Summary of Sites on Lochern National Park
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Land Unit Master
Land Unit Information Sheet Land system name: Ludgate Land unit: LE3 General description This land unit represents the numerous shallow closed depressions, which occur throughout the Ludgate land system and range in size from hundreds of hectares to very small, so small that they cannot be delineated at a map scale of 1:100 000. Grey Vertosols (uniform, cracking clay soils) are predominant, however the area and depth of clay seem to have a major influence on the density and composition of the native vegetation. Acacia cambagei (gidgee), A. farnesiana (mimosa bush), Eucalyptus coolabah (coolabah), Eremophila bignoniiflora (eurah) together with Astrebla species (Mitchell grass) and Brachyachne convergens (native couch) are common on the deep, self-mulching clay soils, whereas the smaller areas with shallow clays, and slightly saline areas tend to have only coolabah, mimosa bush and a ground cover of annual plant species. Invariably, Eucalyptus brownii (Reid River box) and E. whitei (White's ironbark) fringe the depressions. Regional ecosystem 10.3.15 is predominant. Site characteristics Landform element Average slope Plain 0% Site drainage Soil permeability Poorly drained Slowly permeable Flooding risk Inundation risk Low Very high Potential recharge to groundwater Soil depth Low Variable; >1,5m Present land use Grazing, wetlands Susceptibility to land degradation processes Sheet erosion Gully erosion Wind erosion Salting Very low Very low Low High This information has been generated from the Desert Uplands Land Resource Database. The Environmental Protection Agency accepts no liability for any decisions or actions taken on the basis of this information. State of Queensland. Environmental Protection Agency 2004. -
Eastern Australia Mulga Shrublands
Conservation Management Zones of Australia Eastern Australia Mulga Shrublands Prepared by the Department of the Environment Acknowledgements This project and its associated products are the result of collaboration between the Department of the Environment’s Biodiversity Conservation Division and the Environmental Resources Information Network (ERIN). Invaluable input, advice and support were provided by staff and leading researchers from across the Department of Environment (DotE), Department of Agriculture (DoA), the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the academic community. We would particularly like to thank staff within the Wildlife, Heritage and Marine Division, Parks Australia and the Environment Assessment and Compliance Division of DotE; Nyree Stenekes and Robert Kancans (DoA), Sue McIntyre (CSIRO), Richard Hobbs (University of Western Australia), Michael Hutchinson (ANU); David Lindenmayer and Emma Burns (ANU); and Gilly Llewellyn, Martin Taylor and other staff from the World Wildlife Fund for their generosity and advice. Special thanks to CSIRO researchers Kristen Williams and Simon Ferrier whose modelling of biodiversity patterns underpinned identification of the Conservation Management Zones of Australia. Image Credits Front Cover: Paroo-Darling National Park – Peter Taylor, Parks Australia Page 4: Mulga on John Egan Pioneer Track – Dragi Markovic Page 10: Mulga Parrot (Psephotus varius) – Brian Furby Page 14: Paper daisies, Paroo-Darling National Park – J. Doyle/OEH Page 15: Lake Wyara – Adam Creed, © The State of Queensland (Department of Environment and Heritage Protection) Page 18: Cassia flowers, Paroo-Darling National Park – J. Doyle/OEH Page 19: Bridled Nail-tail Wallaby (Onychogalea fraenata) – Dave Watts Page 21: Australian Painted Snipes (Rostratula australis) – Graeme Chapman Page 22: Wild hop, Paroo-Darling National Park – J. -
Shrubs Shrubs
