Thesis Page 235

Part 4: Thesis conclusions and appendices

‘If you want to know the end, look at the beginning’

African Proverb

‘The rule which forbids ending a sentence with a preposition is the kind of nonsense up with which I will not put’

Sir Winston Churchill

‘If your knees aren’t green by the end of the day, you ought to seriously re- examine your life’

Bill Watterson

‘The will to overcome a passion is in the end merely the will of another or several other passions’

Friedrich Nietzsche

Thesis Page 236

Chapter 15 – Conclusion

Thesis Page 237

15.1.0 Summary

15.1.1 Part 1 – longifolia: ethnopharmacology, essential oil chemotypes and cytogeography

With regard to the identification and delineation of essential oil chemotypes of Eremophila longifolia, it is now clear that the first such chemotype identified in 1971 by Della and Jefferies, with an essential oil made up predominantly of the potentially hepatotoxic carcinogenic phenyopropanoids safrole and methyl eugenol, is confined to a small geographic region in ’s far west, in central-west . This is important since although E. longifolia has a widespread distribution throughout the Australian landmass perceptions still prevail that this single chemotype reflects the constituents of all individuals of the species. This is simply not true. Further clarification reveals that this chemotype is an unusual biotype with diploid cytology.

In all, a total of three diploid populations were identified in Australia, the other two being geographically clustered in western and producing terpenoid based essential oils via the mevalonate pathway. These ketone rich chemotypes, as is the case for the phenylpropanoid type, produce significantly high yields of essential oils, making them potentially suitable for commercial development. The first of these types is the isomenthone/menthone type (CT.A), which produces an essential oil yield at an impressive range of 3-8% g/g wet weight of . The second is the karahanaenone type (CT.B), yielding at a range of 1-5% for diploid specimens, or 0.3- 0.7% for tetraploid specimens. Both these high yielding diploid types are good candidates as cultivars for commercial plantations. Should such plantations be established and developed this would make a significant contribution to Australia’s essential oil industry. Essential oils and or/extracts from the high yielding CT.A isomenthone/menthone type could be used to make ointments and lotions suitable for topical, antifungal, aromatherapeutic and cosmeceutical/aesthetic applications (Table 1). At present it is unclear how CT.B could be utilised, but karahanaenone is already in demand as a feedstock in the flavour and fragrance industry and may also be useful as a chemical scaffold for further drug development.

In addition to the five essential oil chemotypes of E. longifolia identified prior to the current study, four new types have now been characterised. One of these new essential oils, with dominant components of bornyl- and fenchyl-acetate, is similar in composition to the antimicrobial essential oil produced from Eremophila bignoniiflora. Traditional ethnomedicinal use of E. bignoniiflora by Australian Aboriginal people involved applications consistent with antispasmodic activity and headache therapy. Because essential oils rich in esters are often associated with antispasmodic and nervous calming activity, the essential oils from E. bignoniiflora may have contributed to this effect. The same essential oil produced from the new chemotype of E. longifolia, in significantly higher yields, could be marketed for treatment of headaches, nervous tension or gastrointestinal disorders (Table 1).

Interestingly, another of the newly characterised chemotypes of E. longifolia produces an essential oil comprised predominantly of fenchone and camphor (2-bornanone), which are analogues of the previous mentioned fenchyl- and bornyl acetate respectively, after removal of the acetate groups. In the case of fenchone and Thesis Page 238

camphor, a ketone is in the place of the ester; however, in the case of the other known chemotype, dominated by fenchol and borneol, an alcohol functional group is in the place of the ester. Clearly, the oils produced by these three chemotypes are of very similar biosynthetic provenance.

The essential oils dominated by the alcohols, fenchol and borneol, demonstrated high antimicrobial activity against the yeast C. albicans, bacterial species, such as , S. epidermidis, and the human pathogenic fungal species Trichophyton rubrum, T. mentagrophytes and T. interdigitalis. Similar activity was demonstrated by the fenchyl- and bornyl acetate oils against C. albicans and S. epidermidis. The fenchone rich essential oil is yet to be tested for antimicrobial activity.

The third new essential oil chemotype of E. longifolia is rich in α-pinene, sabinene, limonene and α-terpinolene. At first this essential oil appeared to be consistent with an earlier type reported in individual E. longifolia from Alice Springs, in the . However, it’s unusually high concentration of α-terpinolene, makes this new essential oil unique. The fourth new chemotype is dominated by p-cymen-8-ol, along with a host of other unidentified compounds.

Currently then, at least nine chemotypes of E. longifolia have been characterised but preliminary results suggest that others wait to be confirmed. All essential oil chemotypes occurring outside the small regions of the safrole/methyl eugenol diploid type, the isomenthone/menthone diploid type and the karahanaenone diploid type show tetraploid cytology. The karahanaenone and isomenthone/menthone types also exist as tetraploid forms but produce relatively low essential oil yields by comparison with the diploid varieties. Such tetraploid types appear as randomly emerging individuals in isolated patches throughout the range of E. longifolia, probably emerging as a result of sexual reproduction and assortment of recessive allelic traits related to biosynthesis.

Consideration within the context of proposals to cultivate commercial scale crops of E. longifolia species, quality control of plantations of tetraploid chemotypes may involve the elimination of karahanaenone and isomenthone/menthone chemotypes emerging in plantations from sexual reproduction. However, in any case, this is not expected to occur with any great frequency since this species has a preference for reproduction by root suckers.

With regard to the emergence of unintended chemotypes in populations of known chemotypes, one may consider the emergence of the safrole/methyl eugenol type a potential risk in a commercial scale plantation, particularly since safrole and methyl eugenol have been red flagged as potential hepatotoxic carcinogens. Our research indicates that the risk of this occurring is vanishingly small. Thus far the safrole/methyl eugenol type has not been demonstrated to occur in tetraploid form. However, even if this did occur, the parent chemotype would produce essential oils via the shikimic acid pathway, because emergent chemotypes may not contradict the biosynthetic origins of the parent chemotype.

With regard to the role of volatiles in the medicinal efficacy of smoke or steam fumigation rituals, using E. longifolia, both partially pyrolysed essential oils and the Thesis Page 239

more hydrophilic component ‘genifuranal’ are involved. Most of the essential oil components are present in the tissue before heating, but are accompanied with other derived artefacts in the steamy smoke that is produced when the leaves are placed on hot embers for use in medicinal applications consistent with antibacterial or antifungal applications, as well as lactagogue activity. The smoking procedure was also used to prepare surgical tools, no doubt for sterilization but conceptualised as a type of exorcism ritual. The essential oils and artefacts were also accompanied by pyrolysed derivatives including radical essential oil fragments and other phenolic or benzoid constituents; together producing significantly enhanced antimicrobial activity, as demonstrated in our microtitre plate broth dilution assays.

‘Genifuranal’ itself exhibited significant antimicrobial activities, with mean inhibitory concentrations as low as 100 μg/ml against some species. As we were not able to detect this compound in the leaves of E. longifolia without heating it into a gaseous state, we hypothesise that ‘genifuranal’ is the product of heat induced cleavage of a glycosidic bond. The proposed glycoside is geniposidic acid, already demonstrated to occur in the leaves of E. longifolia in previous studies, and demonstrated to exhibit cardioactivity.

In traditional fumigation rituals, ‘genifuranal’ and partially pyrolysed essential oils are delivered in warm air to the patient. Although the transdermal absorption of components such as ‘genifuranal’ are expected to produce significant biological activity, the first application with warm air is itself expected to have enhanced activity, relative to cooler applications. In this regard, antimicrobial assays produced in vitro have limited capability of capturing this enhanced activity from warm air delivery. Thus, antimicrobial activities produced in smoke fumigation rituals are expected to be higher than those demonstrated in the laboratory.

15.1.2 Part 2 – Ethnopharmacology of medicinal used traditionally by

The medicinal potential of the essential oil of E. bignoniiflora has already been summarised above. In other studies a dichloromethane extract of the leaves of this demonstrated calcium channel blockage that may be consistent with a number of traditional medicinal uses. Because the calcium channel subtype was not clarified in this earlier study, the results have implications for both therapeutic activity related to headaches and spasmolysis of the intestine. Because activity was expected to vary from leaves to the fruits, identification of the principal active component may be achieved by seeking to characterise components present in both the leaves and the fruits, but more concentrated in the fruits. Although the essential oils could have been involved in this activity, other important components may also be identified.

Although essential oils from the fruit of Pittosporum undulatum have already been partly characterised in an earlier study completed in 1905, our recent characterisations enhanced and extended this earlier study. In our study we were able to tentatively identify the optically inactive compound referred to in the earlier study, conducted over a hundred years ago. We believe this was bicyclogermacrene.

Unlike P. undulatum, Pittosporum angustifolium was involved in a significant number of traditional medicinal applications. The most common of these to be Thesis Page 240

recorded in the literature are related to the treatment of coughs and colds, for lactagogue activity and in the treatment of eczema. More recently, a number of anecdotal reports have surfaced related to ia cancer inhibition, autoimmune conditions in the intestines, antimicrobial activity. Previous studies have supported potentially anticancer activity, as well as possible antiviral activity, particularly the Ross River Fever virus.

Our study examined the chemical character of volatiles from P. angustifolium, demonstrating a degree of variation. Compounds with structural similarities to previously described chemosemiotic compounds identified in mother-infant communications, were also noted, including acetic acid decyl ester or 1-dodecanol. Accordingly, we hypothesise that these compounds are involved in the traditional application as a lactagogue, particularly because the modality of usage involved heating a compress of leaves to produce such volatiles, which were then used to fumigate the breasts of the nursing woman.

In our studies most of the essential oils from and G. salicifolia were chemically consistent with previous identified chemotypes; however some variation was noted and new potential chemotypes were identified. One of these, from a specimen of G. parviflora (NS374), exhibited an oil comprised of a larger abundance of bicyclogermacrene and trans-caryophyllene (and unknown B), which may be the first known sesquiterpene dominated essential oil from Geijera species. Following hydrodistillation performed on this specimen a dichloromethane partition of the hydrosol produced a residue that was rich in pyranocoumarin xanthyletine, furanocoumarin isopsoralen and methoxy coumarin osthole. This hydrosol partition has not been attempted using other chemotypes.

Here we also present for the first time studies on antimicrobial and free radical scavenging activity of essential oils from Geijera species. The most active of these oils is the green oil from G. parviflora, made up predominantly of pregeijerene/geijerene and linalool. Previous studies on these components indicate that this green essential oil may have applications as an insect repellent (particularly mosquitoes) as well as a topical analgaesic agent.

Smoke condensates from G. parviflora (chemotype 3) indicated the possible occurrence of an alkaloid in the qualitative pharmacological test. This requires further analysis for confirmation. However, the occurrence of alkaloids in the smoke condensate may have significance with regard to reported psychoactivity achieved in smoking the plant. Another possibly fruitful line of investigation would be to examine the pharmacological and chemical character of coumarins in these smoke condensates in the context of possible psychoactivity.

In further experiments aimed at simulating traditional use, smoke condensates were also produced from Callitris endlicheri and C. glaucophylla and these were shown to contain γ-lactones ferruginol and pisiferal/pisiferol, along with a host of other phenolic compounds, with high levels of antimicrobial activity.

15.1.3 Part 3 – Phytochemical and chemotaxonomic investigations

Thesis Page 241

Phytochemical investigations of Zieria species presented in this thesis corroborated previously published data on representatives of this . We have expanded the available information on this genus by, for the first time, detailing the chemical character of essential oils from the two species, Z. odorifera subsp. williamsii and Z. floydii. Considered within the context of the chemotaxonomic approach undertaken in earlier studies, the remarks of the discoverer of the species, A. G. Floyd, now seem somewhat prescient. ‘This is a quite oddity! This specimen does not match any known Zieria taxon. It appears to be allied to 3 closely related species; Z. furfuracea, Z. granulata and Z. smithii’. The former two species mentioned there, being Z. furfuracea and Z. granulata, produce an essential oil rich in car-3-en-2-one. The essential oil from Z. floydii was also dominated by this component.

Although essential oils from Zieria spp. have been previously examined for antimicrobial activity, here we tested the essential oils against a broader range of organisms and also compared the activity of essential oils with solvent extracts from the same species. We found high antimicrobial activity in both solvent extracts and essential oils. We conclude that a putative essential oil industry based on species of Zieria would provide a novel range of essential oils, attractive to the aromatherapy community, as well as providing purified compounds useful as scaffolds in pharmaceutical development.

In a further chemotaxanomic approach we have for the first time addressed existing taxanomic concerns regarding the Phebalium squamulosum heterogenous species aggregate. The first species examined was P. squamulosum subsp. verrucosum, which was regarded by our esteemed collaborator, Ian Telford, of the Beadle Herbarium at the University of New England, as having greater morphological alliance with the Phebalium glandulosum complex. Essential oils of this species were dominated by dihydrotagetone at concentrations ranging from 95-98%. An identical essential oil, with the same yield g/g wet weight of leaves, was produced in an earlier study from P. glandulosum subsp. macrocalyx. In another study this was also demonstrated to be the case with P. glandulosum subsp. glandulosum. Here we have characterised an almost identical essential oil from P. glandulosum subsp. nitudum and P. squamulsoum subsp. eglandulosum. We have therefore concluded that dihydrotagetone dominated essential oils are a general characteristic of the P. glandulosum subspecies complex.

In a subsequent study other members of the P. squamulosum heterogenous species aggregate were phytochemically investigated. We demonstrated that all apparent subspecies currently assigned to this assemblage have separate individual essential oil chemotypes. Interestingly, several separate chemotypes were demonstrated from specimens currently assigned to P. squamulosum subsp. squamulosum. In this regard, a notable chemical characteristic of oils from southern specimens (collected near and in the Hunter Valley) was the almost total predominance of a tricyclic sesquiterpene ketone; squamulosone. By contrast, northern specimens were characterised by essential oils rich in elemol/hedycaryol.

Our final study aimed at identifying a range of essential oil types from select Prostanthera species, has made a significant contribution to resolution of taxonomic problems in this genus. This study particularly emphasised issues surrounding of P. rotundifolia, P. lasinathos and P. ovalifolia, and clearly demonstrated Thesis Page 242

the need for subsequent comprehensive chemotaxonomic studies, complementing a morphological and phylogenetic analysis, to delineate new species.

Significant numbers of morphological subtypes are known to occur in the three species mentioned above, paralleling the existence of discrete essential oil chemotypes. Despite such variation essential oils from these Prostanthera species (series racemosae) were almost always characterised by a major representation of 1,8- cineole. However the differentiating factor is the existence and relative abundances of tricyclic sesquiterpene alcohols, such as globulol, ledol, prostantherol and maaliol, which are characterised by a cyclopropane moiety, attached to either a decahydro- napthalene or –azulene structure. Again, further significant differentiating components of some essential oils were the tricyclic sesquiterpenes, but with heterocycle substituents in place of the cyclopropane moiety. Examples include cis- dihydroagarofuran or kessane, also on a decahydro-napthalene or –azulene structure respectively.

As with other genera, Prostanthera essential oils were considered within the context of possible pharmacological activities. Here we demonstrate that oils dominated by the sesquiterpene alcohols provided the greatest antimicrobial activity against a range of organisms, most pronounced against some Gram-positive species. Individual components found in significant amounts in the essential oils were related to this enhanced antimicrobial activity, particularly prostantherol. Maaliol was also found in significant amounts in one specimen currently assigned to P. ovalifolia. This is of considerable potential pharmacological interest, given the importance of maaliol in the antinociceptive activity of a widely used Indian medicinal plant species (Valeriana wallichii). This antinociceptive activity is therefore expected to be also produced by oils from maaliol rich species of Prostanthera. Again, Prostanthera essential oils have a great potential as novel additions to Australia’s aromatherapy and/or natural product industry.

