The Effects of Shrub Removal and Grazing on Vegetation and Soils in a Shrub-Encroached Australian Woodland

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Shrub Removal and Grazing on Vegetation and Soils in a Shrub-Encroached Australian Woodland The effects of shrub removal and grazing on vegetation and soils in a shrub-encroached Australian woodland Stefani Daryanto A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science February 2013 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Daryanto First name: Stefani Other name/s: Abbreviation for degree as given in the University calendar: PhD School: School of Biological, Earth and Environmental Faculty: Science Sciences Title: The effects of shrub removal and grazing on vegetation and soils in a shrub-encroached Australian woodland Abstract 350 words maximum: Plant communities and soil properties in many dryland ecosystems have changed dramatically over the past century due to the proliferation of woody plants, caused largely by the introduction of livestock grazing, changes to natural fire regimes, and climate. Areas heavily encroached by shrubs are generally regarded as degraded, and this view is largely based on the fact that shrubs reduce pastoral productivity. There have been many attempts to remove shrubs in pastoral systems using chemical, biological and mechanical techniques to improve pastoral production. It remains unclear, however, whether shrubs per se or the interactions between grazing and climate are responsible for the putative reductions in pastoral productivity in shrub−encroached areas. This thesis examines the long−term ecological effects of mechanical shrub removal by blade−ploughing, with and without grazing, on vegetation and soils in shrub−encroached woodlands in eastern Australia. The results show that the combination of ploughing and grazing creates dramatic effects on soils and vegetation in this dryland system. Chapter 1 provides an overview of shrub encroachment phenomenon, its common association with degradation, as well as the benefits of shrubs and the overall encroachment effects on ecosystem processes. The chapter also describes the results of previous attempts to control shrubs using mechanical removal techniques. Chapters 2 and 3 examine the changes in vegetation and soil disturbances by animals, respectively, that result from mechanical shrub removal. Chapter 4 compares soil properties between ploughed sites occupied by newly−regenerated shrubs and unploughed sites dominated by mature shrubs. Chapters 5 and 6 describe the changes in the spatial distribution of soil nutrients and infiltration of water in a shrubland resulting from different combinations of ploughing and grazing. Chapter 7 examines the role of shrub−encroached lands as sinks for aboveground and belowground carbon (C) and considers the effects of different landscape elements (e.g. shrubs, log or debris mounds, trees) on C storage. Chapter 8, provides a conclusion, and evaluates the potentially negative effects of shrub removal as part of a land management strategy in this semi−arid system and explores the ecosystem values of shrubs including other possibilities to manage shrublands and suggestions for future research. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only) ………………………… ……… ……………………………………..……… ……….………… Signature Witness Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …… ………………………………………. Date .......12 February 2013………………….............. COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.' Signed ……… ……………………………………........................... Date …………22 May 2013…………………………………........................... AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ……… ……………………………………........................... Date ………22 May 2013……………………………………........................... Statement of contributions of co-authors and declarations of permission to publish All publishers and co-authors have granted permission for the following publications to be submitted and published as a thesis. No other authors will be submitting this work as part of their thesis submissions. The contribution of each author to the respective publications is stated below. Chapter 2 Plant and soil surface responses to a combination of shrub removal and grazing in a shrub-encroached woodland Journal of Environmental Management 91 (2010): 2639–2648. DOI: 10.1016/j.jenvman.2010.07.038 Authors: Stefani Daryanto and David J. Eldridge Stefani Daryanto (SD) can claim more than 50% of the work since she undertook all of the field and laboratory work, and 70% of the data analyses that are reported in the paper. She also wrote about 80% of the manuscript. Statistical advice and assistance on the paper was provided by Terry Koen (TBK), a biometrician at the Office of Environment and Heritage, and supervised by Dr David Eldridge (DJE). No other authors will be submitting this work as part of their thesis submissions. This article has been reproduced with kind permission from Journal of Environmental Management and Elsevier. For articles published in Journal of Environmental Management the author retains the right to include the journal article, in full, in a thesis of dissertation. Chapter 3 Shrub hummocks as foci for small animal disturbances in an encroached shrubland Journal of Arid Environments 80 (2012): 35–39. DOI: 10.1016/j.jaridenv.2011.12.001 Authors: Stefani Daryanto and David J. Eldridge SD undertook all of the data analysis, 60% of the field work and wrote 70% of the manuscript. No other authors will be