Perineal Nerve Stimulation: Role in Penile Erection

Total Page:16

File Type:pdf, Size:1020Kb

Perineal Nerve Stimulation: Role in Penile Erection International Journal of Impotence Research (1997) 9, 11±16 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 Perineal nerve stimulation: role in penile erection A Sha®k Professor and Chairman, Department of Surgery and Experimental Research, Faculty of Medicine, Cairo University, Cairo, Egypt The effect of perineal nerve stimulation on penile erection was studied in ten dogs. Through a para- anal incision, the nerve was exposed in the ischiorectal fossa and a bipolar electrode was applied to it. A radiofrequency receiver was implanted subcutaneously in the abdomen. Upon perineal nerve stimulation, the corporeal pressure and EMG activity of the bulbo- and ischiocavernosus muscles increased; penile erection occured. With increased stimulus frequency up to 80 Hz, the pressure and muscles' response augmented while the latency and duration of response diminished. No further changes occurred above a frequency of 80 Hz (P > 0.05). Response was reproducible inde®nitely after an off-time of double the time of the stimulation phase. Penile erection upon perineal nerve stimulation is suggested to be an effect of corporeal pressure elevation resulting from cavernosus muscles' contraction. In terms of force and speed of contraction, a stimulus frequency of 80 Hz evokes the most adequate cavernosus muscles' contraction. Keywords: pudendal nerve; perineal nerve; penile erection; impotence; electrostimulation Introduction Material and Methods Most cases of erectile dysfunction (ED) have more The study was performed on ten male mongrel dogs than one cause which may work simultaneously.1 of a mean weight of 17.9 Æ 6.2 s.d. kg (range from 14± The cause could be psychologic, hormonal, neuro- 26.2 kg). The dogs were given a one-week period to genic, arterial and venous disorders.2±6 Several get accustomed to the facilities prior to inclusion in procedures for the treatment of ED are well the study. They were housed in cages and supplied established;7±10 however, the results are still unsatis- with water ad libitum, meat dog chow in the factory in many cases. morning and dry chow throughout the day. The perineal nerve is one of the 2 terminal The bipolar electrodes used were of a cuff type branches of the pudendal nerve.11,12 It innervates with a surface area of 2 mm2 each (Avery Laboratory, the external urethral sphincter, levator ani as well as Farmingdale, New York). Radiofrequency receivers bulbo- and ischiocavernosus muscles. Contraction (Avery) were implanted subcutaneously for activita- of the latter two muscles share in compression of the tion via an antenna by an externally adjustable penile erectile tissue and the deep dorsal veins, thus stimulator. helping to increase the intracavernosal pressure.13±19 The dogs were premedicated with acepromazine There is evidence that the bulbo- and ischiocaver- (0.15 mg/kg body weight) subcutaneously. They nosus muscles create rigidity by producing supra- were anesthetized with intravenous sodium pento- systolic intracavernous pressures reaching values as barbital (35 mg/kg body weight) with a bolus injec- high as 400 mmHg in man and 1000 mmHg in tion of 20±25 mg per hour to maintain adequate animals.13±19 Furthermore, rhythmic contractions of anesthesia with spontaneous respiration. All dogs these two muscles occur at orgasm and are believed were intubated to assist ventilation. Fluid main- to help in ejaculation.15,18±22 tenance consisted of intravenous infusion of normal The aim of this communication is to study the saline solution (2 ml/kg body weight per hour). The effect of stimulation of the perineal branch of the technique of pudendal nerve exposure was de- pudendal nerve on penile erection. Herein pre- scribed elsewhere,23±25 and will be mentioned sented are the results of this study. The study was brie¯y. With the dog in the lateral position, a para- approved by our Faculty Review Board. anal incision 1 cm from the anal ori®ce and at the base of the ischiorectal fossa was done, and the fossa was entered. The inferior rectal nerve was identi®ed Correspondence: Dr A Sha®k, 2 Talaat Harb Street, Cairo, when crossing the base of the ischiorectal fossa Egypt. lateromedially. The nerve was hooked with the Received 15 June 1996; accepted 15 October 1996 index ®nger and was followed to the pudendal nerve Perineal nerve stimulation in impotence A Sha®k 12 in the pudendal canal. Pulling the inferior rectal duced into the bulbo-cavernosus muscle which nerve with the index ®nger, stretched tight the overlay the bulb (Figure 1).26 Another needle pudendal nerve which could be easily identi®ed. electrode was introduced into the ischio-cavernosus The fascia of the pudendal canal was slit open, and muscle. The ischial ramus and overlying crus of the the pudendal nerve was freed from the canal. The penis were palpated