Table 1 - Possible commercial scale applications from essential oil yielding flora in Australia Species Chemotype Use geijerene/pregeijerene Commercial plantation: Insect repellent, topical analgaesia (linalool Geijera parviflora (and germacrene D) content) Osthole, isopsoralen, Geijera parviflora Commercial plantations: xanthyletine Commercial plantations: Chemical scaffold for further drug Zieria floydii car-3-en-2-one development and antimicrobial activities Commercial plantations: Medicinal applications consistent with the maaliol Indian Valeriana willichii Prostanthera prostantherol Commercial plantations: Antimicrobial activities rotundifolia Commercial plantation: topical, gastrointestinal for antimicrobial Eremophila longifolia isomenthone/menthone activities, topical for muscle aches and pains, active in applications for treatment of thrush (Candida) Commerical plantations: possible activity in gastrointestinal disease, Eremophila longifolia fenchyl-/bornyl acetate; possible activity in aromatherapy for headache sufferers 1) Bioactive γ-lactones; ferruginol, pisiferal, pisiferol. 2) Occurrence of hydrophilic highly active against S. aureus and B. subtilis - Callitris glaucophylla NA requires purification and structure elucidation. Medicinal applications consistent with the Japanese species Chamaecyparis pisifera

Thesis Page 243

15.2.0 Suggested areas for further research

The demonstration of multiple chemotypes in E. longifolia emphasises the chemical variability expressed by this species, which may be an intrinsic general character of this genus. Thus, it is quite probable that other species from Eremophila may demonstrate this geographical chemical variability. The observed correlation of diploidy with higher abundances of secondary metabolites may have more general implications. Therefore it would be worthwhile examining other species for both chemogeography and karyotype. Perhaps this search should start in E. deserti, as this has already been shown to possess an abundance of essential oil chemotypes with high yields of essential oil. Another species, E. glabra, produces no essential oil at all; however NSW specimens are either hexaploid or tetraploid, but a diploid biotype can be found in far western WA. It may be worthwhile seeing if this diploid specimen yields any amount of essential oil. This may be a fruitful area of investigation for all Eremophila and its allied genus, .

With regard to further investigation of species of Eremophila for derivatives produced in smoke fumigation rituals, no other species was as frequently used for this purpose as was E. longifolia, meaning that it may be less likely that volatile therapeutic compounds could be found in other species of Eremophila. Although in Chapter 4 a handful of other species were examined for the derivative genifuranal, thus far it has only been produced from E. longifolia.

Other species of Eremophila were in fact used, albeit less frequently in smoke fumigation rituals, meaning that it may be worthwhile to examine for unknown smoke artefacts in addition to genifuranal. Other species involved in smoke fumigation treatments were E. bignoniiflora, E. sturtii, E. mitchellii, E. dalyana, E. freelingi, and E. duttonii.

Derivatives or larger molecular mass compounds produced/evaporated during smoke fumigation methodology may alternatively be produced from hydrodistillation. However, due to the less destructive nature of conventional hydrodistillation such derivatives or larger molecules could possibly be distilled in higher abundance at shorter time-intervals if higher temperatures and pressures are employed. In this regard a modified pressure cooker, with a 15psi pressure release valve positioned for horizontal airflow into an adjacent condenser, could be used to achieve this end.

At various stages throughout this thesis examination of solvent extracts demonstrated some degree of antimicrobial activity. This was not observed using E. longifolia or E. bignoniiflora, but Callitris glaucophylla and C. endlicheri did appear to contain a polar component with significant discriminating bactericidal activity against two Gram-positive organisms (Staphylococcus aureus and Bacillus subtilis). It would be interesting to know what this component is and if it could be used to treat antibiotic resistant infections, such as VRE or MRSA. In addition, other species of Eremophila should be examined, particularly the highly aromatic and highly regarded E. dalyana. Because of the intrinsic chemovariability of other species, another species worthy of further examination is E. alternifolia, regarded as ‘highly potent’ in some places but not others.

Thesis Page 244

An interesting and unexpected outcome of this thesis is the ‘resurrection’ of chemotaxonomy, which was utilised by botanists in the 70’s and 80’s before molecular fingerprinting became possible and quickly grew in popularity. Of course it is not expected that chemotaxonomy could outperform molecular fingerprinting and phylogenetics in species delimitation, however it certainly has proven to effectively complement this method. Subsequently to this thesis the phylogenetic approach has been employed for results with a quick turnaround, to resolve simple questions such as ‘is this species the same as the one we collected previously’? Already, our collaborative botanists have been forced to examine voucher specimens in closer detail because the chemotaxonomic approach has compelled them to do so.

In this regard, the question still begs an answer ‘how do you define a species’? Chemotaxonomy is challenged by the divide between ‘new species’ and ‘new chemotype of the one species’. To complicate the matter further, in Part 1 of this thesis we demonstrated that a correlation could be made between genetics (karyotype) and chemotype, whilst the classical view is that chemotypes result from differences in soil climate. In the former, seedlings from one chemotype could be transplanted into different soil types and different climates without any serious variation to the chemical character of its essential oil. In the latter more classical view, most certainly there would be a difference.

The view that chemotype derives from soil type is borrowed from Europe and Great Britain, where cultivar selection over thousands of years has caused a kind of genetic uniformity across many species used in cultivation. However, because this cultivar selection was not a practice employed by Australian Aboriginal people it is more likely that unique soil types and various climates favour certain biotypes – meaning the plant itself is different and better suited to that environment.

Over long stretches of time, geographically isolated chemotypes may diverge into new species, but again, the challenge lies in deciding exactly what amount of divergence warrants delimitation of a new species. Because of the inherent ambiguity in answering such a question, the best resolution for now is that consistent morphological differences should stand alone in defining a new species, but chemotaxonomy and phylogenetics may be utilised to demonstrate that such morphological variability is not merely a consequence of naturally occurring variability within the one species. Thesis Page 245

Appendix A – Consolidated list of references

Thesis Page 246

Abbott, D. D., Packman, E. W., Wagner, B. M., & Harrisson, J. W. E. (1961). Chronic Oral Toxicity of Oil of Sassafras and Safrol. Pharmacologist 3: pp. 62 Abell, A. D., Horn, E., Jones, G. P., Snow, M. R., Massy-Westropp, R. A., & Riccio, R. (1985). The structure of a stable serrulatane diterpenoid acetal from Eremophila rotundifolia. Australian Journal of Chemistry 38: pp. 1837-1845 Adams, R. P. (1999). Systematics of multi-seeded eastern hemisphere Juniperus based on leaf essential oils and RAPD DNA fingerprinting. Biochemical systematics and ecology 27: pp. 709-725 Adams, R. P. (2000). Systematics of Juniperus section Juniperus based on leaf essential oils and random amplifiedpolymorphic DNAs (RAPDs). Biochemical systematics and ecology 28: pp. 515-528 Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (4th ed.): Allured Publishing Corporation (ISBN 978-1-932633-21-4). Adams, R. P., Morris, J. A., Pandey, R. N., & Schwarzbach, A. E. (2005). Cryptic speciation between Juniperus deltoides and Juniperus oxycedrus (Cupressaceae) in the Mediterranean. Biochemical systematics and ecology 33(8): pp. 771-787 Adorjan, B., & Buchbauer, G. (2010). Biological properties of essential oils: an updated review. Flavour and Fragrance Journal 25(6): pp. 407-426 Ali, J. G., Alborn, H. T., Campos-Herrera, R., Kaplan, F., Duncan, L. W., Rodriguez-Saona, C., et al. (2012). Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats. PLoS one 7(6): pp. e38146 Allen, J. G., Seawright, A. A., & Hrdlicka, J. (1978). The toxicity of Myoporum tetrandrum (Boobialla) and Myporaceous furanoid essential oils for ruminants. Australian Veterinary Journal 54: pp. 287-292 Amri, I., Mancini, E., De Martino, L., Marandino, A., Lamia, H., Mohsen, H., et al. (2012). Chemical composition and biological activities of the essential oils from three species grown in Tunisia. International Journal of Molecular Sciences 13: pp. 16580-16591 Angioni, A., Barra, A., Coroneo, V., Dessi, S., & Cabras, P. (2006). Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. Journal of Agricultural and Food Chemistry 54: pp. 4364-4370 Areche, C., Theoduloz, C., Yanez, T., Souza-Brito, A. R., Barbastefano, V., de Paula, D., et al. (2008). Gastroprotective activity of ferruginol in mice and rats: effects on gastric secretion, endogenous prostaglandins and non-protein sulfhydryls. Journal of pharmacy and pharmacology 60(2): pp. 245-251 Asakura, K., Kanemasa, T., Minagawa, K., Kagawa, K., & Ninomiya, M. (1999). The nonpeptide alpha-eudesmol from Juniperus virginiana Linn. (Cupressaceae) inhibits omega-agatoxin IVA-sensitive calcium currents and synaptosomal 45Ca2+ uptake. Brain Research 823: pp. 169-176 Asghari, J., Touli, K. C., & Mazaheritehrani, M. (2012). Microwave-assisted Hydrodistillation of Essential Oils from Echinophora platyloba DC. Journal of Medicinal Plants Research 6(28): pp. 4475-4480 Asuming, W. A., Beauchamp, P. S., Descalzo, J. T., Dev, B. C., Dev, V., Frost, S., et al. (2005). Essential oil composition of four Lomatium Raf. species and their chemotaxonomy. Biochemical systematics and ecology 33: pp. 17-26 Baack, E. J. (2005). Ecological factors influencing tetraploid establishment in snow buttercuts (Ranunculus adoneus, Ranunculaceae): minority cytotype exclusion and barriers to triploid formation. American Journal of Botany 92(11): pp. 1835-1835 Thesis Page 247

Bae, D. S., Kim, C. Y., & Lee, J. K. (2012). Anti-inflammatory effects of dehydrogeijerin in LPS- stimulated murine macrophages. International Immunopharmacology 14: pp. 734- 739 Bailey, F. M. (1883). A synopsis of the flora: pp. 497 Baker, R. T., & Smith, H. G. (1910). A research on the Pines of Australia: Government Printer of NSW, Sydney. Baker, R. T., & Smith, H. G. (1912). On a new species of Prostanthera and its essential oil. Journal and Proceedings of the Royal Society of NSW 46(1): pp. 103-110 Barlow, B. A. (1971). Cytogeography of the genus Eremophila. Australian Journal of Botany 19(3): pp. 295-310 Barr, A. (1988). Traditional bush medicines: an Aboriginal pharmacopoeia: Greenhouse publications Pty Ltd Richmond Australia. Baser, K.H.C, & Demirci, F. (2007). 4 Chemistry of Essential Oils: in Berger, R. G. Fragrance and Flavours: Chemistry, Bioprocessing and Sustainability: Springer; 1 edition. Bashir, S., Memon, R., & Gilani, A. (2011). Antispasmodic and antidiarrheal activities of Valeriana hardwickii Wall. rhizome are putatively mediated through calcium channel blockade. Evidence-Based Complementary and Alternative Medicine 2011: pp. 1-6 Bates, R. B., Oncore, M. J., Parknikar, S. K., Steelink, C., & Blanchard, E. P. (1967). D- and L- filifolones, monoterpenoid cyclobutanones with the bicyclo[3,2,0]; heptane ring system. Chemical Communications (London) 1967(20): pp. 1037-1038 Bauer, K., & Garbe, D. (1985). Common Fragrance and Flavor Materials. Preparation, Properties and Uses: VCH Verlagsgesellschaft, Weinheim. Beattie, K., Waterman, P. G., Forster, P. I., Thompson, D. R., & Leach, D. N. (2011). Chemical composition and cytotoxicity of oils and eremophilanes derived from various parts of Eremophila mitchellii Benth. (Myoporaceae). Phytochemistry 71: pp. 400-408 Behnam, S., Farzaneh, M., Ahmadzadeh, M., & Tehrani, A. S. (2006). Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogens. Communications in agricultural and applied biological sciences 71(3 Pt B): pp. 1321-1326 Belsito, E. L., Carbone, C., Di Gioia, M. L., Leggio, A., Liguoiri, A., Perri, F., et al. (2007). Comparison of the volatile constituents in cold-pressed bergamot oil and a volatile oil isolated by vacuum distillation Journal of Agricultural and Food Chemistry 55: pp. 7847-7851 Benedetti, M. S., Malnoë, A., & Broillet, A. L. (1977). Absorption, metabolism and excretion of safrole in the rat and man. Toxicology 7(1): pp. 69-83 Bentham, G. (1870). Flora Australiensis (Vol. 5). Beroza, M., Inscoe, M. N., Schwartz, P. H., Keplinger, M. L., & Mastri, C. W. (1975). Acute toxicity studies with insect attractants. Toxicology and Applied Pharmacology 31(3): pp. 421-429 Bestmann, H.-J., Classen, B., Kobold, U., Vostrowsky, O., Klingauf, F., & Stein, U. (1988). Steam volatile constituents from leaves of Rhus typhina. Phytochemistry 27(1): pp. 85-90 Beyer, J., Ehlers, D., & Maurer, H. H. (2006). Abuse of Nutmeg (Myristica fragrans Houtt.): studies on the metabolism and the toxicologic detection of its ingredients elemicin, myristicin, and safrole in rat and human urine using gas chromagrography/mass spectrometery. Therapeutic Drug Monitoring 28(4): pp. 568-575 Birkett, M. A., Campbell, C. A. M., Chamberlain, K., Guerrieri, E., Hick, A. J., Martin, J. L., et al. (2000). New roles for cis-jasmone as an insect semiochemical and in plant defense. Proceedings of the National Academy of Sciences 97(16): pp. 9329-9334 Thesis Page 248

Blackburne, I. D., Park, R. J., & Sutherland, M. D. (1972). Terpenoid Chemistry: XX. Myoporone and dehydromyoporone, toxic furanoid ketones from Myoporum and Eremophila species. Australian Journal of Chemistry 25: pp. 1787-1796 Blackburne, I. D., Park, R. J., & Sutherland, M. D. (1974). Terpenoid Chemistry: XVIII. Myodesmone and isomyodesmone, toxic furanoid ketones from Myoporum deserti and M. acuminatum. Australian Journal of Chemistry 24: pp. 995-1007 Blackburne, I. D., & Sutherland, M. D. (1972). Terpenoid Chemistry XIX. Dehydro- and dehydroiso-myodesmone, toxic furanoid sesquiterpene ketones from Myoporum deserti. Australian Journal of Chemistry 25: pp. 1779-1786 Blois, M. S. (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature 181(4617): pp. 1199-1201 Bombarda, I., Raharivelomanana, P., Ramanoelina, P. A. R., Faure, R., Bianchini, J.-P., & Gaydou, E. M. (2001). Spectrometric identifications of sesquiterpene alcohols from niaouli (Melaleuca quinquenervia) essential oil. Analytica Chimica Acta 447: pp. 113- 123 Bonney, F. (1884). On some customs of the Aborigines of the River Darling, New South Wales. The Journal of the Anthropological Institute of Great Britain and Ireland. 13: pp. 122-137 Borchert, P., Wislocki, P. G., Miller, J. A., & Miller, E. C. (1973). The Metabolism of the Naturally Occuring Hepatocarcinogen Safrol to 1' -Hydroxysafrole and the Electrophilic Reactivity of 1'-Acetoxysafrole. Cancer Research 33: pp. 575-589 Bottcher, H., Gunther, I., & Bauermann, U. (1999). Physiological postharvest responses of marjoram (Marjoram hortensis Moench). Postharvest Biology and Technology 15: pp. 41-52 Bowles, J. E. (2003). The chemistry of aromatherapeutic oils. Crows Nest, NSW Australia: Allen and Unwin. Braithwaite, M., Vuuren, V. S. F., & Viljoen, A. M. (2008). Validation of smoke inhalation therapy to treat microbial infections. Journal of Ethnopharmacology 119: pp. 501- 506 Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft und- Technologie 28: pp. 25-30 Brecknell, D. J., & Carman, R. M. (1979). Novel sesquiterpene lactones from Callitris columellaris heartwood. Australian Journal of Chemistry 32: pp. 2455-2471 Brophy, J. J., Goldsack, R. J., & Forster, P. I. (2005). The leaf oils of Coatesia and Geijera () from Australia. Journal of Essential Oil Research 17: pp. 169-174 Brophy, J. J., Goldsack, R. J., & Forster, P. I. (2006). Leaf essential oils of the Queensland species of Phebalium (Rutaceae: Boronieae). Journal of Essential Oil Research 18: pp. 386-391 Brophy, J. J., Goldsack, R. J., Forster, P. I., Copeland, L. M., O'Sullivan, W., & Rosefelds, A. C. (2007). Chemistry of the Australian Gymnosperms. Part IX. The leaf oils of the Australian members of the genus Callitris (Cupressaceae). Journal of Essential Oil Research 19: pp. 57-71 Bruice, P. Y. (2004). Organic Chemistry (Fourth ed.): Pearson Education, Inc. Upper Saddle River, NJ. Buchi, G., Wittenau, S. V., & White, D. M. (1959). Terpenes. X. The constitution of Maaliol. Journal of the American Chemical Society 81(8): pp. 1968-1980 Buchin, S., Salmon, J.-C., Carnat, A.-P., Berger, T., Bugaud, C., & Bosset, J. O. (2002). Identification de composés monoterpéniques, sesquiterpéniques et benzéniques dans un lait d'alpage trés riche en ces substances. Mitt. Lebensmittelunters. Hyg. 93: pp. 199-216 Thesis Page 249