submitting this work as part of their thesis submissions. Advice on statistics was provided by Dr Santiago Soliveres, a post- doctoral fellow working in the Eldridge Lab. The study was conceived by DJE, and supervision was by DJE. This article has been reproduced with kind permission from Journal of Arid Environments and Elsevier. For articles published in Journal of Arid Environments the author retains the right to include the journal article, in full, in a thesis of dissertation. Chapter 4 Soil nutrients under shrub hummocks and debris mounds two decades after ploughing Plant and Soil 351 (2012): 405–419. DOI: 10.1007/s11104-011-0978-5 Authors: Stefani Daryanto , David J. Eldridge, and Terry B. Koen SD undertook more than 75% of the manuscript writing, all of the field and laboratory work. Statistical advice and assistance on the paper was provided by TBK. The study was conceived by DJE, and supervision was by DJE. No other authors will be submitting this work as part of their thesis submissions. Copyright notice: This article was reproduced with kind permission from Springer Science+Business Media: Plant and Soil, Soil nutrients under shrub hummocks and debris mounds two decades after ploughing, 351, 2012, Daryanto, S., Eldridge, D. J., Koen, T. B. (Licence number: 2978620009867). Chapter 5 Ploughing and grazing alter the spatial patterning of surface soils in a shrub-encroached woodland Geoderma 200–201 (2013): 67-76. DOI: 10.1016/j.geoderma.2013.02.006 Authors: Stefani Daryanto, David J. Eldridge, and Lixin Wang SD undertook more than 75% of the manuscript writing, all of the field and laboratory work. Statistical advice and assistance on the paper was provided by Lixin Wang (LW). The study was conceived by DJE and SD, and supervision was by DJE. No other authors will be submitting this work as part of their thesis submissions. Chapter 6 Infiltration of water varies with disturbance in a shrub-encroached woodland Geomorphology in press.
Recommended publications
  • Eastern Australia Mulga Shrublands
    Conservation Management Zones of Australia Eastern Australia Mulga Shrublands Prepared by the Department of the Environment Acknowledgements This project and its associated products are the result of collaboration between the Department of the Environment’s Biodiversity Conservation Division and the Environmental Resources Information Network (ERIN). Invaluable input, advice and support were provided by staff and leading researchers from across the Department of Environment (DotE), Department of Agriculture (DoA), the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the academic community. We would particularly like to thank staff within the Wildlife, Heritage and Marine Division, Parks Australia and the Environment Assessment and Compliance Division of DotE; Nyree Stenekes and Robert Kancans (DoA), Sue McIntyre (CSIRO), Richard Hobbs (University of Western Australia), Michael Hutchinson (ANU); David Lindenmayer and Emma Burns (ANU); and Gilly Llewellyn, Martin Taylor and other staff from the World Wildlife Fund for their generosity and advice. Special thanks to CSIRO researchers Kristen Williams and Simon Ferrier whose modelling of biodiversity patterns underpinned identification of the Conservation Management Zones of Australia. Image Credits Front Cover: Paroo-Darling National Park – Peter Taylor, Parks Australia Page 4: Mulga on John Egan Pioneer Track – Dragi Markovic Page 10: Mulga Parrot (Psephotus varius) – Brian Furby Page 14: Paper daisies, Paroo-Darling National Park – J. Doyle/OEH Page 15: Lake Wyara – Adam Creed, © The State of Queensland (Department of Environment and Heritage Protection) Page 18: Cassia flowers, Paroo-Darling National Park – J. Doyle/OEH Page 19: Bridled Nail-tail Wallaby (Onychogalea fraenata) – Dave Watts Page 21: Australian Painted Snipes (Rostratula australis) – Graeme Chapman Page 22: Wild hop, Paroo-Darling National Park – J.
    [Show full text]
  • Shrubs Shrubs
    Shrubs Shrubs 86 87 biibaya Broom bush Language name biibaya (yuwaalaraay) Scientific name Melaleuca uncinata Plant location Shrubs The biibaya (Broom Bush) is widespread through mallee, woodland and forest in the western part of the Border Rivers and Gwydir catchments. It often grows on sandy soils. Plant description The biibaya is an upright shrub with many stems growing from the main trunk. It grows between 1 to 3 metres high. The bark on older stems is papery. It has long, thin leaves which look like the bristles on a broom. Many fruit join together in a cluster which looks like a globe. Traditional use Can you guess what this plant was used for from its common name? The stems and girran.girraa (leaves) of the biibaya provided a useful broom. Bungun (branches) can also be cut and dried for use in brush fences. Paperbark trees (plants belonging to the genus Melaleuca) had many other uses also. The papery nganda (bark) was used to wrap meat for cooking and as plates, as well as being used as bandages, raincoats, shelter, blankets, twine and many other things. The nectar from the gurayn (flowers) could be eaten or drunk, steeped in water, as a sweet drink. Crushing the girran.girraa provides oil. Young girran.girraa can be chewed, or pounded and mixed with water, to treat colds, respiratory complaints and headaches. This mixture was also used as a general tonic. Inhaling the steam from boiling or burning the leaves provides relief from cold, flu and sinusitis (Howell 1983, Stewart & Percival 1997). The gurayn were also used for decoration.