and the needle electrode was perineal nerve was identi®ed with the help of a introduced into the ischiocavernosus muscle which magnifying binocular loupe and bright light as the lies over the crus. A ground electrode was applied to larger of the two terminal branches of the pudendal the thigh. The entrance of the needles into the nerve. It ran forward below the internal pudendal cavernosus muscles coincides with the appearance artery which separated it from the dorsal nerve of of EMG activity on the oscilloscopic screen and the the penis. Identi®cation was con®rmed by stimula- burst of activity heard from the loudspeaker. tion with a monopolar electrode connected to a The re¯ex response of the two cavernosus stimulator (Urys 800 model) which generated muscles on perineal nerve stimulation, recorded by square-wave DC current pulses with a pulse width the two needles, was displayed on the oscilloscope of 200 m s. of a standard EMG apparatus (Type MES, Medelec, The bipolar electrode was applied to the perineal Woking, UK). Films of the potentials were taken on nerve in the ischiorectal fossa, and the skin incision light-sensitive paper (Linagraph, Type 1895, Kodak) was closed. The radiofrequency receiver was im- from which measurements of motor unit potential planted subcutaneously through a skin incision in duration were made. The EMG signals were, in the abdomen of the animal. Stimulation was done addition, stored on an FM tape recorder (Type 7758 with a pulse width of 200 m s. The charge density A, Hewlett Packard, Waltham, Mass., USA) for applied to the nerve ranged between 2±6 m Ci/cm2/ further analysis as required. The normality of the phase. The response of the ischio- and bulbo- myoelectric activity of the two cavernosus muscles cavernosus muscles as well as the corporeal body had been tested in all dogs before performing the pressure to perineal nerve stimulation was deter- test. This was done by stimulating the muscle by one mined two weeks post-operatively. needle electrode and recording the response by another one which had already been inserted into the muscle. All dogs showed normal EMG activity of the two cavernosus muscles. EMG studies The EMG activity of the bulbo- and ischio-caverno- Manometric studies sus muscles was studied by means of a concentric needle electromyographic electrode (Type 13 L 49, DISA, Copenhagen, Denmark), 30 mm in length and The response of the corporeal pressure to perineal 0.65 mm in diameter. With the dog lying in the left nerve stimulation was determined. The site of lateral positon, the bulb of the penis was identi®ed needle insertion in penile body was sterilized with by palpation, and the needle electrode was intro- alcohol. A 21-gauge scalp vein needle was intro- Figure 1 Diagram illustrating the erectile skeletal muscle of the dog. Dorsal view (from Evans and Christensen26). Perineal nerve stimulation in impotence A Sha®k 13 duced into the corpus cavernosus and was con- nected to a strain gauge pressure transducer (Sta- tham 230b, Oxnard, Calif., USA). The aforementioned methods were repeated at least twice to assure reproducibility. The results were analysed statistically using ANOVA. Results No complications were encountered in the dogs during the study. The corporeal pressure at rest varied from 3±8 mm Hg (mean 4.2 Æ 1.1 s.d. mm Hg) (Table 1). The two cavernosus (bulbo- and ischio- cavernosus) muscles showed no resting EMG activ- Figure 2 EMG activity of the bulbocavernosus muscle upon ity (Figure 2, Table 2). perineal nerve stimulation. The muscle activity increased with Upon perineal nerve stimulation, the corporeal increased stimulus frequency. (a) basal activity; (b±d) EMG pressure and EMG activity of both cavernosus activity upon stimulation frequency of 20 Hz (b), 40 Hz (c) and 80 Hz (d). muscles increased and the penis lengthened and increased in diameter (Tables 1,2; Figures 2±5); the degree of increase was dependent on the frequency of electrical stimulation. With increasing stimulus registered at a frequency of 80 Hz. Nerve stimulation frequency, a rising corporeal pressure and EMG exceeding this frequency failed to effect further activity as well as increase in penile length and increase in both the corporeal pressure or caverno- diameter were recorded until a maximum rise was sus muscles' EMG activity (Tables 1,2). The penis at this frequency was fully erected and ®rm to touch, and the glans penis was engorged. Table 1 Response of corporeal pressure to different frequencies The duration of corporeal pressure and caverno- of perineal nerve stimulationa sus muscles' response and penile erection varied according to the stimulation frquency. It diminished Stimulus frequency (Hz) Corporeal pressure (mm Hg) with increased frequency to reach the shortest Range Mean duration at 80 Hz (Table 3, Figure 6) beyond which no reduction occurred although the stimulus fre- 0 (basal pressure) 3±8 4.2 Æ 1.1 quency was further increased.
