A Code to Measure Stellar Atmospheric Parameters and Their Covariance from Spectra

Total Page:16

File Type:pdf, Size:1020Kb

A Code to Measure Stellar Atmospheric Parameters and Their Covariance from Spectra MNRAS 467, 971–984 (2017) doi:10.1093/mnras/stx144 Advance Access publication 2017 January 19 ZASPE: a code to measure stellar atmospheric parameters and their covariance from spectra Rafael Brahm,1,2‹ Andres´ Jordan,´ 1,2 Joel Hartman3 and Gasp´ ar´ Bakos3†‡ 1 Instituto de Astrof´ısica, Facultad de F´ısica, Pontificia Universidad Catolica´ de Chile, Av. Vicuna˜ Mackenna 4860, 7820436 Macul, Santiago, Chile Downloaded from https://academic.oup.com/mnras/article-abstract/467/1/971/2929275 by Princeton University user on 28 November 2018 2Millennium Institute of Astrophysics, Santiago, Chile 3Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA Accepted 2017 January 17. Received 2017 January 13; in original form 2015 December 7 ABSTRACT We describe the Zonal Atmospheric Stellar Parameters Estimator (ZASPE), a new algorithm, and its associated code, for determining precise stellar atmospheric parameters and their uncertainties from high-resolution echelle spectra of FGK-type stars. ZASPE estimates stellar atmospheric parameters by comparing the observed spectrum against a grid of synthetic spectra only in the most sensitive spectral zones to changes in the atmospheric parameters. Realistic uncertainties in the parameters are computed from the data itself, by taking into account the systematic mismatches between the observed spectrum and the best-fitting synthetic one. The covariances between the parameters are also estimated in the process. ZASPE can in principle use any pre-calculated grid of synthetic spectra, but unbiased grids are required to obtain accurate parameters. We tested the performance of two existing libraries, and we concluded that neither is suitable for computing precise atmospheric parameters. We describe a process to synthesize a new library of synthetic spectra that was found to generate consistent results when compared with parameters obtained with different methods (interferometry, asteroseismology, equivalent widths). Key words: methods: data analysis – techniques: spectroscopic – stars: fundamental parame- ters – planetary systems. tems. Long baseline optical interferometry has been used on bright 1 INTRODUCTION sources with known distances to measure their physical radii The determination of the physical parameters of stars is a fundamen- (Boyajian et al. 2012, 2013) and precise stellar densities have been tal requirement for studying their formation, structure and evolution. obtained using asteroseismology on stars observed by Kepler and Additionally, the physical properties of extrasolar planets depend CoRoT (e.g. Silva Aguirre et al. 2015). Unfortunately, for the rest strongly on how well we have characterized their host stars. In the of the stars, including the vast majority of planetary hosts, physical case of transiting planets, the measured transit depth is related to parameters cannot be measured and indirect procedures have to be the ratio of the planet to stellar radii. Similarly, for radial velocity adopted in which the atmospheric parameters, such as the effective planets, the semi-amplitude of the orbit is a function of both the temperature (Teff), surface gravity (log g) and metallicity ([Fe/H]), mass of the star and the mass of the planet. In the case of directly are derived from stellar spectra by using theoretical model atmo- imaged exoplanets, their estimated masses depend on the age of spheres. Stellar evolutionary models are then compared with the the systems. With more than 3000 planets and planetary candidates estimated atmospheric parameters in order to determine the physi- discovered, mostly by the Kepler mission (e.g. Howard et al. 2012; cal parameters of the star. Burke et al. 2014), homogeneous and accurate determination of the The amount of information about the properties of the stellar physical parameters of the host stars are required for linking their atmosphere contained in its spectrum is enormous. Current state- occurrence rates and properties with different theoretical predictions of-the-art high-resolution echelle spectrographs are capable of de- (e.g. Howard et al. 2010; Buchhave et al. 2014). tecting subtle variations of spectral lines that, in principle, can be Direct determinations of the physical properties of single stars translated into the determination of the physical atmospheric con- (mass, radius and age) are limited to a couple dozens of sys- ditions of a star with exquisite precision. However, there are several factors that reduce the precision that can be achieved. On one side, there are many other properties of a star that can produce changes E-mail: [email protected] on the absorption lines. For example, velocity fields on the surface † Alfred P. Sloan Research Fellow. of the star, which include the stellar rotation (which may be dif- ‡ Packard Fellow. ferential) and the micro- and macroturbulence, modify the shape C 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 972 R. Brahm et al. of the absorption lines. Non-solar abundances change the partic- uncertainties and correlations in the parameters are computed from ular strength of the lines of each element. Therefore, in order to the data itself and include the systematic mismatches due to the obtain precise atmospheric parameters, all of these variables have imperfect nature of the theoretical spectra. The structure of the pa- to be considered. However, even when all the significant variables per is as follows. In Section 2, we describe the method that ZASPE of the problem are taken into account, the precision in the param- uses for determining the stellar parameters and their covariance ma- eters becomes limited by modelling uncertainties, e.g. imperfect trix, including details on the synthesis of a new