Impacts of Land Clearing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cravens Peak Scientific Study Report
Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10. -
Kingdom Class Family Scientific Name Common Name I Q a Records
Kingdom Class Family Scientific Name Common Name I Q A Records plants monocots Poaceae Paspalidium rarum C 2/2 plants monocots Poaceae Aristida latifolia feathertop wiregrass C 3/3 plants monocots Poaceae Aristida lazaridis C 1/1 plants monocots Poaceae Astrebla pectinata barley mitchell grass C 1/1 plants monocots Poaceae Cenchrus setigerus Y 1/1 plants monocots Poaceae Echinochloa colona awnless barnyard grass Y 2/2 plants monocots Poaceae Aristida polyclados C 1/1 plants monocots Poaceae Cymbopogon ambiguus lemon grass C 1/1 plants monocots Poaceae Digitaria ctenantha C 1/1 plants monocots Poaceae Enteropogon ramosus C 1/1 plants monocots Poaceae Enneapogon avenaceus C 1/1 plants monocots Poaceae Eragrostis tenellula delicate lovegrass C 2/2 plants monocots Poaceae Urochloa praetervisa C 1/1 plants monocots Poaceae Heteropogon contortus black speargrass C 1/1 plants monocots Poaceae Iseilema membranaceum small flinders grass C 1/1 plants monocots Poaceae Bothriochloa ewartiana desert bluegrass C 2/2 plants monocots Poaceae Brachyachne convergens common native couch C 2/2 plants monocots Poaceae Enneapogon lindleyanus C 3/3 plants monocots Poaceae Enneapogon polyphyllus leafy nineawn C 1/1 plants monocots Poaceae Sporobolus actinocladus katoora grass C 1/1 plants monocots Poaceae Cenchrus pennisetiformis Y 1/1 plants monocots Poaceae Sporobolus australasicus C 1/1 plants monocots Poaceae Eriachne pulchella subsp. dominii C 1/1 plants monocots Poaceae Dichanthium sericeum subsp. humilius C 1/1 plants monocots Poaceae Digitaria divaricatissima var. divaricatissima C 1/1 plants monocots Poaceae Eriachne mucronata forma (Alpha C.E.Hubbard 7882) C 1/1 plants monocots Poaceae Sehima nervosum C 1/1 plants monocots Poaceae Eulalia aurea silky browntop C 2/2 plants monocots Poaceae Chloris virgata feathertop rhodes grass Y 1/1 CODES I - Y indicates that the taxon is introduced to Queensland and has naturalised. -
Land Unit Master
Land Unit Information Sheet Land system name: Ludgate Land unit: LE3 General description This land unit represents the numerous shallow closed depressions, which occur throughout the Ludgate land system and range in size from hundreds of hectares to very small, so small that they cannot be delineated at a map scale of 1:100 000. Grey Vertosols (uniform, cracking clay soils) are predominant, however the area and depth of clay seem to have a major influence on the density and composition of the native vegetation. Acacia cambagei (gidgee), A. farnesiana (mimosa bush), Eucalyptus coolabah (coolabah), Eremophila bignoniiflora (eurah) together with Astrebla species (Mitchell grass) and Brachyachne convergens (native couch) are common on the deep, self-mulching clay soils, whereas the smaller areas with shallow clays, and slightly saline areas tend to have only coolabah, mimosa bush and a ground cover of annual plant species. Invariably, Eucalyptus brownii (Reid River box) and E. whitei (White's ironbark) fringe the depressions. Regional ecosystem 10.3.15 is predominant. Site characteristics Landform element Average slope Plain 0% Site drainage Soil permeability Poorly drained Slowly permeable Flooding risk Inundation risk Low Very high Potential recharge to groundwater Soil depth Low Variable; >1,5m Present land use Grazing, wetlands Susceptibility to land degradation processes Sheet erosion Gully erosion Wind erosion Salting Very low Very low Low High This information has been generated from the Desert Uplands Land Resource Database. The Environmental Protection Agency accepts no liability for any decisions or actions taken on the basis of this information. State of Queensland. Environmental Protection Agency 2004. -
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Control of Currant Bush (Carissa Ovata) in Developed Brigalow (Acacia Harpophylla) Country
Tropical Grasslands (1998) Volume 32, 259–263 259 Control of currant bush (Carissa ovata) in developed brigalow (Acacia harpophylla) country P.V. BACK can coalesce to cover large areas that signifi- Queensland Beef Industry Institute, Department cantly reduce pasture production. of Primary Industries, Tropical Beef Centre, Ploughing to control brigalow regrowth Rockhampton, Queensland, Australia (Johnson and Back 1974; Scanlan and Anderson 1981) can control currant bush effectively but is very expensive. A more cost-effective treatment is Abstract needed for areas where currant bush dominates in the absence of brigalow regrowth. This paper reports a study designed to test the effectiveness Currant bush (Carissa ovata) is the major native of 6 mechanical methods and 2 herbicide treat- woody weed invading sown buffel grass pastures ments for controlling currant bush in situations in cleared brigalow (Acacia harpophylla) forests where it is the major weed. in Queensland. Stickraking followed by chisel ploughing is a viable alternative to and is more economical than herbicide treatment and blade Materials and methods ploughing for controlling currant bush. Chisel ploughing following stickraking gives good con- Site trol of currant bush with no detrimental effect on existing buffel grass pasture. Stickraking alone is The experiment was carried out on “Tulloch- not sufficient to control currant bush. Ard”, a commercial cattle grazing property 10 km west of Blackwater in central Queensland (23° 33’ S, 148° 44’ E). The original vegetation Introduction comprised a brigalow — blackbutt (Eucalyptus cambageana) scrub with currant bush present in Currant bush (Carissa ovata) is an erect or the understorey, which was cleared and sown to spreading, intricately branched shrub, 1–2 m tall, buffel grass (Cenchrus ciliaris) in 1988. -