Recommended publications
  • 1 Male Checklist Male Reproductive System Components of the Male
    Male Checklist Male Reproductive System Components of the male Testes; accessory glands and ducts; the penis; and reproductive system the scrotum. Functions of the male The male reproductive system produces sperm cells that reproductive system can be transferred to the female, resulting in fertilization and the formation of a new individual. It also produces sex hormones responsible for the normal development of the adult male body and sexual behavior. Penis The penis functions as the common outlet for semen (sperm cells and glandular secretions) and urine. The penis is also the male copulatory organ, containing tissue that can fill with blood resulting in erection of the penis. Prepuce A fold of skin over the distal end of the penis. Circumcision is the surgical removal of the prepuce. Corpus spongiosum A spongy body consisting of erectile tissue. It surrounds the urethra. Sexual excitement can cause erectile tissue to fill with blood. As a result, the penis becomes erect. Glans penis The expanded, distal end of the corpus spongiosum. It is also called the head of the penis. Bulb of the penis The proximal end of the corpus spongiosum. Bulbospongiosus muscle One of two skeletal muscles surrounding the bulb of the penis. At the end of urination, contraction of the bulbospongiosus muscles forces any remaining urine out of the urethra. During ejaculation, contractions of the bulbospongiosus muscles ejects semen from the penis. Contraction of the bulbospongiosus muscles compresses the corpus spongiosum, helping to maintain an erection. Corpus cavernosum One of two spongy bodies consisting of erectile tissue that (pl., corpora cavernosa) form the sides and front of the penis.
    [Show full text]
  • Male Reproductive System 2
    Male Reproductive System 2 1. Excretory genital ducts 2. The ductus (vas) deferens and seminal vesicles 3. The prostate 4. The bulbourethral (Cowper’s) glands 5. The penis 6. The scrotum and spermatic cord SPLANCHNOLOGY Male reproductive system ° Male reproductive system, systema genitalia masculina: V a part of the human reproductive process ° Male reproductive organs, organa genitalia masculina: V internal genital organs: testicle, testis epididymis, epididymis ductus deferens, ductus (vas) deferens seminal vesicle, vesicula seminalis ejaculatory duct, ductus ejaculatorius prostate gland, prostata V external genital organs: penis, penis scrotum, scrotum bulbourethral glands, glandulae bulbourethrales Prof. Dr. Nikolai Lazarov 2 SPLANCHNOLOGY Ductus (vas) deferens ° Ductus (vas) deferens: V a straight thick-walled muscular tube V transports sperm cells from the epididymis V length 45-50 cm V diameter 2.5-3 mm ° Anatomical parts: V testicular part V funicular part V inguinal part – 4 cm V pelvic part ° Ampulla ductus deferentis: V length 3-4 cm; diameter 1 cm V ejaculatory duct, ductus ejaculatorius Prof. Dr. Nikolai Lazarov 3 SPLANCHNOLOGY Microscopic anatomy ° tunica mucosa – 5-6 longitudinal folds: V lamina epithelialis – bilayered columnar epithelium with stereocilia V lamina propria: dense connective tissue elastic fibers ° tunica muscularis – thick: V inner longitudinal layer – in the initial portion V circular layer V outer longitudinal layer ° tunica adventitia (serosa) Prof. Dr. Nikolai Lazarov 4 SPLANCHNOLOGY Seminal vesicle, vesicula seminalis ° Seminal vesicle, vesicula (glandula) seminalis: V a pair of simple tubular glands – two highly tortuous tubes V posterior to the urinary bladder V length 4-5 (15) cm V diameter 1 cm ° Macroscopic anatomy: V anterior and posterior part V excretory duct Prof.
