- surinae). The biology of the Australian species is summarised, with new host plant records given for Austrotichus rugosus GROSS, all the Australia native species of Coleotichus (C. artensis (MONTROUZIER), C. costatus FABRICIUS and C. excellens), Calliscyta stalii (VOLENHOVEN), Scutiphora pedicellata (KIRBY) and Tectocoris diophthalmus (HAHN). Key words: androconial glands, Australia, biogeography, classification, ejaculatory apparatus, Heterop- tera, host plants, new genus, new species, Pentatomoidea, Scutelleridae, setose sternal glands. Introduction ocorium of the forewings minimally exposed proximally, and the membrane tip some- The Scutelleridae or jewel bugs are a times visible caudally (e.g. Scutellerinae: family of landbugs belonging to the super- Calliphara, Lampromicra). Scutellerids can be family Pentatomoidea (Insecta, Heteropte- confused with other pentatomoids with an ra) (SLATER 1982; SCHAEFER 1993; SCHUH & enlarged scutellum, including members of SLATER 1995; CASSIS & GROSS 2002). These the cydnid complex (e.g. Corimelaeninae), often large insects are recognised in part by Aphylidae, Canopidae, Lestoniidae, Platasp- the greatly enlarged scutellum, which covers idae, and a number of genera of the nomino- most if not all of the abdomen, with the ex- typical subfamily of the Pentatomidae (e.g. 1 This work is dedicated to our friend and colleague Dr Ernst Heiss, in recognition of his efforts in documenting true Denisia 19, zugleich Kataloge bugs, particularly piesmatids and barkbugs from around the world. In celebrating his 70th birthday, we dedicate a new der OÖ. Landesmuseen species, Heissiphara minuta, in his honour; the shortest described jewel bug for the tallest heteropterist! Neue Serie 50 (2006), 275–398 275 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Australian genera: Ippatha DISTANT, Kam- and corrections. Illustrations are given for a butha DISTANT). Most species of the species of each genus, and for each species a nominotypical subfamily, the Scutellerinae, detailed description is given, and for those and some taxa of the Pachycorinae and taxa without illustrations in this work, users Sphaerocorinae, are characterised by highly are referred to those given in MCDONALD colourful bodies, presumably aposematic. In (1961, 1963a, 1963b) and MCDONALD & contrast, the adults of species of other scutel- CASSIS (1984). The biological control lerid subfamilies are often dull in coloura- agent, Agonosoma trilineatum (FABRICIUS) tion, and apparently cryptozoic (e.g. Elvi- (Scutelleridae: Pachycorinae), introduced surinae, Eurygastrinae and Odontotarsinae), from South America to control a pasture although in some such cases the larvae are weed (Bellyache Bush, Jatropha gossypifolia, brilliantly coloured (e.g. Elvisurinae: Euphorbiaceae) (HEARD et al. 2002), is also Coleotichus). treated in this work. In addition, we review the status of scutellerid systematics and Jewel bugs are moderately diverse in character systems, place the Australian comparison to other pentatomoid families jewel bug fauna in a global context, and dis- (e.g. Acanthosomatidae: 180 species; Cyd- cuss their biology. nidae: 600; Pentatomidae: 6000; Plataspi- dae: 560; and, Tessaratomidae: 235; figures from CASSIS & GROSS 2002). LATTIN Material and Methods (1964) recognised 80 genera and 450 species of jewel bugs worldwide. In the interim, less Specimens than 50 new taxa have been described Most of the material examined includes (JAVAHERY et al. 2000; CASSIS & GROSS new collections across temperate Australia 2002), countered by significant levels of by the senior author [GC] and Randall synonymy (e.g. EGER & LATTIN 1995). Schuh of the American Museum of Natural History (AMNH). Additional material was FABRICIUS (1775) described the first examined from the Queensland Museum Australian scutellerid species, for the charis- (QM), the Australian National Insect Col- matic jewel bug species Calliphara imperialis, lection (ANIC), the South Australian Mu- Calliphara regalis and Choerocoris paganus. seum (SAMA), and the Western Australian STÅL (1873) produced the first comprehen- Museum (WAM). Late in the project, one sive and systematic treatment of scutel- of us [GC] was able to re-examine type and lerids, providing a suprageneric classifica- other materials in the Natural History Mu- tion, including keys to the tribes and genera, seum (BMNH). We particularly focused on as well as listing all described