Characterising Wood Properties for Deployment of Elite Subtropical And
Characterising wood properties for deployment of elite subtropical and tropical hardwoods Final Report Stephen J. Trueman‡*, Geoff R. Dickinson‡*, John R. Huth*, Anton Zbonak*, Jeremy T. Brawner†, Kevin J. Harding*, David J. Lee‡*, Paul Warburton†, Tracey V. McMahon‡, Amanda J. Kilkenny‡, Laura Simmons‡ and Helen M. Wallace‡ ‡Faculty of Science, Health, Education & Engineering, University of Sunshine Coast *Horticulture and Forestry Science Agri-Science Queensland Department Employment, Economic Development and Innovation †CSIRO Plant Industry March 2012 Introduction and Summary Queensland has over 42,000 hectares of hardwood plantations, with 13,700 hectares currently managed for sawn timber and high-value products. Previously, a major impediment to expansion of the hardwood sawn timber and high-value products industry in Queensland was that improved varieties of the key subtropical and tropical species were not available for plantation establishment. Trees from earlier projects, such as Hardwoods Queensland and the Private Plantations Initiative, have now reached an age where selection for growth, form and wood properties is possible. The current project used non-destructive and destructive wood evaluation techniques to characterise the timber quality of 443 subtropical and tropical Corymbia and Eucalyptus trees in these plantings, allowing selection of trees with the best growth, form and wood properties under Queensland conditions. Ecological assessments were also undertaken in the Corymbia plantings to identify germplasm that posed minimal risk of gene flow into native forests. Elite varieties are being fast tracked for deployment in Queensland using economical systems for germplasm capture and nursery production. The project identified and captured 108 new Corymbia and Eucalyptus varieties that can be grown with confidence in Queensland over a shorter rotation length and which produce well- characterised high-quality hardwood timber. -
Palatability of Plants to Camels (DBIRD NT)
Technote No. 116 June 2003 Agdex No: 468/62 ISSN No: 0158-2755 The Palatability of Central Australian Plant Species to Camels Dr B. Dorges, Dr J. Heucke, Central Australian Camel Industry Association and R. Dance, Pastoral Division, Alice Springs BACKGROUND About 600,000 camels (Camelus dromedarius) are believed to inhabit the arid centre of Australia, mainly in South Australia, Western Australia and the Northern Territory. Most of these camels are feral. A small camel industry has developed, which harvests selected animals for domestic and export markets, primarily for meat. Camels can eat more than 80% of the common plant species found in Central Australia. Some plant species are actively sought by camels and may need to be protected. METHOD Observations of grazing preferences by camels were made periodically for up to 12 years on five cattle stations in Central Australia. Where camels were accustomed to the presence of humans, it was possible to observe their grazing preferences from a few metres. Radio transmitters were fitted on some camels for easy detection and observation at any time. These evaluations were used to establish a diet preference or palatability index for observed food plants. Table 1. Palatability index for camels Index Interpretation 1 only eaten when nothing else is available 2 rarely eaten 3 common food plant 4 main food plant at times 5 preferred food plant 6 highly preferred food plant 7 could be killed by camel browsing More information can be obtained from the web site of the Central Australian Camel Industry Association http://www.camelsaust.com.au 2 RESULTS Table 2. -
GLYDE POINT DEVELOPMENT PROJECT Notice of Intent