    [Show full text]
  • Chemical Composition and Cytotoxicity of Oils and Eremophilanes Derived from Various Parts of Eremophila Mitchellii Benth
    Chemical composition and cytotoxicity of oils and eremophilanes derived from various parts of Eremophila mitchellii Benth. (Myoporaceae) Author Beattie, Karren D, Waterman, Peter G, Forster, Paul I, Thompson, Dion R, Leach, David N Published 2011 Journal Title Phytochemistry DOI https://doi.org/10.1016/j.phytochem.2010.12.011 Copyright Statement © 2011 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/42599 Griffith Research Online https://research-repository.griffith.edu.au *Graphical Abstract Chemical composition and cytotoxicity of oils and eremophilanes derived from various parts of Eremophila mitchellii Benth. (Myoporaceae) Karren D. Beattie,a*1 Peter G. Waterman,a Paul I. Forster,b Dion R. Thompsona, David N. Leacha a Centre for Phytochemistry and Pharmacology, Southern Cross University, PO Box 157, Lismore NSW 2480, Australia b Queensland Herbarium, Environmental Protection Agency, Brisbane Botanic Gardens, Mt Coot- tha Road, Toowong QLD 4266, Australia *Corresponding author: Dr Karren Beattie [email protected] phone: + 61 2 6622 3211 fax: + 61 2 6622 3459 Graphical Abstract The biologically active wood, leaf, branch and root oils of Eremophila mitchellii (Benth.) were investigated in detail. 9-Hydroxy-1,7(11),9-eremophilatrien-8-one (9), and five previously identified eremophilane sesquiterpenes and the zizaene sesquithuriferone were isolated and elucidated. 1 Present address: School of Pharmacy, Griffith University, Gold Coast campus, QLD, 4222, Australia. *Research Highlights E. mitchellii contains eremophilanes; a class of rare bicyclic sesquiterpenes The chemical composition of the wood, leaf, root and branch oils of E.
    [Show full text]
  • Vegetation Patterns of Eastern South Australia : Edaphic Control and Effects of Herbivory
    ì ,>3.tr .qF VEGETATION PATTERNS OF EASTERN SOUTH AUSTRALIA: EDAPHIC CONTROL &. EFFECTS OF HERBIVORY by Fleur Tiver Department of Botany The University of Adelaide A thesis submitted to the University of Adelaide for the degree of Doctor of Philosophy ar. The University of Adelaide (Faculty of Science) March 1994 dlq f 5 þø,.^roÅe*l *' -f; ri:.f.1 Frontispiece The Otary Ranges in eastern und is near the Grampus Range, and the the torvn of Yunta. The Pho TABLE OF CONTENTS Page: Title & Frontispiece i Table of Contents 11 List of Figures vll List of Tables ix Abstract x Declaration xüi Acknowledgements xiv Abbreviations & Acronyms xvü CHAPTER 1: INTRODUCTION & SCOPE OF THE STUDY INTRODUCTION 1 VEGETATION AS NATURAL HERITAGE 1 ARID VEGETATION ) RANGELANDS 3 TTTE STUDY AREA 4 A FRAMEWORK FOR THIS STUDY 4 CONCLUSION 5 CHAPTER 2: THE THEORY OF VEGETATION SCIENCE INTRODUCTION 6 INDUCTTVE, HOLIS TIC, OB S ERVATIONAL & S YNECOLOGICAL VERSUS DEDU CTIVE, EXPERIMENTAL, REDUCTIONI S T & AUTECOLOGICAL RESEARCH METHODS 7 TT{E ORGANISMIC (ECOSYSTEM) AND INDIVIDUALISTIC (CONTINUUM) CONCEPTS OF VEGETATION 9 EQUILIBRruM & NON-EQUILIBRruM CONTROL OF VEGETATON PATTERNS T3 EQUILIBRruM VS STATE-AND-TRANSITON MODELS OF VEGETATON DYNAMICS 15 CONCLUSIONS 16 11 CHAPTER 3: METHODS IN VEGETATION SCIENCE INTRODUCTION t7 ASPECT & SCALE OF VEGETATION STUDIES t7 AUTECOT-OGY Crr-rE STUDY OF POPULATTONS) & SYNEC:OLOGY (TI{E STUDY OF CTfMML'NTTTES) - A QUESTION OF SCALE l8 AGE-CLASS & STAGE-CLASS DISTRIBUTIONS IN POPULATION STUDIES t9 NUMERICAL (OBJECTIVE) VS DES CRIPTIVE (SUBJECTTVE) TECHNIQUES 20 PHYSIOGNOMIC & FLORISTIC METHODS OF VEGETATION CLASSIFICATON 22 SCALE OF CLASSIFICATION 24 TYPES OF ORDINATON 26 CIOMBINATION OF CLASSIFICATION & ORDINATION (COMPLEMENTARY ANALY SIS ) 27 CONCLUSIONS 28 CHAPTER 4: STUDY AREA .