species, in- the Dallas, Distant and Walker types, doubt- cluding those from Australia. SCHOUTEDEN ing the validity of previous observations on (1904) provided a monograph of the jewel their status. The type material that we ex- bugs, including detailed descriptions of the amined is listed separately, and new lecto- supraspecific taxa and a list of species. The type and paralectotype designations are giv- Australian scutellerid fauna has received a en. The Fabricius types in the Banks collec- number of modern treatments, including tion (BMNH) were not available for obser- those of GROSS (1975) and MCDONALD & vation. We also found that some of the lec- CASSIS (1984). CASSIS &GROSS (2002) cat- totype designations of LYAL (1979) for Cal- alogued the Australian scutellerids, recog- liphara are invalid. For types that we have nizing 11 genera and 26 species. In this work not re-examined, we refer users to CASSIS & we give an updated revision of the Aus- GROSS (2002), which lists all the types and tralian scutellerids, providing generic and associated information; most of which have species treatments, including the descrip- been previously examined by one of us tion of new taxa and addition of new char- [GC]. acter information. An identification key is given for all genera and species. This work The distribution maps are based on these serves as an updated account of MCDONALD new data as well as the collection localities & CASSIS (1984) and CASSIS & GROSS given in GROSS (1975), MCDONALD & CAS- (2002), and includes numerous additions SIS (1984) and CASSIS & GROSS (2002). 276 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Microscopy es of second conjunctival appendages; Observations were made using Leica MZ CAII(L) = lateral branch of first conjuncti- 16A and MZ 12 stereomicroscopes, and a val appendages; CAIII = paired or fused Leica DMB compound microscope. Illustra- third conjunctival appendage(s); CAIII(D) tions of morphological features were made = dorsal branch of third conjunctival ap- using a camera lucida. These were rendered pendages; and, CAIII(V) = ventral branch in Adobe Illustrator software. Scanning of third conjunctival appendages. Further electron micrographs were made using a abbreviations are provided in the illustra- Cambridge scanning microscope. tions, where legends are provided for each plate. For Heissiphara minuta nov.sp. and Morphometric measurements Calliphara nobilis, the following abbrevia- tions are also used for the morphometric The measurements taken in MCDONALD characters: BL = body length; IOD = inte- & CASSIS (1984) are recorded for the new rocular distance; and, PW = pronotal
Recommended publications
  • Botanical Name: Acacia Common Name: Wattle Family: Fabaceae Origin: Australia and Africa Habit: Various Habitats Author: Diana Hughes, Mullumbimby
    Botanical Name: Acacia Common Name: Wattle Family: Fabaceae Origin: Australia and Africa Habit: various habitats Author: Diana Hughes, Mullumbimby I like to turn to PlantNET-FloraOnline to learn more about plants. Here you will find a wealth of information about plants, their growing habits and distribution. Much can be learnt from Latin names given, plus the variety of common names attributed to each plant. A more familiar name for Acacia is Wattle - Australia's floral emblem, in this case Acacia pycantha, Golden Wattle, which is native to South Eastern Australia. We have beautiful wattles in our region, most of which are coming into flower now. Mullumbimby is famous for the rare Acacia bakeri, (Marblewood), a rainforest species. It is found on the banks of the Brunswick River, with insignificant white flowers, hidden in glossy leaves. Searches through several websites confirm my fears that many Acacias are considered as needing 'environmental management' - meaning they have weed potential. But who could find a field of beautiful Queensland Silver Wattle an unpleasant sight? Negatively they are 'seeders', and positively, they are nitrogen fixers. Managing the four species in my garden is a pleasure. My pride and joy is an Acacia macradenia, or Zig Zag wattle because its phyllodes (leaves) are arranged in that manner along weeping branches. It's about to flower for the 6th year. Motorists stop to photograph it as it is such a sight. I prune it hard each year. My rear raised garden bed holds 3 different species. The well-known Queensland Silver Wattle, or Mt Morgan wattle (Acacia podalyriifolia) is now flowering.