Shrubs Shrubs 86 87 biibaya Broom bush Language name biibaya (yuwaalaraay) Scientific name Melaleuca uncinata Plant location Shrubs The biibaya (Broom Bush) is widespread through mallee, woodland and forest in the western part of the Border Rivers and Gwydir catchments. It often grows on sandy soils. Plant description The biibaya is an upright shrub with many stems growing from the main trunk. It grows between 1 to 3 metres high. The bark on older stems is papery. It has long, thin leaves which look like the bristles on a broom. Many fruit join together in a cluster which looks like a globe. Traditional use Can you guess what this plant was used for from its common name? The stems and girran.girraa (leaves) of the biibaya provided a useful broom. Bungun (branches) can also be cut and dried for use in brush fences. Paperbark trees (plants belonging to the genus Melaleuca) had many other uses also. The papery nganda (bark) was used to wrap meat for cooking and as plates, as well as being used as bandages, raincoats, shelter, blankets, twine and many other things. The nectar from the gurayn (flowers) could be eaten or drunk, steeped in water, as a sweet drink. Crushing the girran.girraa provides oil. Young girran.girraa can be chewed, or pounded and mixed with water, to treat colds, respiratory complaints and headaches. This mixture was also used as a general tonic. Inhaling the steam from boiling or burning the leaves provides relief from cold, flu and sinusitis (Howell 1983, Stewart & Percival 1997). The gurayn were also used for decoration. -
Palatability of Plants to Camels (DBIRD NT)
Technote No. 116 June 2003 Agdex No: 468/62 ISSN No: 0158-2755 The Palatability of Central Australian Plant Species to Camels Dr B. Dorges, Dr J. Heucke, Central Australian Camel Industry Association and R. Dance, Pastoral Division, Alice Springs BACKGROUND About 600,000 camels (Camelus dromedarius) are believed to inhabit the arid centre of Australia, mainly in South Australia, Western Australia and the Northern Territory. Most of these camels are feral. A small camel industry has developed, which harvests selected animals for domestic and export markets, primarily for meat. Camels can eat more than 80% of the common plant species found in Central Australia. Some plant species are actively sought by camels and may need to be protected. METHOD Observations of grazing preferences by camels were made periodically for up to 12 years on five cattle stations in Central Australia. Where camels were accustomed to the presence of humans, it was possible to observe their grazing preferences from a few metres. Radio transmitters were fitted on some camels for easy detection and observation at any time. These evaluations were used to establish a diet preference or palatability index for observed food plants. Table 1. Palatability index for camels Index Interpretation 1 only eaten when nothing else is available 2 rarely eaten 3 common food plant 4 main food plant at times 5 preferred food plant 6 highly preferred food plant 7 could be killed by camel browsing More information can be obtained from the web site of the Central Australian Camel Industry Association http://www.camelsaust.com.au 2 RESULTS Table 2. -
Impacts of Land Clearing
Impacts of Land Clearing on Australian Wildlife in Queensland January 2003 WWF Australia Report Authors: Dr Hal Cogger, Professor Hugh Ford, Dr Christopher Johnson, James Holman & Don Butler. Impacts of Land Clearing on Australian Wildlife in Queensland ABOUT THE AUTHORS Dr Hal Cogger Australasian region” by the Royal Australasian Ornithologists Union. He is a WWF Australia Trustee Dr Hal Cogger is a leading Australian herpetologist and former member of WWF’s Scientific Advisory and author of the definitive Reptiles and Amphibians Panel. of Australia. He is a former Deputy Director of the Australian Museum. He has participated on a range of policy and scientific committees, including the Dr Christopher Johnson Commonwealth Biological Diversity Advisory Committee, Chair of the Australian Biological Dr Chris Johnson is an authority on the ecology and Resources Study, and Chair of the Australasian conservation of Australian marsupials. He has done Reptile & Amphibian Specialist Group (IUCN’s extensive research on herbivorous marsupials of Species Survival Commission). He also held a forests and woodlands, including landmark studies of Conjoint Professorship in the Faculty of Science & the behavioural ecology of kangaroos and wombats, Mathematics at the University of Newcastle (1997- the ecology of rat-kangaroos, and the sociobiology of 2001). He is a member of the International possums. He has also worked on large-scale patterns Commission on Zoological Nomenclature and is a in the distribution and abundance of marsupial past Secretary of the Division of Zoology of the species and the biology of extinction. He is a member International Union of Biological Sciences. He is of the Marsupial and Monotreme Specialist Group of currently the John Evans Memorial Fellow at the the IUCN Species Survival Commission, and has Australian Museum. -