GLYDE POINT DEVELOPMENT PROJECT Notice of Intent Prepared for: DEPARTMENT OF INFRASTRUCTURE, PLANNING AND ENVIRONMENT GPO Box 1680 Darwin NT 0801 Prepared by: Kellogg Brown & Root Pty Ltd ABN 91 007 660 317 GPO Box 250 Darwin NT 0801 Telephone 8982 4500, Facsimile 8982 4550 16 December 2003 DE1008. 300-DO-002 Ó Kellogg Brown & Root Pty Ltd, 2004 Limitations Statement The sole purpose of this report and the associated services performed by Kellogg Brown & Root Pty Ltd (KBR) is to provide a Notice of Intent in accordance with the scope of services set out in t he contract between KBR and DIPE (‘the Client’). That scope of services was defined by the requests of the Client, by the time and budgetary constraints imposed by the Client, and by the availability of access to the site. KBR derived the data in this report primarily from examination of records in the public domain and interviews with individuals with information about the site. The passage of time, manifestation of latent conditions or impacts of future events may require further exploration at the site and subsequent data analysis, and re-evaluation of the findings, observations and conclusions expressed in this report. In preparing this report, KBR has relied upon and presumed accurate certain information (or absence thereof) relative to the site and the proposed development provided by government officials and authorities, the Client and others identified herein. Except as otherwise st ated in the report, KBR has not attempted to verify the accuracy or completeness of any such information. The findings, observations and conclusions expressed by KBR in this report are not, and should not be considered, an opinion concerning the significance of environmental impacts. -
Guava (Eucalyptus) Rust Puccinia Psidii
INDUSTRY BIOSECURITY PLAN FOR THE NURSERY & GARDEN INDUSTRY Threat Specific Contingency Plan Guava (eucalyptus) rust Puccinia psidii Plant Health Australia March 2009 Disclaimer The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Suite 5, FECCA House 4 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au PHA & NGIA | Contingency Plan – Guava rust (Puccinia psidii) 1 Purpose and background of this contingency plan ............................................................. -
The Roles of the Queensland Herbarium and Its Collections
Proceedings of the 7th and 8th Symposia on Collection Building and Natural History Studies in Asia and the Pacific Rim, edited by Y. Tomida et al., National Science Museum Monographs, (34): 73–81, 2006. The Roles of the Queensland Herbarium and Its Collections Rod J. F. Henderson1, Gordon P. Guymer1 and Paul I. Forster1,2 1Queensland Herbarium, Environmental Protection Agency, Brisbane Botanic Gardens, Mt Coot-tha Road, Toowong, Queensland 4066, Australia (2e-mail: [email protected]) Abstract The roles of the Queensland Herbarium (BRI) and its collections are outlined together with a brief historical account of its founding and subsequent development to the present day. Estab- lished in 1855, the Queensland Herbarium now comprises in excess of 700,000 fully databased botan- ical specimens. The Queensland Herbarium was one of the first herbaria worldwide to database its collections starting in the 1970’s. The Queensland Herbarium (BRI) is the centre for botanical re- search and information on Queensland flora and vegetation communities, and for plant biodiversity research in Queensland’s Environmental Protection Agency (EPA). It is an integral part of the interna- tional network of herbaria, which facilitates research on the Queensland flora by national and interna- tional researchers. The Herbarium is the principal focus for documenting and monitoring Queens- land’s rare and threatened plants and plant communities, vegetation and regional ecosystem surveys, mapping and monitoring, plant names, plant distribution and identification, taxonomic and ecological research on plants and plant communities within the state. Key words: Queensland Herbarium, BRI, Flora. Introduction The Queensland Herbarium (BRI) commenced in 1855, when Walter Hill was appointed Su- perintendent of the Botanic Gardens in Brisbane. -
005056Ba00a7/A71d58ad-4Cba-48B6
Referral of proposed action Project title: Carmichael Coal Mine and Rail Project 1 Summary of proposed action 1.1 Short description Adani Group (Adani) is proposing to develop the Carmichael Coal Mine and Rail Project (the Project). This involves the development of a new open-cut and underground coal mine over EPC 1690, and the construction of a rail link. Coal will be exported via rail to the Port of Abbot Point and the Port of Hay Point. The proposed mine will produce up to 60 million tonnes per annum (Mtpa) of product coal and have a mine life of 150 years, inclusive of construction, operation and closure. 1.2 Latitude and longitude Mine Site Point Y_WGS_84_DMS X_WGS84_DMS Northwest corner E146°12'3.6" S21°54'54.36" Northeast corner E146°17'2.4" S21°54'54.36" Southwest corner E146°27'3.6" S22°8'54.24" Southeast corner E146°24'3.6" S22°13'54.48" Rail Option 1 – a corridor of 2 km based on a centre line as follows: Point Y_WGS_84_DMS X_WGS84_DMS Mine 0 E146°24'28.8" S22°2'19.68" 1 E146°29'6" S22°2'18.24" 2 E146°34'26.44" S22°0'8.28" 3 E146°38'13.16" S22°0'57.96" 4 E146°46'33.6" S22°1'0.84" 5 E146°51'54.04" S22°0'4.68" 6 E146°55'40.76" S21°57'58.32" 7 E147°0'54" S21°58'39" 8 E147°4'30" S22°0'4.68" 9 E147°7'48" S21°59'11.4" 10 E147°14'24.04" S21°59'58.56" 11 E147°19'37.2" S21°59'6" 12 E147°23'49.2" S21°56'13.2" 13 E147°25'12" S21°53'27.6" 14 E147°26'2.44" S21°48'27" 15 E147°29'45.6" S21°45'34.2" 16 E147°33'14.4" S21°45'43.56" 17 E147°35'52.84" S21°43'33.6" 18 E147°41'9.6" S21°30'29.88" 19 E147°50'20.4" S21°18'47.88" 20 E147°49'8.4" S21°15'26.64" -
South West Queensland QLD Page 1 of 89 21-Jan-11 Species List for NRM Region South West Queensland, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.