Classification of Population Ii Stars in the Vilnius Photometric System. I

Total Page:16

File Type:pdf, Size:1020Kb

Classification of Population Ii Stars in the Vilnius Photometric System. I Baltic Astronomy, vol. 5, 1-82, 1996. CLASSIFICATION OF POPULATION II STARS IN THE VILNIUS PHOTOMETRIC SYSTEM. I. METHODS A. Bartkevicius1 and R. Lazauskaite1'2 1 Institute of Theoretical Physics and Astronomy, Gostauto 12, Vilnius 2600, Lithuania 2 Department of Theoretical Physics, Vilnius Pedagogical University, Studenty, 39, Vilnius 2340, Lithuania Received February 7, 1996. Abstract. The methods used for classification of Population II stars in the Vilnius photometric system are described. An exten- sive set of standards with known astrophysical parameters compiled from the literature sources is given. These standard stars are classi- fied in the Vilnius photometric system using the methods described. The accuracy of classification is evaluated by a comparison of the as- trophysical parameters derived from the Vilnius photometric system with those estimated from spectroscopic studies as well as from pho- tometric data in other systems. For dwarfs and subdwarfs, we find a satisfactory agreement between our reddenings and those estimated in the uvby/3 system. The standard deviation of [Fe/H] determined in the Vilnius system is about 0.2 dex. The absolute magnitude for dwarfs and subdwarfs is estimated with an accuracy of <0.5 mag. Key words: techniques: photometric - stars: fundamental para- meters (classification) - stars: Population II 1. INTRODUCTION The first attempt to classify Population II stars and to estimate their astrophysical parameters by using the Vilnius photometric sys- tem was made by Bartkevicius & Straizys (1970a, b, c). Later on, Straizys & Bartkevicius (1982) demonstrated a possibility to deter- mine, from photometry alone, the metallicities, temperatures and color excesses of metal-deficient giants. The most detailed calibration 2 A. Bartkevicius and R. Lazauskaite of two-color diagrams and ultraviolet excesses in terms of metallicity for Population II stars has been made by Bartkevicius & Speraus- kas (1983). In addition, for the classification of Population II stars Bartkevicius and Sperauskas suggested a method of comparison of standard and program stars. The effective temperatures for late metal-deficient giants can be estimated using the calibration of Tautvaisiene (1987). In the same paper, a preliminary surface gravity calibration is presented. How- ever, the most recent calibration of metal-deficient giants in terms of log g was published by Tautvaisiene & Lazauskaite (1993). Also, the Vilnius photometric system has been calibrated for some specific types of Population II stars. Sperauskas (1987) showed the possibility of identifying and estimating astrophysical parameters for blue horizontal branch stars, RR Lyrae-type stars and blue strag- glers. CH, barium and carbon stars were investigated by Sleivyte (1985, 1986). In this paper, methods used for classification of Population II stars will be described. The main attention will be paid to the method of comparison of standard and program stars which allows one to recognize Population II stars among other stars, as well as to estimate their spectral types, metallicities and absolute magnitudes. Also, additional calibrations used for the estimation of [Fe/H] and My for metal-deficient stars will be discussed. The methods were applied for the classification of 809 Population II and normal stars observed in the Vilnius system and included into the list of the stan- dard stars. By a comparison of these results with the values deter- mined from spectroscopy, as well as from other photometric systems, the accuracy of our methods will be evaluated. In the second paper of this series (Bartkevicius &; Lazauskaite 1996), about 900 stars which are suspected belonging to Popula- tion II will be classified in the Vilnius system, using the methods described here. 2. METHODS At present, for the classification of Population II stars in the Vilnius photometric system we use the following methods. 1. The method of comparison of standard and program stars (in this case, the standard stars are those with known parameters; the program stars are stars whose parameters must be estimated); Classification of Population II Stars 3 2. Calibration of two-color diagrams and ultraviolet excesses in terms of metallicity; 3. Calibration of intrinsic color indices in terms of absolute mag- nitude. In this paper, the first and third methods will be described in more detail. We have not made any changes in the second method described by Bartkevicius & Sperauskas (1983). 