    [Show full text]
  • Female Perineum Doctors Notes Notes/Extra Explanation Please View Our Editing File Before Studying This Lecture to Check for Any Changes
    Color Code Important Female Perineum Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, the student should be able to describe the: ✓ Boundaries of the perineum. ✓ Division of perineum into two triangles. ✓ Boundaries & Contents of anal & urogenital triangles. ✓ Lower part of Anal canal. ✓ Boundaries & contents of Ischiorectal fossa. ✓ Innervation, Blood supply and lymphatic drainage of perineum. Lecture Outline ‰ Introduction: • The trunk is divided into 4 main cavities: thoracic, abdominal, pelvic, and perineal. (see image 1) • The pelvis has an inlet and an outlet. (see image 2) The lowest part of the pelvic outlet is the perineum. • The perineum is separated from the pelvic cavity superiorly by the pelvic floor. • The pelvic floor or pelvic diaphragm is composed of muscle fibers of the levator ani, the coccygeus muscle, and associated connective tissue. (see image 3) We will talk about them more in the next lecture. Image (1) Image (2) Image (3) Note: this image is seen from ABOVE Perineum (In this lecture the boundaries and relations are important) o Perineum is the region of the body below the pelvic diaphragm (The outlet of the pelvis) o It is a diamond shaped area between the thighs. Boundaries: (these are the external or surface boundaries) Anteriorly Laterally Posteriorly Medial surfaces of Intergluteal folds Mons pubis the thighs or cleft Contents: 1. Lower ends of urethra, vagina & anal canal 2. External genitalia 3. Perineal body & Anococcygeal body Extra (we will now talk about these in the next slides) Perineum Extra explanation: The perineal body is an irregular Perineal body fibromuscular mass.
    [Show full text]
  • Clinical Presentations of Lumbar Disc Degeneration and Lumbosacral Nerve Lesions
    Hindawi International Journal of Rheumatology Volume 2020, Article ID 2919625, 13 pages https://doi.org/10.1155/2020/2919625 Review Article Clinical Presentations of Lumbar Disc Degeneration and Lumbosacral Nerve Lesions Worku Abie Liyew Biomedical Science Department, School of Medicine, Debre Markos University, Debre Markos, Ethiopia Correspondence should be addressed to Worku Abie Liyew; [email protected] Received 25 April 2020; Revised 26 June 2020; Accepted 13 July 2020; Published 29 August 2020 Academic Editor: Bruce M. Rothschild Copyright © 2020 Worku Abie Liyew. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Lumbar disc degeneration is defined as the wear and tear of lumbar intervertebral disc, and it is mainly occurring at L3-L4 and L4-S1 vertebrae. Lumbar disc degeneration may lead to disc bulging, osteophytes, loss of disc space, and compression and irritation of the adjacent nerve root. Clinical presentations associated with lumbar disc degeneration and lumbosacral nerve lesion are discogenic pain, radical pain, muscular weakness, and cutaneous. Discogenic pain is usually felt in the lumbar region, or sometimes, it may feel in the buttocks, down to the upper thighs, and it is typically presented with sudden forced flexion and/or rotational moment. Radical pain, muscular weakness, and sensory defects associated with lumbosacral nerve lesions are distributed on
    [Show full text]