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods - a review. International Journal of Food Microbiology 94: pp. 223-253 Butty, P., Lebecq, J. C., Mallie, M., & Bastide, J. M. (1995). Evaluation of the susceptibility of dermatophytes to antifungal drugs: a new technique. Journal of Medical and Veterinary Mycology 33: pp. 403-409 Cakir, A., Kordali, S., Zengin, H., Izumi, S., & Hirata, T. (2004). Composition and antifungal activity of essential oils isolated from Hypericum Hyssopifolium and Hypericum heterophyllum. Flavour and Fragrance Journal 19: pp. 62-68 Carotti, A., Carrieri, A., Chimichi, S., Boccalini, M., Cosimelli, B., Gnerre, C., et al. (2002). Natural and synthetic geiparvarins are strong and selective MOA-B inhibitors. Synthesis and SAR studies. Bioorganic and Medicinal Chemistry Letters 12(24): pp. 3551-3555 Carson, C. F., Hammer, K. A., & Riley, T. V. (2006). Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clinical microbiology reviews 19(1): pp. 50-62 Cayzer, L. W., Crisp, M. D., & Telford, I. R. H. (2000). Revision of Pittosporum (Pittosporaceae) in Australia. Australian Systematic Botany 13: pp. 845-902 Cazal, C. d. M., Domingues, d. C. V., Batalhao, J., Raquel., Bueno, O. C., Filho, E. R., Fernandes da Silva, M. F. G., et al. (2009). Isolation of xanthyletin, an inhibitor of ants' symbiotic fungus, by high-speed counter-current chromatography. Journal of Chromatography A 1216: pp. 4307-4312 Chammorro, E. R., Ballerini, G., Sequeira, A. F., Velasco, G. A., & Zalazar, M. F. (2008). Chemical composition of essential oil from Tagetes minuta L. leaves and flowers. Journal of Argentine Chemical Society 96: pp. 80-86 Chassagne, D., Boulanger, R., & Crouzet, J. (1999). Enzymatic hydrolysis of edible Passiflora fruit glycosides. Food Chemistry 66: pp. 281-288 Cherikoff, V. (1993). The bushfood handbook: How to gather, grow, process and cook Australian wild foods: Ti Tree Press. Chisholm, A. H. (1962). , Great Australians: Oxford University Press, Melbourne. Clarke, P. A. (2007). Aboriginal People and Their Plants: Rosenberg Publishing Pty Ltd. CLSI (2009a). Methods for dilution antimicrobial susceptibility testing for that grow aerobically; Approved Standard - Eight Edition. M07-A8 29(2): pp. 1-66 CLSI (2009b). Performance standards for antimicrobial disk susceptibility tests; Approved Standard - Tenth Edition. M02-A10 29(1): pp. 1-54 Collins, D. O., Buchanan, G. O., Reynolds, W. F., & Reese, P. B. (2001). Biotransformation of squamulosone by Curvularia lunata ATCC 12017. Phytochemistry 57: pp. 377-383 Cribb, A. B., & Cribb, J. W. (1981a). Useful Wild Plants in Australia. Sydney Australia: William Collins Pty Ltd. Cribb, A. B., & Cribb, J. W. (1981b). Wild medicine in Australia: William Collins, Pty, Ltd, Sydney. Cunningham, G. M., Mulham, W. E., Milthorpe, P. L., & Leigh, J. H. (1981). Plants of western New South Wales: Published in association with the Soil Conservation Service of N.S.W. by the N.S.W. Goverment Printing Office. da Silva, U. F., Borba, E. L., Semir, J., & Marsaioli, A. J. (1999). A simple solid injection device for the analyses of Bulbophyllum (Orchidaceae) volatiles. Phytochemistry 50: pp. 31- 34 Dall'Acqua, F., Bordin, F., Vedaldi, D., Recher, M., & Rodighiero, G. (1979). Photochemical interaction between xanthyletine and DNA. Phytochemistry and Photobiology 29: pp. 283-288 Thesis Page 250

Dastlik, K. A., Forster, P. I., Ghisalberti, E. L., & Jefferies, P. R. (1989). Sesquiterpenes from Eremophila species. Phytochemistry 28(5): pp. 1425-1426 Della, E. W., & Jefferies, P. R. (1961). The Chemistry of Eremophila Species. 111. The Essential oil of Eremophila longifolia F. Muell. Australian Journal of Chemistry 14(4): pp. 663- 664 Dellar, J. E., Cole, M. D., Gray, A. I., Gibbons, S., & Waterman, P. G. (1994). Antimicrobial sesquiterpenes from Postanthera aff. melissifolia and P. rotundifolia. Phytochemistry 36(4): pp. 957-960 Dien, P. H., Nhan, N. T., Le Thuy, H. T., & Quang, D. N. (2012). Main constituents from the seeds of Vietnamese Cnidium monnieri and cytotoxic activity. Natural Product Research 26(22): pp. 2107-2111 Dieterich, K. (1920). The analysis of the resins balsams and gum resins with a bibliography. London: Scott, Greenwood and Son. Dimitriadis, E., & Massy-Westropp, R. A. (1979). The structure of eremoacetal, a sesquiterpene from Eremophila rotundifolia. Australian Journal of Chemistry 32: pp. 2003-2015 Dimitriadis, E., & Massy-Westropp, R. A. (1980). Furanosesquiterpenes from Eremophila rotundifolia. Australian Journal of Chemistry 33: pp. 2729-2736 Doimo, L. (2001). Azulenes, Costols and γ-lactones from cypress-pines (Callitris columellaris, C. glaucophylla and C. intratropica) distilled oils and methanol extracts. Journal of Essential Oil Research 13: pp. 25-29 Doimo, L., Fletcher, R., & D'Arcy, B. R. (1999). Comparison of the γ-lactone content of oils and extracts from White Cypress Pine (Callitris glaucophylla Thompson and Johnson). Journal of Essential Oil Research 11: pp. 415-422 Dolezel, J., Greilhuber, J., & Suda, J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2(9): pp. 2233-2244 Dreyer, D. L., & Lee, A. (1972). Extractives of Geijera parviflora. Phytochemistry 11: pp. 763- 767 Duke, J. A. (2002). CRC Handbook of Medicinal Spices (1st ed.): CRC Press. Eccles, R., & Weber, O. (Eds.). (2009). Common cold: ISBN 978-3-7643-9894-1 Birkhäuser Verla, Basel - Boston - Berlin. Elisabetsky, E., Coelho de Souza, G. P., Santos, M. A. C., Siqueira, I. R., & Amador, T. A. (1995). Sedative properties of linalool. Fitoterapia 66: pp. 407-414 Elliott, C. P. (2009). Isolation and characterization of microsatellites in the bird-pollinated, autohexaploid, Eremophila glabra ssp. glabra (R.Br. (Ostenf.)) (Myoporaceae), an Australian endemic plant. Permanent genetic resources note 9(4): pp. 1242-1246 Engewald, W., Billing, U., Welsh, T., & Haufe, G. (1987). Structure-retention correlations of hydrocarbons in gas-liquid and gas-solid chromatography. Cycloalkenes and cycloalkadienes. Chromatographia 23(8): pp. 590-594 Errington, S. G., & Jefferies, P. R. (1988). Triterpenoid sapogenins of Pittosporum phyllyraeoides. Phytochemistry 27(2): pp. 543-545 Espin, J. C., Soler-Rivas, C., & Wichers, H. J. (2000). Characterization of the Total Free Radical Scavenger Capacity of Vegetable Oils and Oil Fractions Using 2,2-Diphenyl-1- picrylhydrazyl Radical. Journal of Agricultural and Food Chemistry 48: pp. 648-686 Espinoza, M., Santos, L. S., Theoduloz, C., Schmeda-Hirschmann, G., & Rodriguez, J. A. (2008). New gastroprotective ferruginol derivatives with selective cytotoxicity against gastric cancer cells. Planta Medica 74: pp. 802-808 Evans, P. H., & Becerra, J. X. (2006). Non-terpenoid essential oils from Bursera chemapodicta. Flavour and Fragrance Journal 21: pp. 616-618 Fadel, O., Ghazi, Z., Mouni, L., Benchat, N., Ramdani, M., Amhamdi, H., et al. (2011). Comparison of Microwave-Assisted Hydrodistillation and Traditional Thesis Page 251

Hydrodistillation Methods for the Rosmarinus eriocalyx essential oils from Eastern Morocco. Journal of Materials and Environmental Science 2(2): pp. 112-117 Farhat, A., Ginies, C., Romdhane, M., & Chemat, F. (2009). Eco-friendly and cleaner process for isolation of essential oil using microwave energy. Experimental and theoretical study. Journal of Chromatographic Analysis 1216: pp. 5077-5085 Finnemore, H., & Cooper, J. M. (1936). Cyanogenetic glucosides in Australian plants: Part 4 - Zieria laevigata. Journal and Proceedings of the Royal Society of NSW 70: pp. 175- 182 Flamini, G., Tebano, M., & Cioni, P. L. (2007). Volatiles emission patterns of different plant organs and pollen of Citrus limon. Analytica Chimica Acta 589: pp. 120-124 Flynn, T. M., & Southwell, I. A. (1987a). Cyanogenesis in the genus Zieria. Phytochemistry 26(6): pp. 1669-1672 Flynn, T. M., & Southwell, I. A. (1987b). Essential oil constituents of the genus Zieria. Phytochemistry 26(6): pp. 1673-1686 Foley, P. (2006). Duboisia myoporoides: the medical career of a native Australian plant. Historical Records of Australian Science 17(1): pp. 31-69 Forster, P. G., Ghisalberti, E. L., Jefferies, P. R., Poletti, V. M., & Whiteside, N. J. (1986). Serrulatane diterpenes from Eremophila spp. . Phytochemistry 25(6): pp. 1377-1383 Fusi, F., Sgaragli, G., Ha, L. M., Cuong, N. M., & Saponara, S. (2012). Mechanism of osthole

inhibition of vasculat Cav 1.2 current. European Journal of Pharmacology 680: pp. 22-27 Gersbach, P. V. (2002). The essential oil secretory structures of Prostanthera ovalifolia (). Annals of Botany 89: pp. 255-260 Ghisalberti, E. L. (1994a). The ethnopharmacology and phytochemistry of Eremophila species (Myoporaceae). Journal of Ethnopharmacology 44: pp. 1-9 Ghisalberti, E. L. (1994b). The phytochemistry of the Myoporaceae. Phytochemistry 35(1): pp. 7-33 Ghisalberti, E. L. (1995). The chemistry of unusual terpenoids from the genus Eremophila. Studies in natural products chemistry 15(c): pp. 225-287 Ghisalberti, E. L., Jefferies, P. R., & Vu, H. T. N. (1990). Diterpenes from Eremophila species. Phytochemistry 29(1): pp. 316-318 Gijsen, H. J. M., Wijnberg, J. B. P. A., van Ravenswaay, C., & de Groot, A. (1994). Rearrangement reactions of aromadendrane derivatives. The synthesis of (+)- maaliol, starting from natural (+)-aromadendrene-IV. Tetrahedron 50(16): pp. 4733- 4744 Giles, R. L., Drinnan, A. N., & Walsh, N. G. (2008). Variation in Phebalium glandulosum subsp. glandulosum: morphometric and anatomical evidence (Rutaceae). Australian Systematic Botany 21: pp. 271-288 Goni, P., Lopez, P., Sanchez, C., Gomez-Lus, R., Becerril, R., & Nerin, C. (2009). Antimicrobial activity in the vapour phase of a combination of cinnamon and close essential oils. Food Chemistry 116(4): pp. 982-989 Gough, J., Powell, V., & Sutherland, M. D. (1961). Constitution and biogenesis of two new sesquiterpenes. Tetrahedron letters 21: pp. 763-767 Grant, H. G., Russell-Maynard, C. A., & Sutherland, M. D. (1985). Terpenoid Chemistry. XXVII Further iridoid constituents (1R)- and (1S)-1-acetoxymyodesert-3-ene, from Myoporum deserti (Myoporaceae). Australian Journal of Chemistry 38: pp. 325-336 Griffin, S. G., Leach, D. N., Markham, J., & Johnstone, R. (1998). Antimicrobial activity of essential oils from Zieria. Journal of Essential Oil Research 10: pp. 165-174 Guenther, E. (1948a). The essential oils - vol 1-6. New York: D. Van Nostrand Company, Inc. Guenther, E. (1948b). The Essential Oils - Vol 1: History - Origin in Plants - Production - Analysis: Van Nostrand, New York. Thesis Page 252