    [Show full text]
  • Chemistry, Bioactivity and Prospects for Australian Agriculture
    Agriculture 2015, 5, 48-102; doi:10.3390/agriculture5010048 OPEN ACCESS agriculture ISSN 2077-0472 www.mdpi.com/journal/agriculture Review A Contemporary Introduction to Essential Oils: Chemistry, Bioactivity and Prospects for Australian Agriculture Nicholas Sadgrove * and Graham Jones Pharmaceuticals and Nutraceuticals Group, Centre for Bioactive Discovery in Health and Ageing, University of New England, S & T McClymont Building UNE, Armidale NSW 2351, Australia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-481-130-595. Academic Editor: Muraleedharan G. Nair Received: 1 November 2014 / Accepted: 10 February 2015 / Published: 3 March 2015 Abstract: This review is a comprehensive introduction to pertinent aspects of the extraction methodology, chemistry, analysis and pharmacology of essential oils, whilst providing a background of general organic chemistry concepts to readers from non-chemistry oriented backgrounds. Furthermore, it describes the historical aspects of essential oil research whilst exploring contentious issues of terminology. This follows with an examination of essential oil producing plants in the Australian context with particular attention to Aboriginal custom use, historical successes and contemporary commercial prospects. Due to the harsh dry environment of the Australian landmass, particularly to the cyclical climatic variation attendant upon repeated glaciation/post-glaciation cycles, the arid regions have evolved a rich assortment of unique endemic essential oil yielding plants. Though some of these aromatic plants (particularly myrtaceous species) have given birth to commercially valuable industries, much remains to be discovered. Given the market potential, it is likely that recent discoveries in our laboratory and elsewhere will lead to new product development.
    [Show full text]
  • Cunninghamia Date of Publication: September 2016 a Journal of Plant Ecology for Eastern Australia
    Cunninghamia Date of Publication: September 2016 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) Vegetation of Naree and Yantabulla stations on the Cuttaburra Creek, Far North Western Plains, New South Wales John T. Hunter1 & Vanessa H. Hunter2 1School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 AUSTRALIA; email: [email protected] 2Hewlett Hunter Pty Ltd, Armidale, NSW 2350 AUSTRALIA. Abstract: Naree and Yantabulla stations (31,990 ha) are found 60 km south-east of Hungerford and 112 km north-west of Bourke, New South Wales (lat. 29° 55'S; long. 150°37'N). The properties occur on the Cuttaburra Creek within the Mulga Lands Bioregion. We describe the vegetation assemblages found on these properties within three hierarchical levels (Group, Alliance & Association). Vegetation levels are defined based on flexible UPGMA analysis of cover- abundance scores of all vascular plant taxa. These vegetation units are mapped based on extensive ground truthing, SPOT5 imagery interpretation and substrate. Three ‘Group’ level vegetation types are described: Mulga Complex, Shrublands Complex and Floodplain Wetlands Complex. Within these Groups nine ‘Alliances’ are described: Rat’s tail Couch – Lovegrass Grasslands, Canegrass Grasslands, Lignum – Glinus Shrublands, Coolibah – Black Box Woodlands, Turpentine – Button Grass – Windmill Grass Shrublands, Turpentine – Hop Bush – Kerosene Grass shrublands and Mulga Shrublands. Sixteen ‘Associations’ are described 1)
    [Show full text]
  • The Diversity of Volatile Compounds in Australia's Semi-Desert Genus