  • Injury to Perineal Branch of Pudendal Nerve in Women: Outcome from Resection of the Perineal Branches
    Original Article Injury to Perineal Branch of Pudendal Nerve in Women: Outcome from Resection of the Perineal Branches Eric L. Wan, BS1 Andrew T. Goldstein, MD2 Hillary Tolson, BS2 A. Lee Dellon, MD, PhD1,3 1 Department of Plastic and Reconstructive Surgery, Johns Hopkins Address for correspondence A. Lee Dellon, MD, PhD, 1122 University School of Medicine, Baltimore, Maryland Kenilworth Dr., Suite 18, Towson, MD 21204 2 The Centers for Vulvovaginal Disorders, Washington, DC (e-mail: [email protected]). 3 Department of Neurosurgery, Johns Hopkins University School of Medicine,Baltimore,Maryland J Reconstr Microsurg Abstract Background This study describes outcomes from a new surgical approach to treat “anterior” pudendal nerve symptoms in women by resecting the perineal branches of the pudendal nerve (PBPN). Methods Sixteen consecutive female patients with pain in the labia, vestibule, and perineum, who had positive diagnostic pudendal nerve blocks from 2012 through 2015, are included. The PBPN were resected and implanted into the obturator internus muscle through a paralabial incision. The mean age at surgery was 49.5 years (standard deviation [SD] ¼ 11.6 years) and the mean body mass index was 25.7 (SD ¼ 5.8). Out of the 16 patients, mechanisms of injury were episiotomy in 5 (31%), athletic injury in 4 (25%), vulvar vestibulectomy in 5 (31%), and falls in 2 (13%). Of these 16 patients, 4 (25%) experienced urethral symptoms. Outcome measures included Female Sexual Function Index (FSFI), Vulvar Pain Functional Questionnaire (VQ), and Numeric Pain Rating Scale (NPRS). Results Fourteen patients reported their condition pre- and postoperatively. Mean postoperative follow-up was 15 months.
    [Show full text]
  • Pdf Manual (964.7Kb)
    MD-17 , CONTENTS THE URINARY SYSTEM 4 THE REPRODUCTIVE SYSTEM 5 The Scrotum The Testis The Epididylnis The Ductus Deferens The Ejaculatory Duct The Seminal Vesicle The Spermatic Cord The Penis The Prostate Gland THE INGUINAL CANAL l) HERNIAS FURTIlER READING 10 MODEL KEY 1I Human Male Pelvis This life-size model shows the viscera and structures which form the urogenital system and some of the related anatomy such as the sig­ moid colon and rectum. The vascular supply to the viscera and support­ ing tissue is demonstrated, as well as that portion of the vascular system which continues into the lower extremity. The model is divided into right and left portions. The right portion shows a midsagittal section of the pelvic structures. The left represents a similar section, but the dissection is deeper. Two pieces are remov­ able on the left side; one piece includes the bladder, prostate, and semi­ nal vesicles, and the other includes the penis, left testicle, and scrotum. When all portions are removed, a deeper view of these structures and a deeper dissection of the pelvis can be seen. THE URINARY SYSTEM The portion of the urinary system shown depicts the ureter from the level of the 5th lumbar vertebra, where it passes the common iliac ar­ tery near the bifurcation of thi s artery into the external and internal iliac arteries. The ureter then passes toward the posterior portion of the bladder, beneath the vas deferens, and opens through the wall of the blad­ der at one cranial corner of the trigone on the bladder's interior.