Guyot, C., Bouseta, A., Scheirman, V., & Collin, S. (1998). Floral origin markers of chestnut and lime tree honeys. Journal of Agricultural and Food Chemistry 46: pp. 625-633 Hamilton, W. D., Park, R. J., Perry, G. J., & Sutherland, M. D. (1973). XXI. (-)-Epignaione, (-)- dehydrongaione, (-)-dehydroepingaione, and (-)-deisopropylngaione, toxic furanoid sesquiterpenoid ketones from Myoporum deserti. Australian Journal of Chemistry 26: pp. 375-387 Hamm, S., Bleton, J., Connan, J., & Tchapla, A. (2005). A chemical investigation by headspace SPME and GC-MS of volatile and semi-volatile terpenes in various olibanum samples. Phytochemistry 66: pp. 1499-1514 Hamm, S., Bleton, J., & Tchapla, A. (2004). Headspace soild phase microextraction for screening for the presence of resins in Egyptian archaeological samples. Journal of Separation Science 27: pp. 235-243 Harden, G. J. (2000). Flora of New South Wales. Sydney: University of New South Wales Press. Harrison, B. M., & Priest, F. G. (2009). Composition of peaks used in the preparation of malt for Scotch Whisky production - influence of geographical source and extraction depth. Journal of Agricultural and Food Chemistry 57(6): pp. 2385-2391 Hartley, T. G. (2001). Morphology and biogeography in Australasian - Malesian Rutaceae. Malayan Nature Journal 55: pp. 197-219 Hasegawa, S., Kojima, T., & Hirose, Y. (1985). Terpenoids from the seed of Chamaecyparis pisifera: the structures of six diterpenoids. Phytochemistry 24(7): pp. 1545-1551 He, Y., Qu, S., Wang, J., He, X., Lin, W., Zhen, H., et al. (2012). Neuroprotective effects of osthole pretreatment against traumatic brain injury in rats. Brain Research 1433: pp. 127-136 Hegarty, B. F., Kelly, J. R., Park, R. J., & Sutherland, M. D. (1970). Terpenoid Chemistry: XVII. (-)-gnaione, a toxic constituent of Myoporum deserti. The absolute configuration of (-)-ngaione. Australian Journal of Chemistry 23: pp. 107-117 Hellyer, R. O. (1962). Occurence of maaliol, elemol, and globulol in some Australian essential oils. Australian Journal of Chemistry 15: pp. 157-157 Heuberger, E., Redhammer, S., & Buchbauer, G. (2004). Transdermal absorption of (-)- linalool induces autonomic deactivation but has no impact on ratings of well-being in humans. Neuropsychopharmacology 29: pp. 1925-1932 Hildebrand, R. P., & Sutherland, M. D. (1959). Terpenoid Chemistry: 1. Zierone and Elleryone. Australian Journal of Chemistry 12: pp. 436-441 Homburger, F., Kelley, T., Friedler, G., & Rusfield, A. B. (1961). Toxic and Possible Carcinogenic Effects of 4-Allyl-1,2-methylene-dioxybenzene (Safrole) in Rats on Deficient Diets. Medicina Experimentalis. International Journal of Experimental Medicine 4: pp. 1-11 Hongratanaworakit, T., Heuberger, E., & Buchbauer, G. (2004). Evaluation of the effects of East Indian sandalwood oil on alpha-santalol on humans after transdermal absorption. Planta Medica 70(1): pp. 3-7 Horak, S., Koschak, A., Stuppner, H., & Striessnig, J. (2009). Use-dependent block of voltage- 2+ gated Cav2.1 Ca channels by petasins and eudesmol isomers. The journal of pharmacology and experimental therapeutics 330(1): pp. 220-226 Hugo, W. B. (1978). Phenols: a review of their history and development as antimicrobial agents. Microbios 23(92): pp. 83-85 Hutt, A. J. (2007). Chirality and pharmacokinetics: an area of neglected dimensionality? Durg metabolism and drug interactions 22(2): pp. 79-112 Isaacs, J. (2000). Bushfood: Aboriginal food and herbal medicine: Lansdown Press. Thesis Page 253

Isidorov, V. A., Krajewska, U., Dubis, E. N., & Jdanova, M. A. (2001). Partition coefficients of alkyl aromatic hydrocarbons and esters in a hexane-acetonitrile system. Journal of Chromatographic Analysis 923: pp. 127-136 IUPAC (1997). Compendium of chemical terminology, 2nd ed (the "Gold Book"): Blackwell Scientific Publications, Oxford. XML on-line corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. DOI: 10.1351/goldbook. Janssen, A. M., Scheffer, J. J. C., & Svendsen, A. B. (1987). Antimicrobial activity of essential oils: A 1976-1986 literature review. Aspects of the test methods. Planta Medica 53: pp. 395-398 Jirovetz, L., Buchbauer, G., Denkova, Z., Stoyanova, A., Murgov, I., Gearon, V., et al. (2006). Comparative study on the antimicrobial activities of different sandalwood essential oils of various origin. Flavour and Fragrance Journal 21(3): pp. 465-468 Johns, S. R., & Lamberton, J. A. (1966). Alkaloids of Geijera salicifolia Schott. (family Rutaceae): the identification of platydesmine and platydesmine acetate. Australian Journal of Chemistry 19: pp. 1991-1994 Jones, R. V. H., & Sutherland, M. D. (1968). Terpenoid Chemistry; XV. 1,5-dimethylcyclodeca- 1,5,7-triene, the precursor of geijerene in Geijera parviflora (Lindley). Australian Journal of Chemistry 21: pp. 2255-2264 Jones, T. G. H., & Smith, F. B. (1925). CCCXLIX.-Olefinis terpene ketones from the volatile oil of flowering Tagetes glandulifera. Part 1. Journal of the Chemical Society, Transactions 127: pp. 2530-2539 Joulain, D., & Koenig, W. A. (1989). The atlas of spectral data of sesquiterpene hydrocarbons: E. B. Verlag, Hamburg, Germany. Junkes, B. S., Castanho, R. D. M., Amboni, B., Yunes, R. A., & Heinzen, V. E. F. (2003). Semiempirical topological index: a novel molecular descriptor for quantitative structure-retention relationship studies. Internet Electronic Journal of Molecular Design 2(1): pp. 33-19 Kalbhen, D., Abbo. (1971). Nutmeg as a narcotic. A contribution to the chemistry of pharmacology of nutmeg (Myristica fragrans). Angewandte Chemie International 10(6): pp. 370-374 Kallio, M., Jussila, M., Rissanen, T., & al, e. (2006). Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry in the identification of organic compounds in atmospheric aerosols from coniferous forest. Journal of Chromatographic Analysis 1125: pp. 234-243 Kekulé, F. A. (1865). Sur la constitution des substances aromatiques. Bulletin de la societe chimique de Paris 3: pp. 98-110 Kekulé, F. A. (1866). Untersuchungen uber aromatische verbingdungen. Liebigs Annalen der Chemie 137: pp. 129-136 Khan, A. J., Kunesch, G., Chuilon, S., & Ravise, A. (1985). Structure and biological activity of Xanthyletin a new phytoalexin of Citrus. Fruits 40(12): pp. 807-811 Khrimian, A. P., DeMilo, A. B., Waters, R. M., Liquido, N. J., & Nicholson, J. M. (1994). Monofluoro Analogs of Eugenol Methyl Ether as Novel Attractants for the Oriental Fruit Fly. Journal of Organic Chemistry 59: pp. 8034-8039 Kiran, S. R., & Devi, P. S. (2007). Evaluation of mosquitocidal activity of essential oil and sesquiterpenes from leaves of Chloroxylon swietenia DC. Parasitology Research 101: pp. 413-418 Kiran, S. R., Reddy, A. S., Devi, P. S., & Reddy, K. J. (2006). Insecticidal, antifeedant and oviposition deterrent effects of the essential oil and individual compounds from leaves of Chloroxylon swietenia DC. Pest Management Science 62: pp. 1116-1121 Thesis Page 254

Kloucek, P., Frankova, A., & Smid, J. (2011, 11-14th September). Effect of warm air flow and reduced pressure on antibacterial activity of essential oil vapors. Paper presented at the 42nd International Symposium on Essential Oils, Antalya, Turkey, pp. pp. 14. Kocacalıskan, I., Talan, I., & Terzi, I. (2006). Antimicrobial activity of catechol and pyrogallol as allelochemicals. Verlag der Zeitschrift für Naturforschung, Tübingen · http://www.znaturforsch.com 61c: pp. 639-642 Koroch, A. R., Juliani, H. R., & Zygadlo, J. A. (2007). Bioactivity of essential oils and their components. In R. G. Berger (Ed.), Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability: Springer. Kostadinovic, S., Jovanov, D., & Mirhosseini, H. (2011). Comparative investigation of cold pressed essential oils from peel of different mandarin varieties. The IIOAB Journal 3(2): pp. 7-14 Kosyukova, L. V., & Khorguani, T. V. (1989). Retention indices of diterpenes isolated from resins of coniferous trees. Journal of analytical chemistry of the USSR 44(9, p2): pp. 1309-1313 Kuiters, A. T., & Sarink, H. M. (1986). Leaching of phenolic compounds from leaf and needle litters of several deciduous and coniferous trees. Soil biology and biochemistry 18(5): pp. 475-480 Kukic, J., Petrovic, S., Pavlovic, M., Couladis, M., Tzakou, O., & Niketic, M. (2006). Composition of essential oil of Stachys alpina L. ssp dinarica Murb. Flavour and Fragrance Journal 21: pp. 539-542 Lado, C., Then, M., Varga, I., Szoke, E., & Szentmihalyi, K. (2004). Antioxidant Property of Volatile Oils Determined by the Ferric Reducing Ability. Verlag der Zeitschrift für Naturforschung 59c: pp. 354-358 Lahey, F. N., & MacLeod, J. K. (1967). The coumarins of Geijera parviflora Lindl. Australian Journal of Chemistry 20: pp. 1943-1955 Lai, W.-C., & Song, C. (1995). Temperature-programmed retention indices for g.c. and g.c.- m.s. analysis of coal- and petroleum-derived liquid fuels. Fuel 74(10): pp. 1436-1451 Lassak, E. V. (1980). New essential oils from the Australian flora (October 1980) - perfumes and flavours symphony of nature. Paper presented at the 8th International Congress of Essential Oils, Fedarom Grasse, France - Paper No. 120 pp. 409-415. Lassak, E. V., & McCarthy, T. (2011). Australian medicinal plants: Methuen Australia Pty Ltd, North Ryde. Lassak, E. V., & Pinhey, J. T. (1969). The constituents of Eriostemon trachyphyllus. The structure of trachyphyllin, a new coumarin. Australian Journal of Chemistry 22(10): pp. 2175-2185 Lassak, E. V., & Southwell, I. A. (1974a). Occurrence of (-)-car-3-en-2-one in Zieria aspalathoides (Rutaceae). Australian Journal of Chemistry 27: pp. 2061-2063 Lassak, E. V., & Southwell, I. A. (1974b). Occurrence of some unusual compounds in the leaf oils of Eriostemon obovalis and Phebalium glandulosum subsp. glandulosum. Australian Journal of Chemistry 27: pp. 2703-2705 Lassak, E. V., & Southwell, I. A. (1977). Essential oils isolates from the Australian flora. International flavours and food additives 8: pp. 126-132 Latz, P. (2004). Bushfires and Bushtucker: Aboriginal plant use in central Australia: IAD Press. Lee, K.-G., Lee, S.-E., Takeoka, G. R., Kim, J.-H., & Park, B.-S. (2005). Antioxidant activity and characterization of volatile constituents of beechwood creosote. Journal of the science of food and agriculture 85: pp. 1580-1586 Lefebvre, B., Le Roux, J.-P., Kossanyi, J., & Basselier, J.-J. (1973). Photochemistry of 3- methylcyclopentanone. Synthesis of optically active dihydrotagetone. Comptes Rendus des Seances de l'Academie des Sciences, Serie C: Sciences Chimiques 277(20): pp. 1049-1050 Thesis Page 255

Letchamo, A., Ward, W., Heard, B., & Heard, D. (2004). Essential oil of Valeriana officinalis L. cultivars and their antimicrobial activity as influenced by harvesting time under commercial organic cultivation. Journal of Agricultural and Food Chemistry 52: pp. 3915-3919 Lin, S., Zhang, Y., Liu, M., Yang, S., Gan, M., Zi, J., et al. (2010). Abietane and C20-norabietane diterpenes from the stem bark of Fraxinus sieboldiana and their biological activities. Journal of Natural Products 73(11): pp. 1914-1921 Lorian, V. (Ed.). (2005). in Laboratory Medicine: Lippincott Williams and Wilkins, Philadelphia, USA. Low, T. (1990). Bush Medicine: A pharmacopoeia of natural remedies: Collins/Angus and Robertson publishers Australia. Lucero, M. E., Estell, R. E., & Frederickson, E. L. (2003). The essential oil composition of Psorothamnus scoparius (A. Gray) Rydb. Journal of Essential Oil Research 15(2): pp. 108-111 Luszczki, J. J., Marczewski, T., Mazurkiewicz, L. P., Karwan, S., Teresinska, M., Florek-Luszczki, M., et al. (2011). Influence of osthole on the anticonvulsant activity of phenytoin and valproate in the maximal electroshock-induced seizures in mice. Annales Universitatis Mariae Curie-Sklodowska Lublin - Polonia 24(3): pp. 33-44 Maia, M. F., & Moore, S. J. (2011). Plant-based insect repellents: a review of their efficacy, development and testing. Malaria Journal 10(1): pp. S11 Maiden, J. H. (1889). The useful native plants of Australia: Published by Compendium in 1975, Alexander Bros Vic. Australia. Maiden, J. H. (1917). Forestry Handbook. Part 2. Some of the principal commercial trees of New South Wales: William Applegate Gullick, Government Printer, Sydney. . Mann, C. M., & Markham, J. L. (1998). A new method for determining the minimum inhibitory concentration of essential oils. Journal of Applied Microbiology 84(4): pp. 538-544 Markley, K. S., Nelson, E. K., & Sherman, S. M. (1937). Some wax-like constituents from expressed oil from the peel of Florida grapefruit, Citrus grandis. Food Research Division and Fertlizer Investigations, Bureau of Chemistry and Soils, United States Department of Agriculture, Washington: pp. 433-441 Marques, F. A., McElfresh, J. S., & Millar, J. G. (2000). Kovat's retention indexes of

monounsaturated C12, C14, and C16 alcohols, acetates and aldehydes commonly found in lepidopteran pheromone blends. Journal of Brazilian Chemical Society 11(6): pp. 592-599 Martin, C. E., Hartmann, P. E., & Gooneratne, A. (1978). Progesterone and corticosteroids in the initiation of lactation in the sow. Australian Journal of Biological Sciences 31: pp. 517-525 Mateo, J., Aguirrezabal, M., Dominguez, C., & Zumalacarregui, J. M. (1997). Volatile compounds in Spanish paprika. Journal of Computational Analysis 10: pp. 225-232 McFarland, J. (1907). Nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Journal of the American Medical Association 14: pp. 1176-1178 McKemey, M., & White, H. (2011). Bush tucker, boomerangs and bandages: traditional Aboriginal plant use in the Border Rivers and Gwydir catchments: Border Rivers- Gwydir Catchment Management Authority, NSW Government. McKern, H. H. G. (1980). Arthur de Ramon Penfold. Journal and Proceedings of the Royal Society of New South Wales 113: pp. 100 McKern, H. H. G. (1981). Arthur de Ramon penfold, 1890-1980. Chemistry in Australia 48: pp. 327 Thesis Page 256