    plants Article The Diversity of Volatile Compounds in Australia’s Semi-Desert Genus Eremophila (Scrophulariaceae) Nicholas J. Sadgrove 1,* , Guillermo F. Padilla-González 1 , Alison Green 1, Moses K. Langat 1 , Eduard Mas-Claret 1, Dane Lyddiard 2 , Julian Klepp 2 , Sarah V. A.-M. Legendre 2, Ben W. Greatrex 2, Graham L. Jones 2, Iskandar M. Ramli 2, Olga Leuner 3 and Eloy Fernandez-Cusimamani 3,* 1 Jodrell Science Laboratory, Royal Botanic Gardens Kew, Richmond TW9 3DS, UK; [email protected] (G.F.P.-G.); [email protected] (A.G.); [email protected] (M.K.L.); [email protected] (E.M.-C.) 2 School of Science and Technology and School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia; [email protected] (D.L.); [email protected] (J.K.); [email protected] (S.V.A.-M.L.); [email protected] (B.W.G.); [email protected] (G.L.J.); [email protected] (I.M.R.) 3 Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; [email protected] * Correspondence: [email protected] (N.J.S.); [email protected] (E.F.-C.); Tel.: +44-785-756-9823 (N.J.S.); +420-224-382-183 (E.F.-C.) Abstract: Australia’s endemic desert shrubs are commonly aromatic, with chemically diverse ter- penes and phenylpropanoids in their headspace profiles. Species from the genus Eremophila (Scro- Citation: Sadgrove, N.J.; phulariaceae ex.
    [Show full text]
  • Summary of Sites on Lochern National Park
    Summary of Sites on Lochern National Park April 2013 Sunset, Lochern National Park Acknowledgments Ausplots Rangelands gratefully acknowledges the Staff at Lochern and the Queensland Department of National Parks, Recreation, Sport and Racing for their help and support during the project and for allowing access to the property. Thanks to the staff from the Queenslands Department of Science, Information Technology and Innovation, in particular, Selwyn Counter for their help and support. Thanks also to the many other volunteers who have helped with data curation and sample processing. Thanks also to the staff from the QLD Herabrium for undertaking the plant indentications. Contents Introduction......................................................................................................................................................... 1 Accessing the Data ............................................................................................................................................... 3 Point intercept data .................................................................................................................................... 3 Plant collections .......................................................................................................................................... 3 Leaf tissue samples...................................................................................................................................... 3 Site description information .......................................................................................................................
    [Show full text]
  • Eremophila Study Group Newsle3ef2 No. 3 September 1973
    EREMOPHILA STUDY GROUP NEWSLE3EF2 NO. 3 SEPTEMBER 1973 It is six months since the last Newsletter and we have enrolled fifteen new members, with our membership now approaching 50. We have added several new species to the list of those in cultivation, and dispatched many parcels of cuttings and exchanged plants between members. The amount of work going on among the members whom I see regularly is most encouraging. SPECIES BUILDUP There is no doubt that we have a difficult genus to distribute as there is still no answer to seed germination. The problems involved in collection and packaging cuttings and the uncertainty in striking many species, especially for beginners, ore much greater ' than storing packets of seed on a shelf; yet despite this there are many more Eremophila now being grown than before the Group began operating. Even learners have been able to strike many of those suggested in Newsletter no. 2. Since February we have struck E. pachyphylla, E. parvifolia, and some still awaiting identification from my W.A. trip, and have built-up numbers of those which were represented by only very few specimens such as E. battii, E. bowmanii (round leaf), 5 eriabatrya, E. obovata, E. pentaptera, and E. punicea. It is unlikely that we will lose these species now. Added to the species list, but only represented by one or two plants, are E. gibsonii, E. spectabilis, and E. willsii. Several members have set cuttings of many species which are either new to culti- vation or in very limited numbers. Several of these resulted from a trip I was oble to make to Innamincka and south-west Queensland, while other specimens have been sent from W.A.