    [Show full text]
  • Anatomy and Physiology Male Reproductive System References
    DEWI PUSPITA ANATOMY AND PHYSIOLOGY MALE REPRODUCTIVE SYSTEM REFERENCES . Tortora and Derrickson, 2006, Principles of Anatomy and Physiology, 11th edition, John Wiley and Sons Inc. Medical Embryology Langeman, pdf. Moore and Persaud, The Developing Human (clinically oriented Embryologi), 8th edition, Saunders, Elsevier, . Van de Graff, Human anatomy, 6th ed, Mcgraw Hill, 2001,pdf . Van de Graff& Rhees,Shaum_s outline of human anatomy and physiology, Mcgraw Hill, 2001, pdf. WHAT IS REPRODUCTION SYSTEM? . Unlike other body systems, the reproductive system is not essential for the survival of the individual; it is, however, required for the survival of the species. The RS does not become functional until it is “turned on” at puberty by the actions of sex hormones sets the reproductive system apart. The male and female reproductive systems complement each other in their common purpose of producing offspring. THE TOPIC : . 1. Gamet Formation . 2. Primary and Secondary sex organ . 3. Male Reproductive system . 4. Female Reproductive system . 5. Female Hormonal Cycle GAMET FORMATION . Gamet or sex cells are the functional reproductive cells . Contain of haploid (23 chromosomes-single) . Fertilizationdiploid (23 paired chromosomes) . One out of the 23 pairs chromosomes is the determine sex sex chromosome X or Y . XXfemale, XYmale Gametogenesis Oocytes Gameto Spermatozoa genesis XY XX XX/XY MALE OR FEMALE....? Male Reproductive system . Introduction to the Male Reproductive System . Scrotum . Testes . Spermatic Ducts, Accessory Reproductive Glands,and the Urethra . Penis . Mechanisms of Erection, Emission, and Ejaculation The urogenital system . Functionally the urogenital system can be divided into two entirely different components: the urinary system and the genital system.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Build-A-Pelvis: Modeling Pelvic and Perineal Anatomy Female Pelvis
    Build-A-Pelvis: Modeling Pelvic and Perineal Anatomy Female Pelvis Theodore Smith, M.S. Polly Husmann, Ph.D All images in this activity were created by the authors © Theodore Smith & Polly Husmann 2017 Materials needed: Pipecleaners-5 different colors Plastic Binder Pockets Scotch Tape Removable Adhesive Tack Masking Tape Scissors Bony Pelvis/Plastic Pelvis Model Fuzzy Pom-Poms Pens/Markers Flexible Plastic Tubing (optional) Image created by authors Structures Discussed: Perineal Membrane Ischiocavernosus Muscle Anal Triangle Bulbospongiosus Muscle Urogenital Diaphragm Superficial Perineal Pouch Deep Perineal Pouch External Anal Sphincter Superior fascia of the Urogenital Diaphragm Internal Anal Sphincter* External Urethral Sphincter Internal Urethral Sphincter* Compressor Urethrae Crura of the Clitoris Urethrovaginal Sphincter Bulb of the Vestibule Deep Transverse Perineal Muscle Greater Vestibular Glands Internal pudendal artery and vein Pudendal nerve Anal Canal* Vagina* Urethra* Superficial Transverse Perineal Muscles *only in optional activity with plastic tubing © Theodore Smith & Polly Husmann 2017 Build-A-Pelvis: Female Pelvis Directions 1) Begin by cutting 2 triangular pieces (wide isosceles, see Appendix A for templates) of the plastic binder dividers. These will serve as the perineal membrane (inferior fascia of urogenital diaphragm) and a boundary for the anal triangle. Cut a 3rd smaller triangle from the plastic dividers to serve as the superior fascia of the urogenital diaphragm. 2) Choose one large triangle to serve as the perineal membrane. Place the small triangle in the center of the large triangle and mark 2 spots a few centimeters apart in the midline of each triangle. At the marks, cut 2 holes. The hole closest to the pinnacle of the triangle will represent the opening for the urethra and the in- ferior will represent the opening for the vagina.
    [Show full text]
  • Pudendal Nerve Compression Syndrome
    Società Italiana di Chirurgia ColoRettale www.siccr.org 2009; 20: 172-179 Pudendal Nerve Compression Syndrome Bruno Roche, Joan Robert-Yap, Karel Skala, Guillaume Zufferey Clinic of Proctology Dept. of Visceral Surgery HUG, Geneva, Switzerland Introduction The pudendal nerve primarily innervates the pelvic ring fractures, penetrating injuries, and perineum. This nerve can be gradually deep hematomas due to injections as well as stretched and damaged by vaginal deliveries by bullet and stab wounds. Moreover, it can be (esp. traumatic births), prolapse of pelvic damaged by overstretching, for example with organs and by pelvic floor descent. This leads repositioning or reduction of fractures on the to uni- or bilateral pudendal nerve damage. A orthopedic table or by long-continuous direct lesion of the pudendal nerve is rare as it stretching due to sitting for prolonged periods, lies deep in the pelvis and is well protected by for example, on a bicycle [1]. the pelvic ring. It can be injured however, by Anatomical Basis As the final branch of the pudendal plexus the scrotum in the man, the labia majora in the pudendal nerve is predominantly a somatic woman. It supplies the motor component to the nerve, which has its origin in the ventral spinal bulbospongiosus, ischiocavernosus, nerve roots S2-S4 (Fig. 1). It leaves the pelvic transversus superficialis and profundus perinei floor by the major ischial foramen below the muscles as well as the outer striated urethral piriformis muscle (infrapiriformis foramen). sphincter. Its final branch is also involved in the After it circles the sciatic spine, the nerve sensitivity of the penis or the clitoris.