Medeiros, J. R., Campos, L. B., Mendenca, S. C., Davin, L. B., & Lewis, N. G. (2003). Composition and antimicrobial activity of the essential oils from invasive species of the Azores, Hedychium gardnerianum and Pittosporum undulatum. Phytochemistry 64(2): pp. 561-565 Miller, E. C., Swanson, A. B., Phillips, D. H., Fletcher, T. L., Liem, A., & Miller, J. A. (1983). Structure-Activity Studies of the Carcinogenicities in the Mouse and Rat of Some Naturally Occuring Synthetic Alkenylbenzene Derivatives Related to Safrole and Estragole. Cancer Research 43(3): pp. 1124-1134 Mimica-Dukić, N., Bozin, B., Soković, M., Mihajlović, B., & Matavulj, M. (2003). Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Medica 69(5): pp. 413-419 Mimica-Dukić, N., Bozin, B., Soković, M., & Simin, N. (2004). Antimicrobial and Antioxidant Activities of Melissa officinalis L. (Lamiaceae) Essential Oil. Journal of Agricultural and Food Chemistry 52: pp. 2485-2489 Mohamadi, M., Shamspur, T., & Mostafavi, A. (2013). Comparison of microwave-assisted distillation and conventional hydrodistillation in the essential oil extraction of flowers of Rosa damascena Mill. Journal of Essential Oil Research 25(1): pp. 55-61 Morrison, F. R., Penfold, A. R., & Simonsen, J. (1950). The essential oils of Zieria smithii (andrews) and its various forms: Part 2. Journal and Proceedings of the Royal Society of NSW 84: pp. 196-201 Mortan, J. F. (1972). Further associations of plant tannins and human cancer. Pharmaceutical Biology 12(1): pp. 1829-1841 Moussaieff, A., Rimmerman, N., Bregman, T., Straiker, A., Felder, C. C., Shoham, S., et al. (2008a). Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB Journal 22(8): pp. 3024-3034 Moussaieff, A., Shein, N. a. A., Tsenter, J., Grigoriadis, S., Simeonidou, C., Alexandrovich, A. G., et al. (2008b). Incensole acetate: a novel neuroprotective agent isolated from Boswellia carterii. Journal of Cerebral Blood Flow and Metabolism 28: pp. 1341-1352 Moussaieff, A., Shoham, E., Kashman, Y., Fride, E., Schmitz, M. L., Renner, F., et al. (2007). Incensole acetate, a novel anti-inflammatory compound isolated from Boswellia resin, inhibits nuclear factor-kB activation. Molecular Pharmacology 72: pp. 1657- 1664 Mueller, F. J. H. v. (1866). Fragmenta Phytographiae Australiae 5(40): pp. 193 Ndi, C. P., Semple, S. J., Griesser, H. J., Pyke, S. M., & Barton, M. D. (2007). Antimicrobial compounds from the Australian desert plant Eremophila neglecta. Journal of Natural Products 70: pp. 1439-1443 Nedorostova, L., Kloucek, P., Urbanova, K., Kokoska, L., Smid, J., Urban, J., et al. (2011). Antibacterial effect of essential oil vapours against different strains of Staphylococcus aureus, Including MRSA. Flavour and Fragrance Journal 26(6): pp. 403-407 NIST (2011). NIST Chemistry WebBook - NIST Standard Reference Database Number 69 Retrieved August, 2012, from http://webbook.nist.gov/chemistry/ O'Connell, J. F., Latz, P., & Barnett, P. (1983). Traditional and modern plant use among the Alyawara of Central Australia. Economic Botany 37(1): pp. 80-109 Ogunwande, I. A., Flamini, G., Cioni, P. L., Omikorede, O., Azeez, R. A., Ayodele, A. A., et al. (2010). Aromatic plants growing in Nigeria: essential oil constituents of Cassia alata (Linn.) Roxb. and Helianthus annuus L. Records of Natural Products 4(4): pp. 211-217 Oliveira, D. R., Leitao, G. G., Santos, S. S., Bizzo, H. R., Lopes, D., Alviano, C. S., et al. (2006). Ethnopharmacological study of two Lippia species from Orizimina, Brazil. Journal of Ethnopharmacology 108: pp. 103-108 Thesis Page 257

Olsen, R. A., Odham, G., & Lindeberg, G. (1971). Aromatic substances in leaves of Populus tremula as inhibitors of mycorrhizal fungi. Physiologia Plantarum 25: pp. 122-129 Oprava, A., Leach, D. N., Beattie, K., Connellan, P., Forster, P. I., Leach, G., et al. (2010). Chemical composition and biological activity of the essential oils from native Australian Callitris species. Planta Medica 76: pp. SL_35 Owolabi, M. S., Ogundajo, A., Yusuf, K. O., Lajide, L., Villanueva, H. E., Tuten, J. A., et al. (2010). Chemical composition and bioactivity of the essential oil of Chromolaena odorata from Nigeria. Rec. Nat. Prod. 4(1): pp. 72-78 Pala-Paul, J., Copeland, L. M., Brophy, J. J., & Goldsack, R. J. (2006). Essential oil composition of two variants of Labill. from Australia. Biochemical systematics and ecology 34: pp. 48-55 Pala-Paul, J., Copeland, L. M., Brophy, J. J., & Goldsack, R. J. (2009). Essential oil composition of two new species of Phebalium (Rutaceae) from north-eastern New South Wales, Australia. Natural Product Communications 4: pp. 983-986 Palombo, E. A., & Semple, S. J. (2001). Antibacterial activity of traditional Australian medicinal plants. Journal of Ethnopharmacology 77: pp. 151-157 Penfold, A. R. (1930a). The essential oils of three species of Geijera and the occurrence of a new hydrocarbon - Part 1. Journal and Proceedings of the Royal Society of New South Wales 64: pp. 264-297 Penfold, A. R. (1930b). The essential oils of Zieria smithii (Andrews) and its various forms: Part 1. Journal and Proceedings of the Royal Society of NSW 64: pp. 83-89 Pennacchio, M., Alexander, E., Ghisalberti, E. L., & Richmond, G. S. (1997). Cardioactive effects of Eremophila alternifolia extracts. Journal of Ethnopharmacology 47: pp. 91- 95 Pennacchio, M., Kemp, A., Taylor, R. P., Wickens, K. M., & Kienow, L. (2005). Interesting biological activities from plants traditionally used by native Australians. Journal of Ethnopharmacology 96: pp. 587-601 Pennacchio, M., Syah, Y. M., Ghisalberti, E. L., & Alexander, E. (1996). Cardioactive compounds from Eremophila species. Journal of Ethnopharmacology 53: pp. 21-27 Perez-Hernandez, N., Ponce-Monter, H., Medina, J. A., & Joseph-Nathan, P. (2008). Spasmolytic effect of constituents from Lepichinia caulescens on rat uterus. Journal of Ethnopharmacology 115: pp. 30-35 Pino, J. A., Marbot, R., & Vazques, C. (2001). Characterization of volatiles in strawberry guava (Psidium cattleianum Sabine) fruit. Journal of Agricultural and Food Chemistry 49: pp. 5883-5887 Pino, J. A., Mesa, J., Munoz, Y., Marti, M. P., & Marbot, R. (2005). Volatile components from mango (Mangifera indica L.) cultivars. Journal of Agricultural and Food Chemistry 53: pp. 2213-2223 Plummer, J. A., Wann, J. M., & Spadek, Z. E. (1999). Intraspecific variation in oil components of Boronia megastigma Nees. (Rutaceae) flowers. Annals of Botany 83: pp. 253-262 Power, F. B., & Tutin, F. (1906). The constituents of the essential oil from the fruit of Pittosporum undulatum. http://pubs.rsc.org | doi:10.1039/CT9068901083 LXXXlX: pp. 1083-1092 Quijano, C. E., Salamanca, G., & Pino, J. A. (2007). Aroma volatile constituents of Colombian varieties of mango (Mangifera indica L.). Flavour and Fragrance Journal 22: pp. 401- 406 Radulovic, N. S., Blagojevic, P. D., Palic, R. M., Zlatkovic, B. K., & Stevanovic, B. M. (2009). Volatiles from vegetative organs of the paleoendemic resurrection plants Ramonda servica Panc. and Ramonda nathaliae Pan. at Petrov. Journal of the Serbian chemical society 74(1): pp. 35-44 Thesis Page 258

Re-Poppi, N., & Santiago, M. R.-S. (2002). Identification of polycyclic aromatic hydrocarbons and methoxylated phenols in wood smoke emitted during production of charcoal. Chromatographia 55(7/8): pp. 475-481 Richmond, G. S. (1993). A review of the use of Eremophila (Myoporaceae) by Australian Aborigines. Journal of the adelaide botanic gardens 15(2): pp. 101-107 Robinson, M. (1980). The history of the Duboisia industry. in Lauer, PK ed, Occasional papers in anthropology, St Lucia: Anthropology museum, University of Queensland 10: pp. 43-49 Rogers, K. L., Fong, W. F., Redburn, J., & Griffiths, L. R. (2002). Fluorescence detection of plant extracts that affect neuronal voltage-gated Ca2+ channels. European Journal of Pharmaceutical Sciences 15: pp. 321-330 Royal-Botanic-Gardens (2012). PlantNET Retrieved August, 2012, from http://plantnet.rbgsyd.nsw.gov.au/ Sadgrove, N., Hitchock, M., Watson, K., & Jones, G. L. (2013a). Chemical and biological characterization of novel essential oils from Eremophila bignoniiflora (F. Muell) (Myoporaceae): a traditional Aboriginal Australian bush medicine. Phytotherapy Research 27: pp. 1508-1516 Sadgrove, N., & Jones, G. L. (2013a). Antimicrobial activity of essential oils and solvent extracts from Zieria species (Rutaceae). Natural Product Communications 8(6): pp. 741-745 Sadgrove, N., & Jones, G. L. (2013b). Characterisation and bioactivity of essential oils from Geijera parviflora (Rutaceae): a native bush medicine from Australia. Natural Product Communications 8(6): pp. 747-751 Sadgrove, N., & Jones, G. L. (2013c). A possible role of partially pyrolysed essential oils in Australian Aboriginal traditional ceremonial and medicinal smoking applications of Eremophila longifolia (R. Br.) F. Muell (). Journal of Ethnopharmacology 147: pp. 638-644 Sadgrove, N., & Jones, G. L. (2014). Medicinal compounds, chemically and biologically characterised from extracts of Australian Callitris spp. endlicheri and glaucophylla (Cupressaceae): used traditionally in Aboriginal and colonial pharmacopoeia. Journal of Ethnopharmacology In review: pp. Sadgrove, N., Jones, G. L., & Greatrex, B. W. (2014a). Identification of (-)-genifuranal; the principal medicinal component in traditional smoking applications of Eremophila longifolia (Scrophulariaceae) by Australian Aboriginal peoples. Journal of Ethnopharmacology In review: pp. Sadgrove, N., Mijajlovic, S., Tucker, D. J., Watson, K., & Jones, G. L. (2011). Characterization and bioactivity of essential oils from novel chemotypes of Eremophila longifolia (F. Muell) (Myoporaceae): a highly valued traditional Australian medicine. Flavour and Fragrance Journal 26(5): pp. 341-350 Sadgrove, N., Telford, I. R. H., Greatrex, B. W., Dowell, A., & Jones, G. L. (2013b). Dihydrotagetone, an unusual fruity ketone, is found in enantiopure and enantioenriched forms in additional Australian native taxa of Phebalium (Rutaceae: Boronieae). Natural Product Communications 8(6): pp. 737-740 Sadgrove, N. J. (2009). The Influence of Indigenous Food Procurement Techniques on Populations of Cyanobacteria in pre-European Australia: A Potential Small-scale Water Amelioration Tool. EcoHealth 6: pp. 390-403 Sadgrove, N. J., Telford, I. R. H., Greatrex, B. W., & Jones, G. L. (2014b). Composition and antimicrobial activity of essential oils from the Phebalium squamulosum species complex (Rutaceae) in New South Wales, Australia. Phytochemistry 97: pp. 38-45 Thesis Page 259

Sah, S. P., Mathela, C. S., & Chopra, K. (2012). Valeriana wallichii DC (maaliol chemotype): antinociceptive studies on experimental animal models and possible mechanism of action. Pharmacologia 3(9): pp. 432-437 Saharkhiz, M. J., Estahbanati, M. N., Rezaei, M., Tafazoli, E., & Delavar, H. (2011). Foliar applications of diammonium phosphate increases essential oil content and changes its compositions in Mexican Marigold (Tagetes minutes L.). Journal of Essential Oil Bearing Plants 15(2): pp. 11-18 Sainsbury, M. (1992). Aromatic Chemistry: Oxford University Press., New York. Santos, F. A., & Rao, V. S. N. (2000). Antiinflammatory and antinociceptive effects of 1,8- cineole a terpenoid oxide present in many plant essential oils. Phytotherapy Research 14: pp. 240-244 Schnaubelt, K. (1999). Medical Aromatherapy: Healing with Essential Oils (First ed.): Frog Books. Sell, C. (2010). Chapter 5 - Chemistry of Essential Oils: In Handbook of Essential Oils: Science, Technology, and Applications. In K. Hüsnü Can Baser & B. Gerhard. (Eds.): CRC Press, Taylor and Francis Group, Boca Raton. Semnani-Morteza, K., Saeedi, M., & Hamidian, M. (2004). Anti-inflammatory and analgesic activity of the topical preparation of Glaucium grandiflorum. Fitoterapia 75(2): pp. 123-129 Semple, S. J., Reynolds, G. D., O'Leary, M. C., & Flower, R. L. (1998). Screening of Australian medicinal plants for antiviral activity. Journal of Ethnopharmacology 60(2): pp. 163- 172 Shaalan, E. A.-S., Canyon, D. V., Bowden, B., Younes, M. W. F., Abdel-Wahab, H., & Mansour, A.-H. (2006). Efficacy of botanical extracts from Callitris glaucophylla, against Aedes aegypti and Culex annulirostris mosquitoes. Tropical Biomedicine 23(2): pp. 180-185 Shah, A., Cross, R. F., & Palombo, E. A. (2004). Identification of the antibacterial component of an ethanolic extract of the Australian medicinal plant, Eremophila duttonii. Phytotherapy Research 18: pp. 615-618 Shou, Q., Banbury, L. K., Renshaw, D. E., Smith, J. E., He, X., Dowell, A., et al. (2013). Parvifloranines A and B, two 11-carbon alkaloids from Geijera parviflora. Journal of Natural Products 76: pp. 1384-1387 Shulgin, A. T. (1966). Possible implication of myristicin as a psychotropic substance. Nature 210: pp. 380-384 Singh, G., Singh, O. P., de Lampasona, M. P., & Catalán, C. A. N. (2003). Studies on essential oils. Part 35: chemical and biocidal investigations on Tagetes erecta leaf volatile oil. Flavour and Fragrance Journal 18: pp. 62-65 Singhuber, J., Baburin, I., Ecker, G. F., Kopp, B., & Hering, S. (2011). Insights into structure-

activity relationship of GABAA receptor modulating coumarins and furanocoumarins. European Journal of Pharmacology 668: pp. 57-64 Skaltsa, H. D., Mavrommati, A., & Constantinidis, T. (2001). A chemotaxonomic investigation of volatile constituents in Stachys subsect. swainsonianeae (Labiatae). Phytochemistry 57: pp. 235-244 Skoula, M., & Harborne, J. B. (2002). The taxonomy and chemistry of Origanum. In: Kintzios, S. E. (ed.) Oregano: The genera Origanum and Lippia. 1st ed. London: Taylor and Francis: pp. 91-92. Smelcerovic, A., Spiteller, M., Ligon, A. P., Smelcerovic, Z., & Raabe, N. (2007). Essential oil composition of Hypericum L. species from Southeastern Serbia and their chemotaxonomy. Biochemical systematics and ecology 35: pp. 99-113 Smith, J. E., Tucker, D., Watson, K., & Jones, G. L. (2007). Identification of antibacterial constituents from the indigenous Australian medicinal plant Eremophila duttonii F. Muell. (Myoporaceae). Journal of Ethnopharmacology 112(2): pp. 386-393 Thesis Page 260