Chemical Composition and Cytotoxicity of Oils and Eremophilanes Derived from Various Parts of Eremophila Mitchellii Benth
Chemical composition and cytotoxicity of oils and eremophilanes derived from various parts of Eremophila mitchellii Benth. (Myoporaceae) Author Beattie, Karren D, Waterman, Peter G, Forster, Paul I, Thompson, Dion R, Leach, David N Published 2011 Journal Title Phytochemistry DOI https://doi.org/10.1016/j.phytochem.2010.12.011 Copyright Statement © 2011 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/42599 Griffith Research Online https://research-repository.griffith.edu.au *Graphical Abstract Chemical composition and cytotoxicity of oils and eremophilanes derived from various parts of Eremophila mitchellii Benth. (Myoporaceae) Karren D. Beattie,a*1 Peter G. Waterman,a Paul I. Forster,b Dion R. Thompsona, David N. Leacha a Centre for Phytochemistry and Pharmacology, Southern Cross University, PO Box 157, Lismore NSW 2480, Australia b Queensland Herbarium, Environmental Protection Agency, Brisbane Botanic Gardens, Mt Coot- tha Road, Toowong QLD 4266, Australia *Corresponding author: Dr Karren Beattie [email protected] phone: + 61 2 6622 3211 fax: + 61 2 6622 3459 Graphical Abstract The biologically active wood, leaf, branch and root oils of Eremophila mitchellii (Benth.) were investigated in detail. 9-Hydroxy-1,7(11),9-eremophilatrien-8-one (9), and five previously identified eremophilane sesquiterpenes and the zizaene sesquithuriferone were isolated and elucidated. 1 Present address: School of Pharmacy, Griffith University, Gold Coast campus, QLD, 4222, Australia. *Research Highlights E. mitchellii contains eremophilanes; a class of rare bicyclic sesquiterpenes The chemical composition of the wood, leaf, root and branch oils of E. -
Chemistry, Bioactivity and Prospects for Australian Agriculture
Agriculture 2015, 5, 48-102; doi:10.3390/agriculture5010048 OPEN ACCESS agriculture ISSN 2077-0472 www.mdpi.com/journal/agriculture Review A Contemporary Introduction to Essential Oils: Chemistry, Bioactivity and Prospects for Australian Agriculture Nicholas Sadgrove * and Graham Jones Pharmaceuticals and Nutraceuticals Group, Centre for Bioactive Discovery in Health and Ageing, University of New England, S & T McClymont Building UNE, Armidale NSW 2351, Australia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-481-130-595. Academic Editor: Muraleedharan G. Nair Received: 1 November 2014 / Accepted: 10 February 2015 / Published: 3 March 2015 Abstract: This review is a comprehensive introduction to pertinent aspects of the extraction methodology, chemistry, analysis and pharmacology of essential oils, whilst providing a background of general organic chemistry concepts to readers from non-chemistry oriented backgrounds. Furthermore, it describes the historical aspects of essential oil research whilst exploring contentious issues of terminology. This follows with an examination of essential oil producing plants in the Australian context with particular attention to Aboriginal custom use, historical successes and contemporary commercial prospects. Due to the harsh dry environment of the Australian landmass, particularly to the cyclical climatic variation attendant upon repeated glaciation/post-glaciation cycles, the arid regions have evolved a rich assortment of unique endemic essential oil yielding plants. Though some of these aromatic plants (particularly myrtaceous species) have given birth to commercially valuable industries, much remains to be discovered. Given the market potential, it is likely that recent discoveries in our laboratory and elsewhere will lead to new product development. -