2.1. Method of comparison of standard and program stars 2.1.1. Set of standard stars The method of comparison of standard and program stars is based on the assumption that stars with similar photometric quan- tities such as color indices and reddening-free Q-parameters have nearly the same astrophysical quantities. Within the set of standard stars with known astrophysical parameters, we look for stars which, according to their photometric quantities, are as close as possible to a program star. Then the mean parameters of the standard stars, clos- est to the program star, are ascribed to the latter. It is evident that in this case the accuracy and possibilities of classification depend on the accuracy of parameters of the standard stars and on the complete- ness of the available set of standard stars. Therefore, we attempted to form a set of standards, which included as many as possible Pop- ulation II stars with known astrophysical parameters and observed in the Vilnius photometric system. The term Population II is used in this paper for the stars with metallicity [Fe/H]< — 0.5 and with total space velocities V >(60 - 100) km s~K Thus, we included into our set both halo and thick disk (intermediate Population II) stars. Our preliminary set of Population II standard stars was de- scribed by Bartkevicius & Lazauskaite (1993). Later on, these stan- dards were critically analyzed once more, and now the set contains a total of 809 stars of different types (827 records including variable stars in different phases). The groups of standard stars are listed in Table 1. To recognize normal stars in a sample of unknown stars, we included into our set not only Population II stars but also dwarfs, gi- ants, subgiants and supergiants with normal chemical composition. A Bootis-type stars are Population I stars, however, they were in- cluded into our set due to their metal deficiency. White dwarfs were 4 A. Bartkevicius and R. Lazauskaite also included with the purpose of separating them from sdO-B and sdF-G stars. The mean values of astrophysical parameters of standard stars, which were derived as described below, are presented in Table 6. It contains star name, intrinsic color index (Y—V)o, color excess EY-V> metallicity, absolute magnitude, spectral type, group membership and six intrinsic color indices. In the notes after the Table, informa- tion about variability, duplicity and membership in moving groups is presented. Abbreviations used in these notes are explained in Table 7. When compiling astrophysical parameters of standard stars, much attention was given to their absolute magnitudes. The My values were compiled from the literature or estimated by us as de- scribed by Bartkevicius & Lazauskaite (1993). The individual values of My were averaged with the weights inversely proportional to the square of their errors. For averaging, we used only those My values which were consistent within 2 magnitudes. Color excesses EB-V or EY-v for standard stars were obtained from different sources. For a part of stars, their reddenings were es- timated by Bartkevicius &; Sperauskas (1983), Bartkevicius & Taut- vaisiene (1987) and Bartasiute (1989). Color excesses of the remain- ing stars were obtained using estimations of interstellar reddening of different authors, among them, the maps of EG-y constructed by Burstein & Heiles (1982) from H I distribution and deep galaxy counts. In the final stage of this work, for calculation of reddening we used the program kindly supplied us by Dr. David Burstein. Stars with unknown reddening were classified in the Vilnius photometric system by the method of comparison of reddening-free Q-parameters of the standard and the program stars. Color exesses derived in dif- ferent ways were averaged with equal weights. If, however, one source gave a clearly discrepant value, it was eliminated from the average. In addition, it was assumed that stars within 50 pc are unreddened by interstellar matter. Since in most cases reddening of the standard stars is small (Fig. 1), the errors of EY-y values are not significant in determination of the intrinsic color indices. The metallicities were taken from the Catalogue of the mean [Fe/H], Teff and log g compiled by Bartkevicius &: Lazauskaite (1995). In the case of [Fe/H] derived from high-resolution spectra, the values in Table 6 are given to two decimal places. The remaining metal- licities are derived from the medium-resolution spectra or were esti- mated in the Vilnius photometric system. Classification of Population II Stars 5 Table 1. Groups of standard stars No. Group Abbreviation N 1. Dwarfs ([Fe/H]>-0.2; Mv>4.0) D 159 2. Dwarfs with moderate metal deficiency MDD 85 (—0.2>[Fe/H]>—0.6; Mv>4.0) 3. Subdwarfs (-0.6>[Fe/H]>-1.3; Mv>4.0) SD 98 4. Extreme metal-deficient subdwarfs SDEXTR 66 ([Fe/H]< —1.3; My >4.0) 5. Giants ([Fe/H]> —0.3; Mv<2.0) G 32 6. Metal-deficient giants MDG 56 (—0.3>[Fe/H]> —1.3; Mv<2.0) 7. Extreme metal-deficient giants MDGE 67 ([Fe/H]< —1.3; Mv<2.0) 8. Subgiants SG 23 ([Fe/H]> —0.3; 2.0<MV<4.0) 9. Metal-deficient subgiants MDSG 13 (-0.3>[Fe/H]>-1.3; 2.0<Mv<4.0) 10. Extreme metal-deficient subgiants MDSGE 6 ([Fe/H]< —1.3; 2.0<Aiv<4.0) 11. Asymptotic giant branch stars AGB 7 12. CH giants CH 36 13. Carbon variables of RV Tau-type CH-RV 6 14.
Recommended publications
  • Characterisation of Young Nearby Stars – the Ursa Major Group
    FRIEDRICH-SCHILLER-UNIVERSITAT¨ JENA Physikalisch-Astronomische Fakult¨at Characterisation of young nearby stars – The Ursa Major group Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Physikalischen-Astronomischen Fakult¨at der Friedrich-Schiller-Universit¨at Jena von Dipl.-Phys. Matthias Ammler geboren am 10.01.1977 in Neuburg a. d. Donau Gutachter 1. Prof. Dr. Ralph Neuh¨auser 2. Dr. habil. Matthias H¨unsch 3. Prof. Dr. Artie P. Hatzes Tag der letzten Rigorosumspr¨ufung: 26. Juni 2006 Tag der ¨offentlichen Verteidigung: 11. Juli 2006 Meinen Eltern Contents List of Figures vii List of Tables ix Abstract xi Zusammenfassung xiii Remarks and Acknowledgements xv 1 Introduction 1 1.1 WhatistheUrsaMajorgroup? . 1 1.1.1 Co-movingstarsin the BigDipper constellation . .... 1 1.1.2 Stellarmotionandmovinggroups . 1 1.1.3 Formation and evolution of open clusters and associations ... 6 1.1.4 The nature of the UMa group – cluster or association, or some- thingelse? ............................ 8 1.2 WhyistheUMagroupinteresting?. 8 1.2.1 Asnapshotinstellarevolution . 8 1.2.2 Alaboratoryinfrontofthedoor . 9 1.2.3 Thecensusofthesolarneighbourhood . 10 1.3 ConstrainingtheUMagroup–previousapproaches . ..... 11 1.3.1 Spatialclustering . 11 1.3.2 Kinematic criteria – derived from a “canonical” memberlist . 12 1.3.3 Kinematic parameters – derived from kinematic clustering ... 15 1.3.4 Stellarparametersandabundances . 17 1.3.5 TheageoftheUMagroup–photometriccriteria . 19 1.3.6 Spectroscopicindicatorsforageandactivity . .... 19 1.3.7 Combining kinematic, spectroscopic, and photometric criteria . 21 1.4 Anewhomogeneousspectroscopicstudy . 21 1.4.1 Definingthesample ....................... 22 1.4.2 Howtoobtainprecisestellarparameters? . .. 23 2 Observations,reductionandcalibration 25 2.1 Requireddata ............................... 25 2.2 Instruments ...............................
    [Show full text]
  • Catalog of Nearby Exoplanets
    Catalog of Nearby Exoplanets1 R. P. Butler2, J. T. Wright3, G. W. Marcy3,4, D. A Fischer3,4, S. S. Vogt5, C. G. Tinney6, H. R. A. Jones7, B. D. Carter8, J. A. Johnson3, C. McCarthy2,4, A. J. Penny9,10 ABSTRACT We present a catalog of nearby exoplanets. It contains the 172 known low- mass companions with orbits established through radial velocity and transit mea- surements around stars within 200 pc. We include 5 previously unpublished exo- planets orbiting the stars HD 11964, HD 66428, HD 99109, HD 107148, and HD 164922. We update orbits for 90 additional exoplanets including many whose orbits have not been revised since their announcement, and include radial ve- locity time series from the Lick, Keck, and Anglo-Australian Observatory planet searches. Both these new and previously published velocities are more precise here due to improvements in our data reduction pipeline, which we applied to archival spectra. We present a brief summary of the global properties of the known exoplanets, including their distributions of orbital semimajor axis, mini- mum mass, and orbital eccentricity. Subject headings: catalogs — stars: exoplanets — techniques: radial velocities 1Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the Uni- versity of California and the California Institute of Technology. The Keck Observatory was made possible by the generous financial support of the W. M. Keck Foundation. arXiv:astro-ph/0607493v1 21 Jul 2006 2Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305 3Department of Astronomy, 601 Campbell Hall, University of California, Berkeley, CA 94720-3411 4Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 5UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 6Anglo-Australian Observatory, PO Box 296, Epping.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Starspot Photometry with Robotic Telescopes
    SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 125, 11-63 (1997) Starspot photometry with robotic telescopes Continuous UBV and V (RI)C photometry of 23 stars in 1991–1996 K.G. Strassmeier1, J. Bartus1,2, G. Cutispoto3, and M. Rodon´o3 1 Institut f¨ur Astronomie, Universit¨at Wien, T¨urkenschanzstraße 17, A-1180 Wien, Austria [email protected] 2 Konkoly Observatory, Hungarian Academy of Sciences, H-1525 Budapest, Hungary [email protected] 3 Catania Astrophysical Observatory, V.le A. Doria 6, I-95125 Catania, Italy [email protected], [email protected] Received September 23; accepted December 16, 1996 Abstract. We report on the progress of our ongoing pho- 1. Introduction: Starspot photometry tometric monitoring program of spotted late-type stars with automatic photoelectric telescopes (APTs) on Mt. Photometry of late-type stars with inhomogeneous sur- Hopkins in Arizona and on Mt. Etna in Sicily. We present face brightness distributions revealed distinct light-curve 9 250 differential UBV and/or V (RI)C observations for variations modulated with the stellar rotation period. altogether 23 chromospherically active stars, singles and Numerous papers dealt with this phenomenology since the binaries, pre main sequence and post main sequence, taken early seventies, starting with the first interpretations by between 1991 and 1996. The variability mechanism of our Kron (1947, 1952), Hoffmeister (1965), Chugainov (1966), target stars is mostly rotational modulation by an asym- Catalano & Rodon´o (1967) and Hall (1972) and finally cul- metrically spotted stellar surface. Therefore, precise rota- minating in the use of fully automatic telescopes for con- tional periods and their seasonal variations are determined tinuously monitoring RS CVn- and even solar-type stars using baselines between 3 years for HD 129333 to 34 years (e.g.
    [Show full text]
  • Are Rotational Axes Perpendicular to Orbital Planes in Binary Systems. III. Main Sequence and Short-Period RS Cvn Stars. R
    ACTA ASTRONOMICA Vol. 45 (1995) pp. 725±745 Are Rotational Axes Perpendicular to Orbital Planes in Binary Systems. III. Main Sequence and Short-Period RS CVn Stars. by R. GøeÎbocki Institute of Theoretical Physics and Astrophysics, University of GdaÂnsk, ul. Wita Stwosza 57, 80-952 GdaÂnsk, Poland e-mail: ®[email protected] and A. Stawikowski N. Copernicus Astronomical Center, ul. RabiaÂnska 8, 87-100 ToruÂn, Poland e-mail: [email protected] Received November 24, 1995 ABSTRACT Inclinations of the rotational axes, irot , are determined for 46 main sequence binaries of F, G, K and M spectral type and short period RS CVn systems. Seven binaries are asynchronous. The i inclinations irot are then compared with the orbital inclinations, orb , to test the alignment between the equatorial and orbital planes. In all 39 cases of synchronous rotators irot is equal or nearly equal to iorb . In a sample of seven asynchronous systems, at least six, and perhaps all, are non-coplanar. Key words: Stars: rotation-binaries: general-Stars: late-type 1. Introduction Chromospherically active stars with spots present a unique possibility to de- V i termine rotational period, Prot , and with independently measured rot sin rot to evaluate inclination of rotational axis, irot . In late type binaries it allows for com- parison of inclination of rotational axes to the orbital plane. Our previous analyses (Stawikowski and GøeÎbocki 1994 a,b called hereinafterPaperIandPaperII)showed that in long-period RS CVn stars an assumption of coplanarity of the equatorial ro- = i tational and orbital planes ( irot orb ) is justi®ed for synchronous systems only.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November :::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • A Code to Measure Stellar Atmospheric Parameters and Their Covariance from Spectra
    MNRAS 467, 971–984 (2017) doi:10.1093/mnras/stx144 Advance Access publication 2017 January 19 ZASPE: a code to measure stellar atmospheric parameters and their covariance from spectra Rafael Brahm,1,2‹ Andres´ Jordan,´ 1,2 Joel Hartman3 and Gasp´ ar´ Bakos3†‡ 1 Instituto de Astrof´ısica, Facultad de F´ısica, Pontificia Universidad Catolica´ de Chile, Av. Vicuna˜ Mackenna 4860, 7820436 Macul, Santiago, Chile Downloaded from https://academic.oup.com/mnras/article-abstract/467/1/971/2929275 by Princeton University user on 28 November 2018 2Millennium Institute of Astrophysics, Santiago, Chile 3Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA Accepted 2017 January 17. Received 2017 January 13; in original form 2015 December 7 ABSTRACT We describe the Zonal Atmospheric Stellar Parameters Estimator (ZASPE), a new algorithm, and its associated code, for determining precise stellar atmospheric parameters and their uncertainties from high-resolution echelle spectra of FGK-type stars. ZASPE estimates stellar atmospheric parameters by comparing the observed spectrum against a grid of synthetic spectra only in the most sensitive spectral zones to changes in the atmospheric parameters. Realistic uncertainties in the parameters are computed from the data itself, by taking into account the systematic mismatches between the observed spectrum and the best-fitting synthetic one. The covariances between the parameters are also estimated in the process. ZASPE can in principle use any pre-calculated grid of synthetic spectra, but unbiased grids are required to obtain accurate parameters. We tested the performance of two existing libraries, and we concluded that neither is suitable for computing precise atmospheric parameters.
    [Show full text]
  • Chemical Similarities Between Galactic Bulge and Local Thick Disk Red Giants: O, Na, Mg, Al, Si, Ca, and Ti
    A&A 513, A35 (2010) Astronomy DOI: 10.1051/0004-6361/200913444 & c ESO 2010 Astrophysics Chemical similarities between Galactic bulge and local thick disk red giants: O, Na, Mg, Al, Si, Ca, and Ti A. Alves-Brito1,2, J. Meléndez3, M. Asplund4, I. Ramírez4, and D. Yong5 1 Universidade de São Paulo, IAG, Rua do Matão 1226, Cidade Universitária, São Paulo 05508-900, Brazil e-mail: [email protected] 2 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia 3 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 4 Max Planck Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany 5 Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611, Australia Received 9 October 2009 / Accepted 13 January 2010 ABSTRACT Context. The formation and evolution of the Galactic bulge and its relationship with the other Galactic populations is still poorly understood. Aims. To establish the chemical differences and similarities between the bulge and other stellar populations, we performed an elemen- tal abundance analysis of α- (O, Mg, Si, Ca, and Ti) and Z-odd (Na and Al) elements of red giant stars in the bulge as well as of local thin disk, thick disk and halo giants. Methods. We use high-resolution optical spectra of 25 bulge giants in Baade’s window and 55 comparison giants (4 halo, 29 thin disk and 22 thick disk giants) in the solar neighborhood. All stars have similar stellar parameters but cover a broad range in metallicity (−1.5 < [Fe/H] < +0.5).