Smith, J. E., Tucker, D. J., Alter, D., Watson, K., & Jones, G. L. (2010). Intraspecific variation in essential oil composition of Eremophila longifolia F. Muell (Myoporaceae): evidence for three chemotypes. Phytochemistry 71: pp. 1521-1527 Song, C., Lai, W. C., Madhusudan, R. K., & Wei, B. (2003). Chapter 7. Temperature- programmed retention indices for GC and GC-MS of hydrocarbon fuels and simulated distillation GC of heavy oils. In C. S. Hsu (Ed.), Analytical advances for hydrocarbon research (pp. 147-193): Kluwer Academic/Plenum Publishers, New York. Song, H. S., Sawamura, M., Ito, T., Kawashimo, K., & Ukeda, H. (2000). Quantitative determination of characteric flavour of Citrus junos (yuzu) peel oil. Flavour and Fragrance Journal 15: pp. 245-250 Southwell, I. A. (1970). A new occurrence of hedycaryol, the precursor of elemol, in Phebalium ozothamnoides (Rutaceae). Phytochemistry 9: pp. 2243-2245 Southwell, I. A. (1981). Methoxystyrenes from the genus Zieria. Phytochemistry 20(6): pp. 1448-1450 Southwell, I. A., & Armstrong, J. A. (1987). Chemical variation within the genus Zieria. Phytochemistry 26(6): pp. 1687-1692 Southwell, I. A., & Tucker, D. J. (1993). cis-Dihydroagarofuran from Prostanthera sp. aff. ovalifolia. Phytochemistry 22(4): pp. 857-862 Stahl-Biskup, E. (1987). Monoterpene Glycosides, State-of-the-Art. Flavour and Fragrance Journal 2: pp. 75-82 Stewart, D. (2003). Healing oils of the bible: Care publications Stewart, D. (2005). Chemistry of Essential Oils Made Simple: GOD's LOVE MANIFEST IN MOLECULES: N A P S A C Reproductions. Su, Y. C., Ho, C. L., & Wang, E. I. C. (2006). Analytical of leaf essential oils from the indigenous five conifers of Taiwan. Flavour and Fragrance Journal 21: pp. 447-452 Szabo, M. B., Iditoiu, C., Chambre, D., & Lupea, A. X. (2007). Improved DPPH determination for antioxidant activity spectrophotometric assay. Chemical Papers 61(3): pp. 214- 216 Tanaka, K., Pescitelli, G., Di Bari, L., Xiao, T. L., Nakanishi, K., Armstrong, D. W., et al. (2004). Absolute stereochemistry of dihydrofuroangelicins bearing C-8 substituted double bonds: a combined chemical/exciton chirality protocol. Organic biomolecular chemistry 2: pp. 48-58 Tang, D.-Z., Hou, W., Zhou, Q., Zhang, M., Holz, J., Zheu, T.-J., et al. (2010). Osthole stimulates osteoblast differentiation and bone formation by activation of β-catenin- BMP signaling. Journal of Bone and Mineral Research 25(6): pp. 1234-1245 Telford, I. R. H., & Bruhl, J. J. (2013). Ongoing morphological investigation of Phebalium (Rutaceae) species. : University of New England, Armidale, NSW Australia 2351. Tepe, B., Sokmen, M., Sokmen, A., Daferera, D., & Polissiou, M. (2004). Antimicrobial and antioxidative activity of the essential oil and various extracts of Cyclotrichium organifolium (Labill). Manden. and Scheng. Journal of Food Engineering 69: pp. 335- 342 Thomas, J., Narkowicz, C. K., Jacobson, G. A., & Davies, N. W. (2010). An examination of the essential oils of Tasmanian Kunzea ambigua, other Kunzea spp. and commercial Kunzea oil. Journal of Essential Oil Research 22(5): pp. 381-385 Thompson, J., & Johnson, L. A. S. (1986). Callitris glaucophylla, Australia's 'White Cypress Pine' - a new name for an old species. . Telopea 2(6): pp. 731 Tippett, L. M., & Massy-Westropp, R. A. (1993). Serrulatane diterpenes from Eremophila duttonii. Phytochemistry 33(2): pp. 417-421 Toyota, M., Tanaka, M., & Asakawa, Y. (1999). A revision of the 13C NMR spectral assignment of globulol. Spectroscopy 14: pp. 61-66 Thesis Page 261

Vaglio, S. (2009). Chemical communication and mother-infant recognition. Communicative and integrative biology 2(3): pp. 279-281 Van Vuuren, S. F., & Viljoen, A. M. (2007). Antimicrobial activitity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour and Fragrance Journal 22: pp. 540-544 Vasilev, K., Cook, J., & Griesser, H. J. (2009). Antibacterial surfaces for biomedical devices. Expert review of medical devices 6(5): pp. 553-567 Vesoul, J., & Cock, I. E. (2011). An examination of the medicinal potential of Pittosporum phylliraeoides: toxicity, antibacterial and antifungal activities. Pharmacognosy Communications 1(2): pp. 8-17 Viljoen, A. M., Kamatou, G. P. P., & Başer, K. H. C. (2008). Head-space volatiles of marula (Sclerocarya birrea subsp. caffra). South African Journal of Botany 74: pp. 325-326 Wagner, H., & Bladt, S. Plant Drug Analysis: A Thin Layer Chromatography Atlas (2nd ed.): Springer. Waikedre, J., Vitturo, C. I., Molina, A., Theodoro, P. N. E. T., Silva, M. d. R. R., Espindola, L. S., et al. (2012). Antifungal activity of the essential oils of Callitris neocaladedonica and C. sulvata heartwood (Cupressaceae). Chemistry and Biodiversity 9: pp. 644-653 Wanakhachornkrai, P., & Lertsiri, S. (2003). Comparison of determination method for volatile compounds in Thai soy sauce. Analytical, Nutritional and Clinical Methods 83(4): pp. 619-629 Wang, J., Cai, Y., & Wu, Y. (2008). Antiinflammatory and analgesic activity of topical administration of Siegesbeckia pubescens. Parkistan Journal of Pharmaceutical Sciences 21(2): pp. 89-91 Wang, L., Peng, Y., Shi, K., Wang, H., Lu, J., Li, Y., et al. (2013). Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis. The Journal of Biomedical Research 27: pp. 1-8 Wang, Y., Hong, C., Zhou, C., Xu, D., & Qu, H.-b. (2011). Screening antitumor compounds psoralen and isopsoralen from Psoralea corylifolia L. seeds. Evidence-Based Complementary and Alternative Medicine doi: 10.1093/ecam/nen087: pp. Watanabe, Y., Mihara, R., Mitsunaga, T., & Yoshimura, T. (2005a). Termite repellent sesquiterpenoids from Callitris glaucophylla heartwood. Journal of Wood Science 51: pp. 514-519 Watanabe, Y., Mitsunaga, T., & Yoshimura, T. (2005b). Investigating antitermitic compounds from Australian white cypress heartwood (Callitris glaucophylla Thompson et Johnson) against Coptotermes formosanus Shiraki. Journal of Essential Oil Research 17: pp. 346-350 Wei, Y., He, J., Qin, H., Wu, X. a., & Yao, X. (2009). Determination of ferruginol in rat plasma via high-performacne liquid chromatography and its application in pharmacokinetics study. Biomedical Chromatography 23(10): pp. 1116-1120 Whish, J. P. M., & Williams, R. P. (1996). Effects of post harvest drying on the yield of tea tree oil (Melaleuca alternifolia). Journal of Essential Oil Research 8: pp. 47-51 Wiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols 3(2): pp. 163-175 Wilkinson, J. M., & Cavanagh, H. M. A. (2005). Antibacterial activity of essential oils from Australian native plants. Phytotherapy Research 19: pp. 643-646 Williams, C. (2011). Medicinal Plants in Australia: Volume 2. Gums, Resins, Tannin and Essential Oils: Rosenberg Publishing Pty Ltd. Wilson, P. G. (1970). A taxonomic revision of the genera Crowea, Eriostemon and Phebalium (Rutaceae). Nuytsia 1: pp. 5-55 Wilson, P. G. (2013). Phebalium. 26: pp. 458-480 Thesis Page 262

Wilson, T. C., Conn, B. J., & Henwood, M. J. (2012). Molecular phylogeny and systematics of Prostanthera (Lamiaceae). Australian Systematic Botany 25: pp. 341-352 Wu, S.-N., Lo, Y.-K., Chen, C.-C., Li, H.-F., & Chiang, H.-T. (2002). Inhibitory effect of the plant- extract osthole on L-type calcium current in NG108-15 neuronal cells. Biochemical Pharmacology 63: pp. 199-206 Xiao, D., Kuroyanagi, M., Itani, T., Matsuura, H., Udayama, M., Murakami, M., et al. (2001). Studies on constituents from Chamaecyparis pisifera and antibacterial activity of diterpenes. Chemical and Pharmaceutical Bulletin 49(11): pp. 1479-1481 Xu, X., van Stee, L. L. P., Williams, J., Beens, J., Adahchour, M., Vreuls, R. J. J., et al. (2003). Comprehensive two-dimensional gas chromatography (GC×GC) measurements of volatile organic compounds in the atmosphere. Atmospheric Chemistry and Physics 3: pp. 665-682 Yatagai, M. (1997). 7. Miticidal activities of tree terpenes. Current Topics in Phytochemistry 1: pp. 85-97 Yatagai, M., & Nakatani, N. (1994). Antimite, antifly, antioxidative, and antibacterial activities of pisiferic acid and its congeners. Journal of the Japan Wood Research Society 40(12): pp. 1355-1362 Yatagai, M., & Takahashi, T. (1980). New diterpenes from Chamaecyparis pisifera. Phytochemistry 19: pp. 1149-1151 Zhang, M. J., Li, D. S., & Chen, B. J. (1992). Compositional studies of high-temperature coal tar by GC/FTIR analysis of light oil fractions. Chromatographia 33(3-4): pp. 138-146 Zhang, Y., Lv, Z., Zhong, H., Geng, D., Zhang, M., Zhang, T., et al. (2012). Convenient synthesis of novel geiparvarin analogs with potential anti-cancer activity via click chemistry. European Journal of Medicinal Chemistry 53: pp. 356-363 Zore, B. G., Thakre, A. d., Rathod, V., & Mohan Karuppayil, S. (2011). Evaluation of anti- Candida potential of geranium oil constituents against clinical isolates of differentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization. Mycoses 54(4): pp. e99-e109

Thesis Page 263

Appendix B – Supplementary files chapter 5

Thesis Page 264

Table 4 – Chemical character of essential oils from Eremophila longifolia (Regional New South Wales part 1).

AI Pub. AI NS154 NS155 NS165 NS171 NS178 NS260 NS264 NS265 α -Thujene 929 924 - 0.5 - - 0.8 - 0.7 - α-Pinene 934 932 ------1.3 1.0 Camphene 952 946 - - - - 0.9 - 0.4 - Sabinene 976 969 - 3.3 - 0.7 1.1 1.7 - - Unk-1 982 ------13.2 - β-Pinene 985 974 - - - - - 0.7 0.9 0.3 Myrcene 992 988 - 0.6 ------Unk-2 995 ------6.6 - δ-2-carene 1004 1001 ------0.5 α-Phellandrene 1009 1003 ------1.4 0.7 δ-3-Carene 1015 1008 ------1.2 α-Terpinene 1023 1014 ------4.2 0.6 Unk-3 1124 - - 3.6 3.3 2.7 4.8 - - - p-Cymene 1027 1020 - 5.2 - 2.3 2.8 5.0 0.6 1.7 Limonene 1031 1024 - 10.6 - 1.8 5.3 10.2 21.6 15.7 Nerol oxide 1153 1149 - - - - - 1.1 - - Unk-4 1054 ------4.7 γ-Terpinene 1067 1054 ------5.6 0.4 p-cresol 1074 1063 - - 0.4 0.3 0.8 - - - α-Terpinolene 1091 1086 - - - 2.0 - - - 0.5 p-Cymenene 1092 1089 - 2.2 1.8 - 2.1 1.6 - - Unk-5 1095 ------3.7 Unk-6 1100 ------16.7 - trans-Sabinene hydrate 1101 1098 - - - 0.6 1.0 - - - cis-p-Mentha-2,8-dien-1-ol 1137 1133 - 0.5 ------Unk-7 1140 - 10.6 ------Unk-8 1143 - - - 2.2 1.2 - - - - Unk-9 1148 - - 1.6 ------Karahanaenone 1159 1154 39.1 ------50.4 Sabina ketone 1161 1158 - 0.9 ------Unk-10 1162 ------4.0 - Isomenthone 1165 1158 ------0.7 - Terpinen-4-ol 1180 1174 - 2.2 1.5 4.3 1.6 2.3 1.2 - p-Menthan-3-one 1183 1172 ------2.8 p-Cymen-8-ol 1188 1179 - 23.4 16.7 14.5 26.0 16.8 - - Unk-11 1190 - - 2.0 - - 1.1 - - 7.1 Unk-12 1199 ------1.9 Unk-13 1206 ------9.0 p-Mentha-6,8-dien-2-ol 1221 1217 - 1.0 ------Nerol 1230 1232 - - - 0.3 - - - - Unk-14 1240 - 2.5 ------Carvone 1247 1239 - 1.3 - - 0.6 0.6 - - Unk-15 1267 - - - - - 2.2 - - - Piperitone 1269 1249 ------0.4 Unk-16 1272 - - 1.2 - 1.6 - - - - Acetic acid bornyl ester 1284 - - - - - 1.0 - - Unk-17 1285 - - 5.0 - 1.9 3.0 - - - Unk-18 1289 - - - - 1.1 - 2.0 - - p-Cymen-7-ol 1292 1289 - 0.8 ------Unk-19 1305 - - - 1.4 - - - - - Unk-20 1309 - - 1.4 - - 1.2 - - - Unk-21 1313 - - 2.6 5.2 8.8 2.4 - - - Unk-22 1314 - 2.2 ------Unk-23 1317 - 4.0 ------Unk-24 1328 - 8.0 ------Unk-25 1340 - - - 2.4 2.2 4.2 - - - Unk-26 1341 - - 3.8 ------Unk-27 1347 - - 1.8 - - 2.1 - - - Neryl acetate 1365 1359 - - - - - 1.3 - - Unk-28 1376 - - - 1.9 - - - - - Unk-29 1379 - 3.4 ------Unk-30 1381 - 6.8 ------β-Pannasinsene 1388 1381 ------9.3 0.4 Unk-31 1391 - 5.1 ------Unk-32 1398 - 1.3 3.0 9.7 8.5 2.4 - - - Unk-33 1419 - - 3.1 13.3 - 4.6 - - - Unk-34 1421 - - - - 12.5 - - - - Unk-35 1427 - 1.3 - - - - 1.5 - - Thesis Page 265

Unk-36 1437 - 3.7 ------Unk-37 1464 - - 3.6 6.8 1.5 3.2 - - - Unk-38 1472 - - 1.6 - 2.4 - - - Unk-39 1474 - - - 4.2 4.5 - - - - α-Curcumene 1481 - - - - - 0.6 - - Unk-40 1482 - - - - - 1.3 - - - Unk-41 1483 - - - - 1.3 - - - - Unk-42 1485 - - - - 1.2 - - - - Unk-43 1490 - - 3.3 10.8 - 5.8 - - - Unk-44 1493 - - - - 12.0 - - - - Unk-45 1507 - - - 1.1 - - - - - Unk-46 1583 - - - 1.3 - - - - - Spathulenol 1584 1577 - 1.7 - - 5.2 3.3 - - Unk-47 1592 ------34.0 - - Unk-48 1606 - - - 3.5 - - - - - β-Eudesmol 1657 1649 - - - - 1.1 - - - α-Cadinol 1660 1663 - - - - 0.7 - - - trans-Farnesyl acetate 1673 - - - - 0.8 - - - - α-Bisabolol 1687 1682 - 0.7 - 0.7 - 0.5 - - Hexadecanoic acid, 1995 ethyl ester 1994 - - 1.5 - 1.1 - - - Heneicosane 2100 2100 - - 0.6 - - - - - Linoleic acid, ethyl ester - - - - - 1.3 1.3 - - - Nonadecane, 9-methyl- - - - 0.5 ------Unk-49 - - 6.8 ------Unk-50 - - 1.0 ------

Thesis Page 266

Table 5 - Chemical character of essential oils from Eremophila longifolia (Regional New South Wales part 2). Published arithmetic indices (Pub. AI) are from Adams (2007), shown alongside arithmetic indices (AI) calculated in the present study. Vouchers are listed in shorthand form relative to those lodged at the N.C.W Beadle Herbarium at the University of New England, Armidale NSW Australia 2351. Thus, NS25 is lodged in the herbarium as NJSadgrove25.