    [Show full text]
  • Unit #2 - Abdomen, Pelvis and Perineum
    UNIT #2 - ABDOMEN, PELVIS AND PERINEUM 1 UNIT #2 - ABDOMEN, PELVIS AND PERINEUM Reading Gray’s Anatomy for Students (GAFS), Chapters 4-5 Gray’s Dissection Guide for Human Anatomy (GDGHA), Labs 10-17 Unit #2- Abdomen, Pelvis, and Perineum G08- Overview of the Abdomen and Anterior Abdominal Wall (Dr. Albertine) G09A- Peritoneum, GI System Overview and Foregut (Dr. Albertine) G09B- Arteries, Veins, and Lymphatics of the GI System (Dr. Albertine) G10A- Midgut and Hindgut (Dr. Albertine) G10B- Innervation of the GI Tract and Osteology of the Pelvis (Dr. Albertine) G11- Posterior Abdominal Wall (Dr. Albertine) G12- Gluteal Region, Perineum Related to the Ischioanal Fossa (Dr. Albertine) G13- Urogenital Triangle (Dr. Albertine) G14A- Female Reproductive System (Dr. Albertine) G14B- Male Reproductive System (Dr. Albertine) 2 G08: Overview of the Abdomen and Anterior Abdominal Wall (Dr. Albertine) At the end of this lecture, students should be able to master the following: 1) Overview a) Identify the functions of the anterior abdominal wall b) Describe the boundaries of the anterior abdominal wall 2) Surface Anatomy a) Locate and describe the following surface landmarks: xiphoid process, costal margin, 9th costal cartilage, iliac crest, pubic tubercle, umbilicus 3 3) Planes and Divisions a) Identify and describe the following planes of the abdomen: transpyloric, transumbilical, subcostal, transtu- bercular, and midclavicular b) Describe the 9 zones created by the subcostal, transtubercular, and midclavicular planes c) Describe the 4 quadrants created
    [Show full text]
  • The Morphological Characters of the Male External Genitalia of the European Hedgehog (Erinaceus Europaeus) G
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Foliaprovided Morphol. by Via Medica Journals Vol. 77, No. 2, pp. 293–300 DOI: 10.5603/FM.a2017.0098 O R I G I N A L A R T I C L E Copyright © 2018 Via Medica ISSN 0015–5659 www.fm.viamedica.pl The morphological characters of the male external genitalia of the European hedgehog (Erinaceus Europaeus) G. Akbari1, M. Babaei1, N. Goodarzi2 1Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran 2Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran [Received: 7 June 2017; Accepted: 11 September 2017] This study was conducted to depict anatomical characteristics of the penis of he- dgehog. Seven sexually mature male European hedgehogs were used. Following anaesthesia, the animals were scarified with chloroform inhalation. Gross penile characteristics such as length and diameter were thoroughly explored and measu- red using digital callipers. Tissue samples stained with haematoxylin and eosin and Masson’s trichrome for microscopic analysis. The penis of the European hedgehog was composed of a pair of corpus cavernosum penis and the glans penis without corpus spongiosum penis. The urethra at the end of penis, protruded as urethral process, on both sides of which two black nail-like structures, could be observed. The lower part was rounded forming a blind sac (sacculus urethralis) with a me- dian split below the urethra. Microscopically, the penile bulb lacked the corpus spongiosum penis, but, corpus spongiosum glans was seen at the beginning of the free part.
    [Show full text]