The Diversity of Volatile Compounds in Australia's Semi-Desert Genus
plants Article The Diversity of Volatile Compounds in Australia’s Semi-Desert Genus Eremophila (Scrophulariaceae) Nicholas J. Sadgrove 1,* , Guillermo F. Padilla-González 1 , Alison Green 1, Moses K. Langat 1 , Eduard Mas-Claret 1, Dane Lyddiard 2 , Julian Klepp 2 , Sarah V. A.-M. Legendre 2, Ben W. Greatrex 2, Graham L. Jones 2, Iskandar M. Ramli 2, Olga Leuner 3 and Eloy Fernandez-Cusimamani 3,* 1 Jodrell Science Laboratory, Royal Botanic Gardens Kew, Richmond TW9 3DS, UK; [email protected] (G.F.P.-G.); [email protected] (A.G.); [email protected] (M.K.L.); [email protected] (E.M.-C.) 2 School of Science and Technology and School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia; [email protected] (D.L.); [email protected] (J.K.); [email protected] (S.V.A.-M.L.); [email protected] (B.W.G.); [email protected] (G.L.J.); [email protected] (I.M.R.) 3 Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; [email protected] * Correspondence: [email protected] (N.J.S.); [email protected] (E.F.-C.); Tel.: +44-785-756-9823 (N.J.S.); +420-224-382-183 (E.F.-C.) Abstract: Australia’s endemic desert shrubs are commonly aromatic, with chemically diverse ter- penes and phenylpropanoids in their headspace profiles. Species from the genus Eremophila (Scro- Citation: Sadgrove, N.J.; phulariaceae ex. -
29 April 2020 Santos Reference: CB20-05 Ms Dominique Taylor
29 April 2020 Santos Reference: CB20-05 Ms Dominique Taylor Team Leader, Energy, Extractive and South West QLD Compliance (Assessment) Department of Environment and Science Level 7, 400 George Street BRISBANE QLD 4000 Dear Dominique, Application to Amend Environmental Authority EPPG00407213 (Petroleum Lease (PL) 80) Santos Ltd (Santos) on behalf of its joint venture partners has prepared the attached application to amend Environmental Authority (EA) EPPG00407213. The application has been prepared in accordance with Sections 226 and 227 of the Environmental Protection Act 1994 (EP Act). This application seeks a change to the scale and intensity for the activities authorised by the EA through the amendment of conditions A1 - A3. The following information is attached in support of the amendment application: • Attachment 1 – EA Amendment Application Form • Attachment 2 – Supporting Information The amendment application has been prepared as a major amendment. The application fee of $334.90 has been paid upon lodgement of the application. Please contact me on 3838 5696 or [email protected] should you have any questions in relation to the application. Yours sincerely, Elizabeth Dunlop Santos Limited Attachment 1 – EA Amendment Application Form Attachment 2 – Supporting Information Attachment 2 – Supporting Information for an Environmental Authority (EA) Amendment Application Petroleum Lease (PL) 80 EA EPPG00407213 Table of Contents: 1. Introduction .............................................................................................................................. -
Vegetation of Culgoa National Park, Central Northern New South Wales
275 Vegetation of Culgoa National Park, central northern New South Wales John T. Hunter School of Human and Environmental Studies, University of New England, Armidale, NSW 2351, AUSTRALIA. Email: [email protected] Abstract: The vegetation of Culgoa National Park (22 986 ha in area; 29°15’ S, 147°15’ E) in the central north of New South Wales, approximately 40 km west of Goodooga and adjoining the NSW/Queensland border, is described. Six vegetation communities are delineated based on UPGMA analysis of cover-abundance scores of all vascular plant taxa. These communities are mapped based on ground truthing and air photo interpretation. All communities are simple in structure being primarily woodlands, shrublands and grasslands. Communities described are: 1) Eucalyptus coolabah Woodlands, 2) Muehlenbeckia florulenta Shrubby Thickets, 3) Eucalyptus coolabah – Acacia pendula Woodlands & Grasslands, 4) Eucalyptus largiflorens – Eucalyptus coolabah Woodlands, 5) Eucalyptus largiflorens – Alectryon oleifolius Woodlands, 6) Callitris glaucophylla – Eucalyptus populnea Woodlands