AI Pub. AI NS6 NS25 NS95 NS100 NS111 NS168 NS169 NS182 NS371 NS387 NS388 ξ-Fenchene 909 912 - 3.3 1 - - - - - 2.3 - - α-Thujene 931 924 - - - - 1.2 - - - - 0.3 0.7 α-Pinene 938 932 3.9 5.6 - 9.1 3 1.3 3.8 - 2.1 1.7 22.5 Camphene 954 946 - 8.2 3.2 - 4.3 3.5 - 2.6 5.3 - - Sabinene 977 969 19.7 9.9 - - 12.2 3.7 21.2 6.7 - 13.2 0.7 β-Pinene 981 974 - 1.1 ------0.3 0.4 1.1 Myrcene 992 988 5.6 4.3 - - 3.4 2.9 5.9 3 - 5.2 1.0 α-Phellandrene 1010 1002 1.2 1.4 - 0.9 - 1.0 1.6 0.5 - 0.9 2.3 α-Terpinene 1021 1014 2.7 2.4 - 2 - 1.6 2.5 0.9 - 2.0 0.4 p-Cymene 1029 120 - 0.6 - 1.5 9.2 - 1.7 1 - - 0.3 Limonene 1034 1024 16.9 21.2 34.4 69.4 16.7 22.2 12.9 12.7 8.9 43.2 59.7 β-cis-Ocimene 1049 1032 - 0.2 - 2.7 - 2.8 - 0.5 0.9 1.0 4.0 γ-Terpinene 1063 1054 4.3 3.7 - 1.2 - 5.8 4.6 1.8 - 3.5 0.4 α-Terpinolene 1093 1086 26.9 16.2 2.8 4.6 6.9 31.4 32.4 10.3 1.5 24.7 0.9 Linalool 1100 1095 ------1.4 0.3 - - - Fenchol 1119 1114 - 4.4 - - 8.7 ------Nerol oxide 1156 1154 ------0.6 0.7 3.3 Menthone 1163 1148 - 2.4 ------Borneol 1174 1165 - 9.1 - - 20.9 - - 3.6 4.2 - - Terpinen-4-ol 1184 1174 5.1 1.6 - - 4.6 - 9.5 2.9 0.3 2.2 - p-Cymen-8-ol 1191 1179 - 0.2 - - 4.9 - - 0.8 - - - α-Terpineol 1196 1186 - - - - 0.8 - 1.8 0.7 0.6 0.2 - Fenchyl acetate 1226 1229 - - 14.4 - - - - 11.8 14.6 - 0.5 Genifuranal 1267 1260 13.5 1.7 ------5.3 - 0.3 Bornyl acetate 1294 1288 - 0.2 44.2 - - - - 30.7 52.8 - 1.6 Caryophyllene 1432 1417 - - - - - 2.3 - - - - - Bicyclogermacrene 1511 1500 - 0.3 - 4.2 - 3.1 - - - 0.5 - Spathulenol 1594 1577 - 0.2 - 1.1 0.7 ------β-Eudesmol 1665 1649 - - - - - 1.3 - - - - - Unk 1901 ------3.5 - - - - - Phytol ------3.2 - - - - -

Thesis Page 267

Table 6 - Chemical character of essential oils from Eremophila longifolia (Specimens from Mutawintji National Park near Broken Hill New South Wales). Published arithmetic indices (Pub. AI) are from Adams (2007), shown alongside arithmetic indices (AI) calculated in the present study. Vouchers are listed in shorthand form relative to those lodged at the N.C.W Beadle Herbarium at the University of New England, Armidale NSW Australia 2351. Thus, NS25 is lodged in the herbarium as NJSadgrove25.

AI Pub. AI NS33 NS35 NS36 NS37 NS38 NS39 NS40 NS175 ξ-Fenchene 915 912 - 2.7 ------α-Pinene 943 932 0.4 0.5 ------Camphene 959 946 0.2 4.7 ------β.-Pinene 988 974 - 0.2 ------δ-2-Carene 1009 1001 0.2 1.4 3.4 2.8 2.9 - - 3.0 α.-Phellandrene 1013 1002 0.5 0.1 ------α-Terpinene 1025 1014 0.4 1.3 3.3 3.2 3.2 - - 2.9 p-Cymene 1033 1020 - 0.8 0.5 0.4 0.4 - 0.2 Limonene 1039 1024 9.4 23.7 4.7 5.8 6.0 2.7 3.6 2.8 γ-Terpinene 1065 1054 - 0.3 ------α-Terpinolene 1096 1086 1.9 1.9 0.2 0.2 0.3 0.5 0.5 - Fenchone 1099 1095 0.3 5.3 ------Linalool 1104 1095 0.8 0.7 1.5 0.3 0.4 0.6 0.6 - (E)-p-2-Menthen-1-ol 1131 1118 - - 0.3 - - - - - Camphor 1159 1146 0.7 15.3 ------Menthone 1164 1148 - 0.7 5.0 37.9 37.9 - - 12.6 Karahanaenone 1169 1154 65.7 - - - - 78.1 69.2 - p-Menthan-3-one 1176 1172 - - - - - 1.5 - - Isomenthone 1179 1158 - 32.0 55.3 42.3 41.7 - 17.5 66.8 Borneol 1179 1165 0.7 ------Unk 1187 - 1.5 - - - - 2.4 1.2 - Terpinen-4-ol 1188 1174 - 0.3 - - - - Unk 1196 - 2.0 - - - - 1.2 1.3 - Dill ether 1197 1184 - - 0.4 - - - - - α-Terpineol 1201 1186 12.6 6.7 17.1 5.7 5.8 6.4 5.6 11.8 Genifuranal 1273 1260 - - - - - 2.3 - - Piperitone 1265 1249 - 0.6 8.2 1.1 1.2 - 0.2 - p-Menth-1-en-9-ol 1303 1295 - 0.1 - - - 4.5 - - Bicyclogermacrene 1512 1500 - - - 0.2 0.2 - - -

Thesis Page 268

Table 7 - Chemical character of essential oils from Eremophila longifolia (Western Australian specimens). Published arithmetic indices (Pub. AI) are from Adams (2007), shown alongside arithmetic indices (AI) calculated in the present study. Vouchers are listed in shorthand form relative to those lodged at the N.C.W Beadle Herbarium at the University of New England, Armidale NSW Australia 2351. Thus, NS25 is lodged in the herbarium as NJSadgrove25.

AI Pub. AI NS55 NS56 NS59 NS60 NS74 NS78 NS79 NS80 Camphene 955 946 ------1.7 - Sabinene 979 969 - - - - 26.9 - - - Myrcene 993 988 - - - - 9.5 - - - δ-3-Carene 1007 1008 ------1.0 α-Terpinene 1022 1014 - - - - 1.8 - - - Limonene 1034 1024 - - - 14.6 20.5 - 6.7 7.1 β-Ocimene 1050 1037 ------1.2 γ-Terpinene 1063 1054 - - - - 2.8 - - - α-Terpinolene 1094 1086 - - - 1.9 31.8 - - - Fenchone 1096 1095 ------5.9 Fenchol 1124 1114 ------65.1 (Z)-p-Menth-2-en-1-ol 1128 1118 - - - - - 3.1 - 1.9 (E)-p-Menth-2-en-1-ol 1146 1136 ------1.2 Menthone 1162 1148 - - - - - 63.4 - 3.2 Karahanaenone 1165 1154 - - - 71.5 - - - - Borneol 1175 1165 ------11.7 - Isomenthone 1176 1158 - - - - - 3.9 - 45.0 Unk 1183 - - - - 4.1 - - - - Terpinen-4-ol 1185 1174 - - - 2.9 - - - Neo-iso-menthol 1191 1184 ------1.5 α-Terpineol 1198 1186 - - - - - 3.4 3.3 0.8 cis-Piperitol 1203 1196 ------0.9 trans-Piperitol 1214 1207 ------1.1 Fenchyl acetate 1227 1229 - - - - - 11.5 8.4 Unk 1235 - - - - 3.1 - - - - Sabinene hydrate acetate 1249 1253 ------1.7 Piperitone 1264 1249 - - - - - 26.2 1.4 Safrole 1298 1285 21.1 10.0 21.6 - - - - - Menthyl acetate (iso) 1316 1304 ------1.3 Methyl eugenol 1414 1403 78.9 90.0 78.4 - - - - - Bicyclogermacrene 1512 1500 - - - 4.8 3.9 - - 0.9 α-Cadinol 1658 1663 ------2.3 Farnesol 1729 1740 ------2.3 Oxirane, hexadecyl- 1820 ------1.8 n-Hexadecanoic acid 1964 1960 ------1.8 Phytol ------4.4

Thesis Page 269

Table 8 - Chemical character of essential oils from Eremophila longifolia (Northern Territory specimens). Published arithmetic indices (Pub. AI) are from Adams (2007), shown alongside arithmetic indices (AI) calculated in the present study. Vouchers are listed in shorthand form relative to those lodged at the N.C.W Beadle Herbarium at the University of New England, Armidale NSW Australia 2351. Thus, NS25 is lodged in the herbarium as NJSadgrove25.

Jobson Jobson Jobson AI Pub. AI 10784 10785 10786 NS340 NS342 ξ-Fenchene 909 912 - - 2.4 3.2 - α-Pinene 936 932 - 16.6 1.6 1.7 5.9 α-Fenchene 949 953 - - 0.6 1.0 - Camphene 951 946 - - 3.2 4.0 - β-Pinene 980 974 - - 0.4 0.5 - α-Phellandrene 1007 1002 - - - - 0.9 α-Terpinene 1018 1014 - - - - 1.2 Limonene 1031 1024 4.0 2.5 18.2 10.6 82.0 γ-Terpinene 1060 1054 - - 0.5 0.3 0.9 α-Terpinolene 1091 1086 1.3 - - - 3.7 Fenchone 1092 1095 - - 44.1 47.5 - Linalool 1101 1095 - - 0.9 0.8 - Fenchol 1116 1114 - - 2.0 4.9 - Camphor 1148 1146 - - 20.0 22.1 - Karahanaenone 1160 1154 86.7 - - - - Unk 1179 - 6.8 - - - - Terpinen-4-ol 1180 1174 - - 0.5 0.5 - α-Terpineol 1193 1186 - - 1.5 1.0 - Genifuranal 1267 1260 1.1 - 3.7 2.1 4.9 Unk 1366 - - 2.3 - - - Unk 1547 - - 2.3 - - - Unk 1583 - - 2.4 - - - Unk 1590 - - 2.6 - - - Unk 1598 - - 2.9 - - - Unk 1640 - - 3.0 - - - Unk 1648 - - 15.1 - - - Unk 1674 - - 5.1 - - - 2,6-Diisopropylnaphthalene (isomer 1) 1680 - - 1.3 - - - Diisopropylnaphthalene (isomer 2) 1685 - - 1.7 - - - α-Bisabolol 1688 1682 - 14.6 - - - Diisopropylnaphthalene 1724 1716 - 2.9 - - - Unk 1964 - - 1.1 - - - Phytol - 3.4 - - -

Thesis Page 270

Appendix C – Supplementary files chapter 10

Thesis Page 271

Figure 4 – Mass spectrum of Unknown (A) Thesis Page 272

Figure 5 – Mass spectrum of Unknown (B) Thesis Page 273

Table 8 – Chemical character of essential oils from Geijera parviflora specimens. Arithmetic indices (AI) are included alongside published values from Adams (2007).

Voucher NS176 NS177 NS179 NS180 NS180g NS180y NS262 Yield g/g 0.13 0.65 0.22 0.23 0.18 0.13 0.31 AI Pub. AI α-Pinene 931 932 25.3 22.9 31.4 20.7 20.8 18.2 20.8 Camphene 947 946 37 27.6 34.7 24.4 25 22.1 25.9 Sabinene 969 969 10.9 15.3 5.5 19.4 19.3 18.3 10.1 β-Pinene 975 974 - 2 - 1.3 1.2 1.1 0.8 Myrcene 983 988 5 3.7 5.4 4.3 4.1 4.3 4.6 α-Phellandrene 1007 1002 ------0.6 α-Terpinene 1013 1014 - 1.7 - 1 1 0.8 1.4 p-Cymene 1021 1020 - 1 - - - - 1 Limonene 1025 1024 9.1 6 10 7.1 7.1 7.4 8.1 1,8-Cineol 1029 1026 5 6 2.3 4.9 4.3 3.9 4.9 β-E-Ocimene 1040 1032 ------0.5 γ-Terpinene 1054 1054 - 2.8 - 1.6 1.6 1.5 2.8 Terpinolene 1085 1086 - 1.4 - - - - 1.4 Linalool 1093 1095 - 1 - - - - 0.6 Camphor 1145 1146 - 1.6 - - - - 0.4 Borneol 1166 1165 - 1.5 - - - - - Terpinen-4-ol 1177 1174 - 2.1 - - - - 2.5 α-Terpineol 1193 1186 ------0.6 E-Caryophyllene 1425 1417 2.1 0.8 3.2 2.8 2.3 4.1 2.8 Bicyclogermacrene 1500 1500 5.7 2.7 6.2 11.1 11.2 15.2 6.5 Spathulenol 1584 1577 - - 1.4 1.5 2.1 1.9 1.9 Unknown ( D ) 1590 - 3.8 - - - - 1.3 - Guaiol 1599 1604 ------0.5 Thesis Page 274

Table 9 – Chemical character of essential oils from Geijera parviflora specimens. Arithmetic indices (AI) are included alongside published values from Adams (2007). Voucher NS102 NS102d NS107 NS107d NS108 NS112 NS112d Yield g/g 0.23 0.15 0.33 0.18 0.25 0.14 0.12 AI Pub. AI α-Pinene 931 932 1.9 7.9 - 1.8 4.9 - 1.2 Camphene 947 946 2.3 10.3 - 1.3 2.7 - 1.5 Sabinene 969 969 - 2.4 - 0.6 0.8 - 0.7 Myrcene 983 988 - 1.9 - 0.5 1.1 - 0.4 p-Cymene 1027 1020 - - - - 0.3 - - Limonene 1025 1024 1.2 3.5 - 1.2 2.7 - 0.9 1,8-Cineol 1029 1026 - 1.6 - 0.4 1.2 - 0.6 β-E-Ocimene 1040 1044 - - - 0.3 0.9 - - γ-Terpinene 1054 1054 - - - 0.3 - - 0.5 Terpinolene 1091 1086 - - - - 0.4 - - Linalool 1093 1095 - 0.8 - - 1.1 - 0.8 Terpinen-4-ol 1177 1174 - - - 0.4 - - 0.4 Unknown (A) 1278 - - 0.5 - 1.1 - - - E-caryophyllene 1425 1417 9.0 3.9 - 0.6 6.6 2.6 8.5 Aromadendrene 1444 1439 - - - - - 0.3 α-Humulene 1459 1452 - - - - 0.7 - 1.0 Germacrene D 1486 1484 - - - - 1.4 0.9 4.0 Bicyclogermacrene 1502 1500 8.2 4.0 4.8 15.4 11.7 3.9 11.2 δ-Cadinene 1524 1522 - - - 0.3 0.4 - 0.5 Elemol 1550 1548 - - - - 0.4 Spathulenol 1584 1577 - 0.5 - 1.8 3.1 1.6 4.4 Globulol 1591 1590 - - - 1.7 1.9 - 3.4 Ledol 1599 1602 - - - 0.9 0.8 - 1.1 Xanthoxylin 1689 - 77.5 62.7 95.2 64.8 56.6 89.8 50.9 Xanthoxylin isomer 1691 - - - - 6.1 - - -

Thesis Page 275

Table 10 - Chemical character of essential oils from Geijera parviflora specimens. Arithmetic indices (AI) are included alongside published values from Adams (2007).