synthetic library to modelling of the stellar atmospheres and spectral features due to overcome limitations of the existing libraries for stellar parameter unknown opacity distribution functions, uncertainties in the prop- estimation. In Section 3, we summarize the performance of ZASPE erties of particular atomic and molecular transitions, effects arising on a sample of stars with measured stellar parameters, and we com- Downloaded from https://academic.oup.com/mnras/article-abstract/467/1/971/2929275 by Princeton University user on 28 November 2018 from the assumed geometry of the modelled atmosphere and non- pare our uncertainties with those produced by STARFISH. Finally, in local thermodynamic equilibrium (LTE) effects. These sources of Section 4, we summarize and conclude. error are unavoidable and are currently the main problem for obtain- ing reliable uncertainties in the estimated stellar parameters. Most 2 THE METHOD of the actual algorithms that compute atmospheric parameters from high-resolution stellar spectra do not consider in detail this factor In order to determine the atmospheric stellar parameters of a star, for obtaining the uncertainties. The problem is that if the reported ZASPE compares an observed continuum normalized spectrum uncertainties are unreliable, then they propagate to the planetary against synthetic spectra using least-squares minimization by per- parameters and can bias the results or hide potential trends in the forming an iterative algorithm that explores the complete parameter properties of the system under study that, if detectable, could lead space of FGK-type stars. For simplicity, we assume first that we are to deeper insights into their formation and evolution. able to generate an unbiased synthetic spectrum with any set of stel- A widely used procedure for obtaining the atmospheric param- lar atmospheric parameters (Teff,logg and [Fe/H]). By unbiased, eters of a star consists in comparing the observed spectra against we mean that there are no systematic trends in the level of mismatch synthetic models and adopts the parameters of the model that pro- of the synthesized and real spectra as a function of the stellar param- duces the best match as the estimated atmospheric parameters of the eters, but there can be systematic mismatches that are not a function observed star. This technique has been implemented in algorithms of stellar parameters. If Fλ is the observed spectrum and Sλ(θ)is such as SME (Valenti & Piskunov 1996), SPC (Buchhave et al. 2012) the synthesized spectrum with parameters θ ={Teff , log g,[Fe/H]}, and ISPEC (Blanco-Cuaresma et al. 2014) to derive parameters of the quantity that we minimize is planetary host stars. Thanks to the large number of spectral features X2(θ) = (F − S (θ))2. (1) used, this method has been shown to be capable of dealing with λ λ λ spectra having low signal-to-noise ratio (SNR), moderate resolu- tion and a wide range of stellar atmospheric properties. However, In equation (1), we have not included the weights coming from one of the major drawbacks of spectral synthesis methods for the the uncertainties in the observed flux because we are assuming that estimation of the atmospheric parameters is the determination of the SNR of the data is high enough for the uncertainties in the their uncertainties. This problem arises because the source of error parameters to be governed by the systematic mismatches between is not the Poisson noise of the observed spectrum, but instead is usu- the data and the models. ally dominated by imperfections in the synthesized model spectra, The synthesized spectrum needs to have some processing done which produce highly correlated residuals. In such cases, standard in order to compare it against the observed one.
Recommended publications
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • The Denver Observer June 2016
    The Denver JUNE 2016 OBSERVER Mercury transits the Sun on May 9, 2016. The planet, seen at the lower left of the Sun's face, has a diameter of about 3,000 miles, but the Sun's 870,000 mile cross-section dwarfs the planet—even though the Sun is seen here at twice Mercury's distance from us. (Note the planet-sized sunspots above-left of solar center.) Image © Ron Pearson. JUNE SKIES by Zachary Singer The Solar System the Martian surface reveals itself. On observing runs over the last few If you haven’t been observing Mars, the “unusually bright orange weeks, with good seeing, early views did indeed yield so-so results, but object in Libra,” now is a really good time: As June begins, the plan- improved noticeably as the planet neared its highest point in the south. et is just past opposition, and even more recently past its closest ap- I was able to make out the Syrtis Major region easily, even though proach to Earth, when the planet’s disk spanned a full 18.6 arcseconds. moonlight was a factor in the initial sessions. It looms large in a telescope now, and even instruments of moderate One great tool for power bring satisfying images at 100 or 150X. By midmonth, Mars improving your view Sky Calendar will be highest around 11 PM, with the disk slightly smaller, at 17.9”; is a “Moon filter.” 4 New Moon by June 30th, though, the planet will have already crossed the Meridian By bringing the sheer 12 First-Quarter Moon at 10 PM, before the sky brightness of Mars’ mag- 20 Full Moon In the Observer is fully dark, and the disk nitude -2 disk down a 27 Last-Quarter Moon will have shrunk some- notch, the moon filter President’s Message .
    [Show full text]
  • Spring Constellations Leo
    Night Sky 101: Spring Constellations Leo Leo, the lion, is very recognizable by the head of the lion, which looks like a backwards question mark, and is commonly known as “the sickle.” Regulus, Leo’s brightest star, is also easy to pick out in most lights. The constellation is best seen in April and May, but rises after the Spring Equinox in March. