Astronomy & Astrophysics manuscript no. aa˙ref˙ang c ESO 2018 September 11, 2018 Abundances of neutron-capture elements in stars of the galactic disk substructures ⋆ ⋆⋆ T.V. Mishenina1,2, M. Pignatari3, S.A. Korotin1, C. Soubiran2, C. Charbonnel4,5, F.-K. Thielemann3, T.I. Gorbaneva1, and N.Yu. Basak1 1 Astronomical Observatory, Odessa National University, and Isaac Newton Institute of Chile, Odessa Branch, T.G.Shevchenko Park, Odessa 65014 Ukraine, email:
[email protected] 2 Universit´ede Bordeaux 1 - CNRS - Laboratoire d’Astrophysique de Bordeaux, UMR 5804, BP 89, 33271 Floirac Cedex, France, email:
[email protected] 3 Department of Physics, University of Basel, Klingelbergstrabe 82, 4056 Basel, Switzerland email:
[email protected] 4 Geneva Observatory, University of Geneva, 1290 Versoix, Switzerland 5 IRAP, UMR 5277 CNRS and Universit´ede Toulouse, 31400 Toulouse, France ABSTRACT Aims. The aim of this work is to present and discuss the observations of the iron peak (Fe, Ni) and neutron-capture element (Y, Zr, Ba, La, Ce, Nd, Sm, and Eu) abundances for 276 FGK dwarfs, located in the galactic disk with metallicity -1 < [Fe/H] < +0.3. Methods. Atmospheric parameters and chemical composition of the studied stars were determined from an high resolution, high signal-to-noise echelle spectra obtained with the echelle spectrograph ELODIE at the Observatoire de Haute-Provence (France). Effective temperatures were estimated by the line depth ratio method and from the Hα line-wing fitting. Surface gravities (log g) were determined by parallaxes and the ionization balance of iron. Abundance determinations were carried out using the LTE approach, taking the hyperfine structure for Eu into account, and the abundance of Ba was computed under the NLTE approximation.