Voucher NS91 NS94 NS106 NS110 NS116 NS118 NS370 NS372 NS373 NS374 Yield 0.05 0.12 0.31 0.12 0.47 0.29 0.38 0.09 0.25 0.11 AI Pub. AI α-Thujene 929 924 ------0.4 - 0.4 - α-Pinene 931 932 15.6 5 1.9 0.4 - - 25.2 27.4 25.2 - Camphene 947 946 16 2.3 0.7 - - - 37.8 40.9 36.9 - Sabinene 969 969 4.2 1.6 - - - - 11.7 6.0 13.9 - β-pinene 975 974 0.1 0.9 0.5 0.5 0.7 0.7 0.8 0.4 1.0 - Myrcene 983 988 1.7 0.5 0.6 0.7 0.5 0.5 4.4 5.2 4.4 - α-Phellandrene 1007 1002 - - 0.5 - - 0.7 0.5 0.7 0.4 - α-terpinene 1013 1014 0.1 0.8 0.9 0.5 0.9 0.5 1.5 0.9 1.5 - p-Cymene 1027 1020 1.4 ------Limonene 1025 1024 5.2 - - - - - 7.6 8.7 7.3 - 1,8-Cineol 1029 1026 0.5 2.3 0.5 0.5 0.5 0.5 1.2 0.7 2.4 - β-E-ocimene 1040 1032 ------5.5 γ-Terpinene 1054 1054 ------2.3 1.4 2.4 - Terpinolene 1085 1086 ------1.0 0.9 0.8 - Linalool 1093 1095 - 3.3 11.7 8.4 17.2 35.2 0.8 0.4 0.5 3.3 Geijerene 1141 1148 - - 6.9 - 5.2 6.8 - 2.5 - - Camphor 1148 1146 ------1.4 0.4 0.5 - Borneol 1166 1165 ------0.5 - - - Terpinen-4-ol 1177 1174 ------1.6 0.7 1.6 - Unknown (A) 1278 - 33.3 - 24.5 ------Cogeijerene 1288 1283 - - 3.8 - 4.3 3 - - - - Pregeijerene 1295 1285 - - 37.5 - 48 49.5 - - - - β-Elemene 1396 1389 ------1.4 α-Santalene 1420 1416 - - - 1.2 2.6 - - - - - E-caryophyllene 1425 1417 7 27.4 5.6 17.6 8.8 3.6 - 0.5 - 32.2 α-Humulene 1459 1452 - 2.6 - 2.3 - - - - - 2.9 Germacrene D 1486 1484 - - - 5.8 2.9 - - - - - Bicyclogermacrene 1502 1500 12.4 21.6 8.3 13 2.7 1.9 1.3 1.3 0.7 23.9 Selina-3,7(2)-diene 1540 1545 - 2.1 - 4.5 ------Elemol 1550 1548 - - - 1.5 1.2 - - - - - Germacrene B 1564 1559 - 2.5 - 2.6 ------Spathulenol 1584 1577 3.1 2.1 - 3.1 - - - 0.5 - 7.9 Caryophyllene oxide 1591 1582 - 2.5 - 1.9 ------Guaiol 1599 1600 ------0.5 - 1.2 Unknown ( B ) 1633 - - 12.5 - 19.3 - - - - - 9.3 γ-Eudesmol 1637 1630 - - - - 1.2 - - - - - α-Eudesmol 1660 1652 - - - 2.1 2.7 - - - - 0.6 Unknown ( E ) 1672 - - - - 2.2 ------Eremophilone 1742 1734 - 6.5 - 6.1 ------Cyclocolorenone 1752 1759 - 5.7 - 6 ------

Thesis Page 276

Appendix D – Supplementary files chapter 13

Thesis Page 277

Figure 4 - Loading plot from principal component analysis showing PC1 plotted against PC3. Thesis Page 278

Figure 5 – Mass spectrum of squamulosone. Thesis Page 279

Table 4 – Composition of essential oils from New South Wales populations currently assigned to P. squamulosum subsp. squamulosum, collected from Gloucester Tops (NJS246), Bluff Rock Tenterfield (NJS282) and Donnybrook State Forest Tenterfield (NJS303) and P. squamulosum subsp. lineare (NJS314 and 334), from Wingen Maid Nature Reserve Scone. Published arithmetic indices (Pub. AI) are from Adams (2007) and calculated arithmetic indices (AI) were produced by the authors. Essential oil components are displayed in relative abundance (%) by mass of component compared to the whole essential oil. NJS246 NJS282 NJS303 NJS314 NJS334 Yield 0.4 0.7 0.02 1.7 0.9 AI Pub. AI Compound 930 932 α-pinene 1.5 0.2 3.4 - - 944 945 α-fenchene 0.7 - - - - 970 969 sabinene - - 0.1 - - 974 974 β-pinene - - 0.2 - - 989 988 β-myrcene - 0.9 6 - - 1004 1002 α-phellandrene 3.4 - 2 - - 1015 1014 α-terpinene - - 0.1 - - 1022 1022 p-cymene - 0.1 0.2 - - 1027 1025 β-phellandrene - 0.2 7.1 - - 1045 1044 β-E-ocimene - - 0.2 - - 1103 1100 nonanal - - 3.7 - - 1283 1287 bornyl acetate - 0.2 1.3 - - 1323 1324 myrtenyl acetate - - 0.5 - - 1372 1374 α-copaene - - 0.3 - - 1390 1389 β-elemene - - - 0.5 - 1414 1417 E-caryophyllene - 0.8 0.3 1.1 0.6 1445 1439 aromadendrene - - - 0.4 - 1448 1452 α-humulene - 0.2 - - - 1457 1458 alloaromadendrene - - - 0.3 - 1476 1478 γ-muurolene - 0.3 0.6 - - 1481 1489 α-selinene - 0.1 - - - 1491 1496 viridiflorene - - 4.5 - - 1496 1500 α-muurolene - - 0.3 - - 1500 1500 bicyclogermacrene 0.9 0.5 - 2.6 2.3 1503 1501 epizonarene - - 0.6 - - 1519 1522 δ-cadinene 1.4 0.3 0.7 - - 1546 1548 elemol - 18.7 5.7 - - 1561 1556 E-dauca-4(ll),7-diene - 0.4 - - - 1569 1567 palustrol 0.2 - - - - 1572 1577 spathulenol - 0.9 0.7 - - 1593 1590 globulol 6.8 6.3 33.3 0.6 4.1 1593 1592 viridiflorol - - 0.8 - - 1596 1600 guaiol - 1.5 3.9 - - 1597 1604 klusinone - 0.4 - - - Alloaromadendrene 1598 - alcohol 1 - - - 4.2 - 1601 - C15H24O - 3.9 - - - 1604 1602 ledol 2.1 - - - - 1615 1622 10-epi-γ-eudesmol - 14.1 - - - Alloaromadendrene 1619 - alcohol 2 - - - 1.2 0.9 1626 1630 γ-eudesmol - 13.1 1.5 - - 1631 1629 eremoligenol - 1.3 - - - 1637 1638 epi-α-cadinol - 2.6 0.6 - - 1644 1649 β-eudesmol - 16.3 1.4 - - 1647 1652 α-eudesmol - 9.8 1.9 - - 1662 1670 bulnesol - 2.3 3.1 - - 1725 - Sesquiterpene ketone - - - - 0.6 1785 - squamulosone 81 - - 85 88 1787 1792 8-α-acetoxyelemol - 0.2 6 - -

Thesis Page 280

Table 5 – Composition of essential oils from P. squamulosum subsp. gracile. Published arithmetic indices (Pub. AI) are from Adams (2007) and calculated arithmetic indices (AI) were produced by the authors. Essential oil components are displayed in relative abundance (%) by mass of component compared to the whole essential oil. NJS191- NJS223- NJS251 92-93 24-25 Yield 0.5 0.6 0.2 AI Pub. AI Compound 936 932 α-pinene 23.2 17.6 15.6 947 946 camphene - 0.3 - 973 969 sabinene - 5.3 - 976 974 β-pinene - 0.9 0.7 992 988 myrcene 3.7 3.6 - 1005 1002 α-phellandrene - 0.2 - 1016 1014 α-terpinene - 1.1 - 1024 1022 p-cymene - 0.4 - 1028 1024 limonene 13.5 4.9 2.7 1057 1054 γ-terpinene - 1.9 - 1088 1086 terpinolene - 0.6 - 1177 1174 terpinen-4-ol - 2.9 - 1190 1186 α-terpineol - 0.2 - 1284 - C10H10O2 - - 2.6 1393 1389 β-elemene 0.8 - 0.9 1416 1417 E-caryophyllene - 0.5 - 1450 1452 α-humulene - 0.2 - 1498 1502 γ-patchoulene - - 0.7 1506 1500 bicyclogermacrene 2.0 0.9 9.7 1555 1548 elemol 13.9 27 14.0 1581 1577 spathulenol - - 3.9 1596 1590 globulol - - 1.6 1601 1600 guaiol - - 3.6 1604 1602 ledol 1.7 - - 1609 1607 5-epi-7-epi-α-eudesmol 6.9 - 2.4 1617 1622 10-epi-γ-eudesmol 1.0 1.4 10.3 1623 - C15H26 13.6 - - 1633 1630 γ-eudesmol 6.6 14.3 7.8 1638 1638 epi-α-cadinol - 0.5 - 1658 - C15H24 - - 1.2 1651 1649 β-eudesmol 4.8 9.7 - 1655 1652 α-eudesmol 4.5 - 17.8 1669 1670 bulnesol 3.9 4 -

1684 - C15H22O - - 1.2 1785 1792 8-α-acetoxyelemol - 2.2

Thesis Page 281

Table 6 – Comparison of composition of essential oils from P. squamulosum subsp. ozothamnoides collected from a cultivated plant ex Tinderry Mountains (IRT ), and from wild populations in the Blue Mountains (NS273) and a putative new species here referred to as subsp. aff. ozothamnoides (NS289 and NS300). Published arithmetic indices (Pub. AI) are from Adams (2007) and calculated arithmetic indices (AI) were produced by the authors. Essential oil components are displayed in relative abundance (%) by mass of component compared to the whole essential oil. IRT NJS273 NJS289 NJS300 Yield 0.1 0.03 0.8 0.4 AI Pub. AI Compound 932 932 α-pinene 1.3 0.1 3.7 5.0 971 969 sabinene - - 0.3 - 975 974 β-pinene - - 0.2 - 989 983 Z-meta-mentha-2,8-diene 3.6 - 0.3 0.2 990 988 myrcene - 3.1 - - 1004 1002 α-phellandrene 0.4 0.4 0.3 0.6 1022 1022 p-cymene 0.8 - - - 1026 1025 β-phellandrene 2.4 1.5 1.9 3.2 1100 1095 linalool - 0.2 - - 1175 1174 terpinen-4-ol - 0.2 - - 1230 1223 citronellol - 0.1 - - 1389 1389 β-elemene 0.2 - - 0.2 1415 1417 E-caryophyllene 0.2 0.3 0.8 0.5 1448 1452 α-humulene 0.1 - - - 1476 1478 γ-muurolene - 0.2 0.2 0.2 1481 1489 α-selinene 0.1 - - 0.2 1486 1492 δ-selinene 0.1 - - - 1491 1500 bicyclogermacrene 1.9 1.9 1.5 1.6 1499 1508 germacrene A - - - 0.2 1503 1501 epizonarene - - - 0.2 1520 1522 δ-cadinene 0.2 0.3 - 0.2 1549 1548 elemol 21.4 19.7 27.6 29.5 1573 1577 spathulenol 1.3 0.6 - - 1587 - C15H24 7.5 2.7 0.4 1.0 1593 1589 allohedcaryol 0.6 - - - 1594 1600 guaiol - 4.7 1.2 1.0 1600 1607 5-epi-7-epi-α-eudesmol 1.4 - 1.4 1.3 1614 1622 10-epi-γ-eudesmol 4.6 5.5 5.1 4.2 1621 1629 eremoligenol - - - 0.1 1627 1630 γ-eudesmol 3.8 2.5 2.2 5.5 1631 1638 epi-α-cadinol 1.4 0.5 - 1.7 1639 1640 hinesol 1.9 - - 1.8 1646 1649 β-eudesmol 1.6 1.7 2.0 2.4 1649 1652 α-eudesmol 3.6 3.2 5.7 4.8 1654 1656 valerianol - - - 2.4 1667 1670 bulnesol 12.4 21.0 16.5 19.3

Thesis Page 282

Table 7 – Composition of essential oils from P. squamulosum subsp. coriaceum from Warrambungles National Park. Published arithmetic indices (Pub. AI) are from Adams (2007) and calculated arithmetic indices (AI) were produced by the authors. Essential oil components are displayed in relative abundance (%) by mass of component compared to the whole essential oil. NJS186- NJS204- NJS207- 87-88 05-06 08-09 NJS328 Yield 0.1 0.2 0.1 0.1 AI Pub. AI Compound 937 932 α-pinene 26.5 31.5 32.3 27.4 972 969 sabinene 0.5 4.3 0.5 0.5 981 974 β-pinene 1.3 1.4 1.2 0.8 992 988 β-myrcene 3.6 3.8 1.3 11.9 1000 1001 δ-2-Carene 0.1 0.8 2.5 - 1004 1002 α-phellandrene 3.5 4.8 5.1 4.3 1016 1014 α-terpinene 0.1 0.2 0.3 - 1019 1022 p-cymene 1.5 1.2 2.1 0.7 1022 1025 β-phellendrene 22.5 29.8 26.3 31.1 1040 1044 E-β-ocimene - 1.7 - - 1057 1054 γ-terpinene 0.6 0.5 0.5 - 1088 1085 p-mentha-2,4(8)-diene 0.4 0.6 0.5 0.4 1153 1152 citronellal 0.3 0.3 0.5 - 1164 1166 2-bornanol 0.4 0.3 0.2 - 1176 1174 terpinen-4-ol 0.1 0.2 0.2 - 1186 1183 cryptone 0.2 0.3 0.2 - 1206 1201 decanal 0.6 0.6 0.6 - 1285 1287 bornyl acetate 0.6 0.6 0.6 - 1339 1335 δ-elemene 1.5 - - - 1405 1408 dodecanal - 0.2 0.4 - 1423 1417 E-caryophyllene 1.3 - 2.1 1.1 1433 1439 aromadendrene 1.5 1.3 2.1 - 1441 1444 citronellyl propionate 0.1 0.3 0.1 - 1474 1476 geranyl proprionate 0.7 0.9 0.8 - 1507 1500 bicyclogermacrene 16.5 8.3 7.5 11.9 1514 1514 geraniol isobutanoate 1.2 0.9 1.2 - 1583 1577 spathulenol 7.2 2.3 4.2 - 1590 1590 globulol 2 - 1.1 0.8 1598 1602 ledol 1.5 - 0.6 0.5

Thesis Page 283

Table 8 – Composition of essential oils from P. squamulosum subsp. verrucosum. Published arithmetic indices (Pub. AI) are from Adams (2007) or Singh (2003) for dihydrotagetone. Calculated arithmetic indices (AI) were produced by the authors. Essential oil components are displayed in relative abundance (%) by mass of component compared to the whole essential oil. This table was published earlier by Sadgrove et al. (2013) with further details of the enantiomeric composition of dihydrotagetone. NS131 NS132 NS133 NS243 NS280 Yield % w/w 1.6 3.1 2.1 1.9 2.0 AI Pub. AI Compound 929 927 cyclofenchene - - 3.2 - - 937 932 α-pinene 0.9 8.7 - 0.7 1.1 1022 1022 p-cymene - - - - - 1025 1024 limonene - - - 0.1 - 1028 1026 1,8-cineol 1.2 - 3.1 - - 1058 1055 dihydrotagetone 95.7 86.1 90.4 97.1 98.9 1442 1431 β-gurjurene - 5.2 - - - 1632 1622 10-epi-γ-eudesmol 0.5 - - - - 1662 1649 β-eudesmol 1 - 3.3 - -