    [Show full text]
  • Enrichment of the Galactic Disc with Neutron-Capture Elements: Mo and Ru
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stz2202/5548790 Enrichment of the Galactic disc with neutron-capture Downloaded from https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stz2202/5548790 by University of Hull user on 14 August 2019 elements: Mo and Ru T. Mishenina1 ⋆, M. Pignatari2,3,6 † *, T. Gorbaneva1, C. Travaglio4,5 † , B. Cˆot´e3,6 † , F.-K. Thielemann7,8, C. Soubiran9 1Astronomical Observatory, Odessa National University, Shevchenko Park, 65014, Odessa, Ukraine 2 E.A. Milne Centre for Astrophysics, Dept of Physics & Mathematics, University of Hull, HU6 7RX, United Kingdom 3 Konkoly Observatory, Hungarian Academy of Sciences, Konkoly Thege Miklos ut 15-17, H-1121 Budapest, Hungary 4 INFN, University of Turin, Via Pietro Giuria 1, 10025 Turin, Italy 5 B2FH Association, Turin, Italy 6 Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements, USA 7 Department of Physics, University of Basel, Klingelbergstrabe 82, 4056 Basel, Switzerland 8 GSI Helmholtzzentrum fr Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany 9 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux - CNRS, B18N, all´ee Geoffroy Saint-Hilaire, 33615 Pessac, France Accepted 2015 xxx. Received 2015 xxx; in original form 2015 xxx ABSTRACT We present new observational data for the heavy elements molybdenum (Mo, Z = 42) and ruthenium (Ru, Z = 44) in F-, G-, and K-stars belonging to different substructures of the Milky Way.
    [Show full text]
  • Crystal Reports Activex Designer
    Quiz List—Reading Practice Page 1 Printed Wednesday, March 18, 2009 2:36:33PM School: Churchland Academy Elementary School Reading Practice Quizzes Quiz Word Number Lang. Title Author IL ATOS BL Points Count F/NF 9318 EN Ice Is...Whee! Greene, Carol LG 0.3 0.5 59 F 9340 EN Snow Joe Greene, Carol LG 0.3 0.5 59 F 36573 EN Big Egg Coxe, Molly LG 0.4 0.5 99 F 9306 EN Bugs! McKissack, Patricia C. LG 0.4 0.5 69 F 86010 EN Cat Traps Coxe, Molly LG 0.4 0.5 95 F 9329 EN Oh No, Otis! Frankel, Julie LG 0.4 0.5 97 F 9333 EN Pet for Pat, A Snow, Pegeen LG 0.4 0.5 71 F 9334 EN Please, Wind? Greene, Carol LG 0.4 0.5 55 F 9336 EN Rain! Rain! Greene, Carol LG 0.4 0.5 63 F 9338 EN Shine, Sun! Greene, Carol LG 0.4 0.5 66 F 9353 EN Birthday Car, The Hillert, Margaret LG 0.5 0.5 171 F 9305 EN Bonk! Goes the Ball Stevens, Philippa LG 0.5 0.5 100 F 7255 EN Can You Play? Ziefert, Harriet LG 0.5 0.5 144 F 9314 EN Hi, Clouds Greene, Carol LG 0.5 0.5 58 F 9382 EN Little Runaway, The Hillert, Margaret LG 0.5 0.5 196 F 7282 EN Lucky Bear Phillips, Joan LG 0.5 0.5 150 F 31542 EN Mine's the Best Bonsall, Crosby LG 0.5 0.5 106 F 901618 EN Night Watch (SF Edition) Fear, Sharon LG 0.5 0.5 51 F 9349 EN Whisper Is Quiet, A Lunn, Carolyn LG 0.5 0.5 63 NF 74854 EN Cooking with the Cat Worth, Bonnie LG 0.6 0.5 135 F 42150 EN Don't Cut My Hair! Wilhelm, Hans LG 0.6 0.5 74 F 9018 EN Foot Book, The Seuss, Dr.
    [Show full text]