    [Show full text]
  • Supplementary Materialsupplementary Material
    10.1071/BT13149_AC © CSIRO 2013 Australian Journal of Botany 2013, 61(6), 436–445 SUPPLEMENTARY MATERIAL Comparative dating of Acacia: combining fossils and multiple phylogenies to infer ages of clades with poor fossil records Joseph T. MillerA,E, Daniel J. MurphyB, Simon Y. W. HoC, David J. CantrillB and David SeiglerD ACentre for Australian National Biodiversity Research, CSIRO Plant Industry, GPO Box 1600 Canberra, ACT 2601, Australia. BRoyal Botanic Gardens Melbourne, Birdwood Avenue, South Yarra, Vic. 3141, Australia. CSchool of Biological Sciences, Edgeworth David Building, University of Sydney, Sydney, NSW 2006, Australia. DDepartment of Plant Biology, University of Illinois, Urbana, IL 61801, USA. ECorresponding author. Email: [email protected] Table S1 Materials used in the study Taxon Dataset Genbank Acacia abbreviata Maslin 2 3 JF420287 JF420065 JF420395 KC421289 KC796176 JF420499 Acacia adoxa Pedley 2 3 JF420044 AF523076 AF195716 AF195684; AF195703 Acacia ampliceps Maslin 1 KC421930 EU439994 EU811845 Acacia anceps DC. 2 3 JF420244 JF420350 JF419919 JF420130 JF420456 Acacia aneura F.Muell. ex Benth 2 3 JF420259 JF420036 JF420366 JF419935 JF420146 KF048140 Acacia aneura F.Muell. ex Benth. 1 2 3 JF420293 JF420402 KC421323 JQ248740 JF420505 Acacia baeuerlenii Maiden & R.T.Baker 2 3 JF420229 JQ248866 JF420336 JF419909 JF420115 JF420448 Acacia beckleri Tindale 2 3 JF420260 JF420037 JF420367 JF419936 JF420147 JF420473 Acacia cochlearis (Labill.) H.L.Wendl. 2 3 KC283897 KC200719 JQ943314 AF523156 KC284140 KC957934 Acacia cognata Domin 2 3 JF420246 JF420022 JF420352 JF419921 JF420132 JF420458 Acacia cultriformis A.Cunn. ex G.Don 2 3 JF420278 JF420056 JF420387 KC421263 KC796172 JF420494 Acacia cupularis Domin 2 3 JF420247 JF420023 JF420353 JF419922 JF420133 JF420459 Acacia dealbata Link 2 3 JF420269 JF420378 KC421251 KC955787 JF420485 Acacia dealbata Link 2 3 KC283375 KC200761 JQ942686 KC421315 KC284195 Acacia deanei (R.T.Baker) M.B.Welch, Coombs 2 3 JF420294 JF420403 KC421329 KC955795 & McGlynn JF420506 Acacia dempsteri F.Muell.
    [Show full text]
  • HEADLINE NEWS • 6/23/09 • PAGE 2 of 8
    EADLINE H Battle for Ky NEWS Slots For information about TDN, See page 2 call 732-747-8060. www.thoroughbreddailynews.com TUESDAY, JUNE 23, 2009 RACHEL WORKS HALF FOR MOTHER GOOSE GOLDEN IN THE DAPHNIS Stonestreet Stables and Harold McCormick=s Rachel Golden Century (El Prado {Ire}) made the most of soft Alexandra (Medaglia d=Oro) worked a half in :49 4/5 at early fractions and proved best late to hold off Allybar Churchill Downs yesterday in advance of Saturday=s GI (Ire) (King=s Best) by a length in yesterday=s G3 Prix Mother Goose Daphnis at Longchamp. AHe is a nice horse and won S. at Belmont well,@ said winning jockey Maxime Guyon. AI don=t Park. The filly know what [trainer, Andre] Mr. Fabre is going to do ships to New with him, but he won=t stay much further than that.@ York this Golden Century followed a debut win over this trip at morning. Un- Fontainebleau Apr. 10 with a third when upped to a der exercise mile and a half in a conditions event at Saint-Cloud rider Dominic May 1. Back to a mile at this track last time May 30, Terry, Rachel the homebred returned to winning ways and extended was caught his sequence under an enterprising ride. Allowed to through frac- saunter along behind reluctant rivals shortly after the tions of :13, start, the bay ran freely until settled into his soft lead, :25 and and after kicking at the top of the stretch, was mainly hand ridden to comfortably beat the Wertheimer=s Reed Palmer photo :37.40; she galloped out homebred Allybar.