and Shrublands. A total of 240 vascular plant taxa were found of which 8% were exotic in origin. Conservation issues are discussed. Cunninghamia (2005) 9(2): 275–284 Introduction 1947 (Gentilli 1971). Since that time the rainfall has been substantially higher and there has been an increase in the Culgoa National Park (29°15’ S, 147°15’ E) is located near amount of summer rainfall (Pickard & Norris 1994). There Weilmoringle, in the central north of New South Wales, are long hot summers and short cold winters. The average approximately 40 km west of Goodooga and 80 km north maximum and minimum temperatures for summer are 36°C of Brewarrina. -
Eremophila Study Group Newsle3ef2 No. 3 September 1973
EREMOPHILA STUDY GROUP NEWSLE3EF2 NO. 3 SEPTEMBER 1973 It is six months since the last Newsletter and we have enrolled fifteen new members, with our membership now approaching 50. We have added several new species to the list of those in cultivation, and dispatched many parcels of cuttings and exchanged plants between members. The amount of work going on among the members whom I see regularly is most encouraging. SPECIES BUILDUP There is no doubt that we have a difficult genus to distribute as there is still no answer to seed germination. The problems involved in collection and packaging cuttings and the uncertainty in striking many species, especially for beginners, ore much greater ' than storing packets of seed on a shelf; yet despite this there are many more Eremophila now being grown than before the Group began operating. Even learners have been able to strike many of those suggested in Newsletter no. 2. Since February we have struck E. pachyphylla, E. parvifolia, and some still awaiting identification from my W.A. trip, and have built-up numbers of those which were represented by only very few specimens such as E. battii, E. bowmanii (round leaf), 5 eriabatrya, E. obovata, E. pentaptera, and E. punicea. It is unlikely that we will lose these species now. Added to the species list, but only represented by one or two plants, are E. gibsonii, E. spectabilis, and E. willsii. Several members have set cuttings of many species which are either new to culti- vation or in very limited numbers. Several of these resulted from a trip I was oble to make to Innamincka and south-west Queensland, while other specimens have been sent from W.A. -
Cattle Creek Ecological Assessment Report
CATTLE CREEK CCCATTLE CCCREEK RRREGIONAL EEECOSYSTEM AND FFFUNCTIONALITY SSSURVEY Report prepared for Santos GLNG Feb 2021 Terrestria Pty Ltd, PO Box 328, Wynnum QLD 4178 Emai : admin"terrestria.com.au This page left blank for double-sided printing purposes. Terrestria Pty Ltd, PO Box 328, Wynnum QLD 4178 Emai : admin"terrestria.com.au Document Control Sheet Project Number: 0213 Project Manager: Andrew Daniel Client: Santos Report Title: Cattle Creek Regional Ecosystem and Functionality Survey Project location: Cattle Creek, Bauhinia, Southern Queensland Project Author/s: Andrew Daniel Project Summary: Assessment of potential ecological constraints to well pad location, access and gathering. Document preparation and distribution history Document version Date Completed Checked By Issued By Date sent to client Draft A 04/09/2020 AD AD 04/09/2020 Draft B Final 02/02/2021 AD AD 02/02/2021 Notice to users of this report CopyrighCopyright: This document is copyright to Terrestria Pty Ltd. The concepts and information contained in this document are the property of Terrestria Pty Ltd. Use or copying of this document in whole or in part without the express permission of Terrestria Pty Ltd constitutes a breach of the Copyright Act 1968. Report LimitationsLimitations: This document has been prepared on behalf of and for the exclusive use of Santos Pty Ltd. Terrestria Pty Ltd accept no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party. Signed on behalf of Terrestria Pty Ltd Dr Andrew Daniel Managing Director Date: 02 February 2021 Terrestria Pty Ltd File No: 0213 CATTLE CREEK REGIONAL ECOSYSTEM AND FUNCTIONALITY SURVEY Table of Contents 1.0 INTRODUCTION ...............................................................................................................