    [Show full text]
  • Native Species
    Birdlife Australia Gluepot Reserve PLANT SPECIES LIST These are species recorded by various observers. Species in bold have been vouchered. The list is being continually updated NATIVE SPECIES Species name Common name Acacia acanthoclada Harrow Wattle Acacia aneura Mulga Acacia brachybotrya Grey Mulga Acacia colletioides Wait a While Acacia hakeoides Hakea leaved Wattle Acacia halliana Hall’s Wattle Acacia ligulata Sandhill Wattle Acacia nyssophylla Prickly Wattle Acacia oswaldii Boomerang Bush Acacia rigens Needle Wattle Acacia sclerophylla var. sclerophylla Hard Leaved Wattle Acacia wilhelmiana Wilhelm’s Wattle Actinobole uliginosum Flannel Cudweed Alectryon oleifolius ssp. canescens Bullock Bush Amphipogon caricinus Long Grey Beard Grass Amyema miquelii Box Mistletoe Amyema miraculosa ssp. boormanii Fleshy Mistletoe Amyema preissii Wire Leaved Acacia Mistletoe Angianthus tomentosus Hairy Cup Flower Atriplex acutibractea Pointed Salt Bush Atriplex rhagodioides Spade Leaved Salt Bush Atriplex stipitata Bitter Salt Bush Atriplex vesicaria Bladder Salt Bush Austrodanthonia caespitosa Wallaby Grass Austrodanthonia pilosa Wallaby Grass Austrostipa elegantissima Elegant Spear Grass Austrostipa hemipogon Half Beard Spear grass Austrostipa nitida Balcarra Spear grass Austrostipa scabra ssp. falcata Rough Spear Grass Austrostipa scabra ssp. scabra Rough Spear Grass Austrostipa tuckeri Tucker’s Spear grass Baeckea crassifolia Desert Baeckea Baeckea ericaea Mat baeckea Bertya tasmanica ssp vestita Mitchell’s Bertya Beyeria lechenaultii Mallefowl
    [Show full text]
  • Eremophila Mitchellii
    Eremophila mitchellii Family: Scrophulariaceae Distribution: A variety of habitats in northern New South Wales and Queensland. Common False sandalwood, Budda. Name: Derivation of Eremophila...from Greek, eremos, desert and phileo, to Name: love, ie "desert loving", referring to the habitat of many of the species. mitchellii... After the explorer Sir Thomas Mitchell. Conservation Not considered to be at risk in the wild. Status: General Description: Eremophila is a large genus of 214 species, all endemic to Australia. They are generally plants of inland and arid areas and are popular with Australian plant enthusiasts. Eremophila mitchellii Photo: Keith Townsend Eremophila mitchellii is a large shrub or small tree to 10 metres high with flaky bark. The leaves are linear or lance-shaped up to 60 mm long by 5 mm wide with an acute, hooked apex. The flowers are usually white or cream but pale pink forms are known. They are about 10 - 18 mm long, tubular in shape and with spots within the throat. They occur in the leaf axils and are mainly seen in spring. The fruits are egg shaped and about 7 mm long. E.mitchellii is not widely cultivated but, like most eremophilas, it would be best suited to dry climates but should also be reasonably adaptable to more humid, temperate areas. It should grow on a variety of well drained soils, preferably in a sunny position. In some areas of Australia it is a serious pest of grazing land. The species is not permitted to be grown in Western Australia. Propagation from seed of Eremophila species is unreliable.
    [Show full text]
  • Nanya Station, Western New South Wales Vegetation, Flora and Fauna
    NANYA STATION, WESTERN NEW SOUTH WALES VEGETATION, FLORA AND FAUNA Prepared by Martin E. Westbrooke, Centre for Environmental Management, University of Ballarat Nanya Station, owned and managed by the University of Ballarat was purchased with assistance from the Department of Environment and Heritage. Ongoing management is supported by the Lower Murray Darling Catchment Management Authority FOREWORD 1 FOREWORD This booklet has been prepared as an introduction for visitors to Nanya. Nanya is managed for conservation, research and teaching and affords protection to highly significant environments including two endangered communities and seventeen endangered or vulnerable species. On your visit, please respect these values. NANYA STATION Nanya Station is located in the Scotia country of far western New South Wales and consists of the Nanya Western Lands Pastoral Lease 3281 – Perpetual Leasehold Lot 1244 in Deposited Plan 762778, Parish of Winnebaga, County of Tara. Nanya Homestead complex 2 BACKGROUND The Scotia region has one of the shortest stock grazing histories of western NSW. Along with five other properties, Nanya was created as a pastoral lease in 1927. Previously the area was part of the large Lake Victoria lease and stock grazing occurred only in wet years (Withers 1989). The original lease was taken up by Gordon Cummings in 1927. He first dug a dam near the southeast corner of the property. A larger ground tank and homestead at the site of the present complex was later established. An area around the homestead was cleared and cropped to provide feed for the horses used in digging the earth tanks. The ruins of the original building are located between the shearing shed and Homestead Tank.
    [Show full text]