    [Show full text]
  • Native Plants Sixth Edition Sixth Edition AUSTRALIAN Native Plants Cultivation, Use in Landscaping and Propagation
    AUSTRALIAN NATIVE PLANTS SIXTH EDITION SIXTH EDITION AUSTRALIAN NATIVE PLANTS Cultivation, Use in Landscaping and Propagation John W. Wrigley Murray Fagg Sixth Edition published in Australia in 2013 by ACKNOWLEDGEMENTS Reed New Holland an imprint of New Holland Publishers (Australia) Pty Ltd Sydney • Auckland • London • Cape Town Many people have helped us since 1977 when we began writing the first edition of Garfield House 86–88 Edgware Road London W2 2EA United Kingdom Australian Native Plants. Some of these folk have regrettably passed on, others have moved 1/66 Gibbes Street Chatswood NSW 2067 Australia to different areas. We endeavour here to acknowledge their assistance, without which the 218 Lake Road Northcote Auckland New Zealand Wembley Square First Floor Solan Road Gardens Cape Town 8001 South Africa various editions of this book would not have been as useful to so many gardeners and lovers of Australian plants. www.newhollandpublishers.com To the following people, our sincere thanks: Steve Adams, Ralph Bailey, Natalie Barnett, www.newholland.com.au Tony Bean, Lloyd Bird, John Birks, Mr and Mrs Blacklock, Don Blaxell, Jim Bourner, John Copyright © 2013 in text: John Wrigley Briggs, Colin Broadfoot, Dot Brown, the late George Brown, Ray Brown, Leslie Conway, Copyright © 2013 in map: Ian Faulkner Copyright © 2013 in photographs and illustrations: Murray Fagg Russell and Sharon Costin, Kirsten Cowley, Lyn Craven (Petraeomyrtus punicea photograph) Copyright © 2013 New Holland Publishers (Australia) Pty Ltd Richard Cummings, Bert
    [Show full text]
  • The First Chloroplast Genome Sequence of Boswellia Sacra, a Resin-Producing Plant in Oman
    RESEARCH ARTICLE The First Chloroplast Genome Sequence of Boswellia sacra, a Resin-Producing Plant in Oman Abdul Latif Khan1, Ahmed Al-Harrasi1*, Sajjad Asaf2, Chang Eon Park2, Gun-Seok Park2, Abdur Rahim Khan2, In-Jung Lee2, Ahmed Al-Rawahi1, Jae-Ho Shin2* 1 UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman, 2 School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea a1111111111 * [email protected] (AAH); [email protected] (JHS) a1111111111 a1111111111 a1111111111 Abstract a1111111111 Boswellia sacra (Burseraceae), a keystone endemic species, is famous for the production of fragrant oleo-gum resin. However, the genetic make-up especially the genomic informa- tion about chloroplast is still unknown. Here, we described for the first time the chloroplast OPEN ACCESS (cp) genome of B. sacra. The complete cp sequence revealed a circular genome of 160,543 Citation: Khan AL, Al-Harrasi A, Asaf S, Park CE, bp size with 37.61% GC content. The cp genome is a typical quadripartite chloroplast struc- Park G-S, Khan AR, et al. (2017) The First ture with inverted repeats (IRs 26,763 bp) separated by small single copy (SSC; 18,962 bp) Chloroplast Genome Sequence of Boswellia sacra, and large single copy (LSC; 88,055 bp) regions. De novo assembly and annotation showed a Resin-Producing Plant in Oman. PLoS ONE 12 the presence of 114 unique genes with 83 protein-coding regions. The phylogenetic analysis (1): e0169794. doi:10.1371/journal.pone.0169794 revealed that the B. sacra cp genome is closely related to the cp genome of Azadirachta Editor: Xiu-Qing Li, Agriculture and Agri-Food indica and Citrus sinensis, while most of the syntenic differences were found in the non-cod- Canada, CANADA ing regions.
    [Show full text]
  • Insects of Larose Forest (Excluding Lepidoptera and Odonates)
    Insects of Larose Forest (Excluding Lepidoptera and Odonates) • Non-native species indicated by an asterisk* • Species in red are new for the region EPHEMEROPTERA Mayflies Baetidae Small Minnow Mayflies Baetidae sp. Small minnow mayfly Caenidae Small Squaregills Caenidae sp. Small squaregill Ephemerellidae Spiny Crawlers Ephemerellidae sp. Spiny crawler Heptageniiidae Flatheaded Mayflies Heptageniidae sp. Flatheaded mayfly Leptophlebiidae Pronggills Leptophlebiidae sp. Pronggill PLECOPTERA Stoneflies Perlodidae Perlodid Stoneflies Perlodid sp. Perlodid stonefly ORTHOPTERA Grasshoppers, Crickets and Katydids Gryllidae Crickets Gryllus pennsylvanicus Field cricket Oecanthus sp. Tree cricket Tettigoniidae Katydids Amblycorypha oblongifolia Angular-winged katydid Conocephalus nigropleurum Black-sided meadow katydid Microcentrum sp. Leaf katydid Scudderia sp. Bush katydid HEMIPTERA True Bugs Acanthosomatidae Parent Bugs Elasmostethus cruciatus Red-crossed stink bug Elasmucha lateralis Parent bug Alydidae Broad-headed Bugs Alydus sp. Broad-headed bug Protenor sp. Broad-headed bug Aphididae Aphids Aphis nerii Oleander aphid* Paraprociphilus tesselatus Woolly alder aphid Cicadidae Cicadas Tibicen sp. Cicada Cicadellidae Leafhoppers Cicadellidae sp. Leafhopper Coelidia olitoria Leafhopper Cuernia striata Leahopper Draeculacephala zeae Leafhopper Graphocephala coccinea Leafhopper Idiodonus kelmcottii Leafhopper Neokolla hieroglyphica Leafhopper 1 Penthimia americana Leafhopper Tylozygus bifidus Leafhopper Cercopidae Spittlebugs Aphrophora cribrata
    [Show full text]
  • Identification, Biology, Impacts, and Management of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Soybean and Corn in the Midwestern United States
    Journal of Integrated Pest Management (2017) 8(1):11; 1–14 doi: 10.1093/jipm/pmx004 Profile Identification, Biology, Impacts, and Management of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Soybean and Corn in the Midwestern United States Robert L. Koch,1,2 Daniela T. Pezzini,1 Andrew P. Michel,3 and Thomas E. Hunt4 1 Department of Entomology, University of Minnesota, 1980 Folwell Ave., Saint Paul, MN 55108 ([email protected]; Downloaded from https://academic.oup.com/jipm/article-abstract/8/1/11/3745633 by guest on 08 January 2019 [email protected]), 2Corresponding author, e-mail: [email protected], 3Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 210 Thorne, 1680 Madison Ave. Wooster, OH 44691 ([email protected]), and 4Department of Entomology, University of Nebraska, Haskell Agricultural Laboratory, 57905 866 Rd., Concord, NE 68728 ([email protected]) Subject Editor: Jeffrey Davis Received 12 December 2016; Editorial decision 22 March 2017 Abstract Stink bugs (Hemiptera: Heteroptera: Pentatomidae) are an emerging threat to soybean and corn production in the midwestern United States. An invasive species, the brown marmorated stink bug, Halyomorpha halys (Sta˚ l), is spreading through the region. However, little is known about the complex of stink bug species associ- ated with corn and soybean in the midwestern United States. In this region, particularly in the more northern states, stink bugs have historically caused only infrequent impacts to these crops. To prepare growers and agri- cultural professionals to contend with this new threat, we provide a review of stink bugs associated with soybean and corn in the midwestern United States.
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
    BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands.
    [Show full text]
  • Flowers, Posts and Plates of Dirk Hartog Island
    Flowers, Posts and Plates of Dirk Hartog Island Lesley Brooker FLOWERS POSTS AND PLATES January 2020 Home Flowers, Posts and Plates of Dirk Hartog Island Lesley Brooker For the latest revision go to https://lesmikebrooker.com.au/Dirk-Hartog-Island.php Please direct feedback to Lesley Brooker at [email protected] Home INTRODUCTION This document is in two parts:- Part 1 — FLOWERS is an interactive reference to some of the flora of Dirk Hartog Island. Plants are arranged alphabetically within families. Hyperlinks are provided for quick access to historical material found on-line. Attention is drawn (in the green boxes below the species accounts) to some features which may help identification or may interest the reader, but these are by no means diagnostic. Where technical terms are used, these are explained in parenthesis. The ultimate on-line authority on the Western Australian flora is FloraBase. It provides the most up-to-date nomenclature, details of subspecies, flowering periods and distribution maps. Please use this guide in conjunction with FloraBase. Part 2 — POSTS AND PLATES provides short historical accounts of some the people involved in erecting and removing posts and plates on Dirk Hartog Island between 1616 and 1907, and those who may have collected plants on the island during their visit. Home FLOWERS PHOTOGRAPHS REFERENCES BIRD LIST Home Flower Photos The plants are presented in alphabetical order within plant families - this is so that plants that are closely related to one another will be grouped together on nearby pages. All of the family names and genus names are given at the top of each page and are also listed in an index.
    [Show full text]
  • Recovery Plan for Graptophyllum Reticulatum
    Recovery Plan for Graptophyllum reticulatum Prepared by A. Jasmyn J. Lynch 1 Recovery Plan for Graptophyllum reticulatum Prepared by: A. Jasmyn J. Lynch © The State of Queensland, Environmental Protection Agency, 2007 Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written knowledge of the Environmental Protection Agency. Inquiries should be addressed to PO Box 15155, City East. QLD 4002. Copies may be obtained from the: Executive Director Conservation Services Queensland Parks and Wildlife Service PO Box 15155 City East. Qld 4002 Disclaimer: The Australian Government, in partnership with the Environmental Protection Agency/ Queensland Parks and Wildlife Service, facilitates the publication of recovery plans to detail the actions needed for the conservation of threatened native wildlife. The attainment of objectives and the provision of funds may be subject to budgetary and other constraints affecting the parties involved, and may also be constrained by the need to address other conservation priorities. Approved recovery actions may be subject to modification due to changes in knowledge and changes in conservation status. Publication reference: Lynch, A.J.J. 2007. Recovery Plan for Graptophyllum reticulatum. Report to Department of the Environment and Water Resources, Canberra. Queensland Parks and Wildlife Service, Brisbane. Cover photograph: Graptophyllum reticulatum (reticulated holly) scan © EPA - Queensland Herbarium 1992. 2 Contents Executive Summary 4 1. General information 5 1.1 Background information 5 1.2 Conservation status 5 1.3 International obligations 5 1.4 Affected interests 5 1.5 Consultation with Indigenous people 5 1.6 Benefits to other species or communities 5 1.7 Social and economic impacts 6 2.
    [Show full text]
  • Albizia Chevalieri, And
    学位論文 Studies on bioactive compounds from Cameroonian medicinal plants, Acacia albida and Albizia chevalieri, and Japanese endophytes Xylaria sp. (カメルーン産薬用植物 Acacia albida と Albizia chevalieri と日本で分離された植物内生菌類 Xylaria sp.の生理活性物質に関する研究) Abdou Tchoukoua Dedication To My late mom DJEBBA M. Odile i Acknowledgments Acknowledgments This thesis was successful with the support of a number of people to whom I am greatly indebted. I would like to express my sincere gratitude to my supervisors, Prof. Dr. Yoshihito Shiono (Yamagata University, Japan) and Prof. Ngadjui T. Bonaventure (University of Yaounde I, Cameroon) for the guidance, support, and motivation during all the time of my research in their labs. Their help will always be deeply appreciated. I would also like to thank the JSPS-Ronpaku Program for financial support in Japan. I wish to express my gratitude to Prof. M. Hashimoto, Prof. Y. Tokuji, Prof. K. Kimura, and Prof. T. Koseki, for their participation as judging committee. I wish to thank all the people with whom I have worked and contributed to the development of this work. Great thanks to Prof. Dr. Özgen Çaliskan for my sojourn in her lab, and to Dr. Ibrahim Horo in offering his expertise in isolation of saponins. I wish to thank Prof. K. Kimura for analyses of biological activities. I thank Drs Eunsang Kwon and Hiroyuki Momma for measurements of ESI-MS spectra. I am particularly grateful to Dr. T. Tabopda for his contribution to the success of this investigation. It has been a pleasure working with you. I thank the staff members of the Department of Organic Chemistry of the University of Yaounde I for my university education.
    [Show full text]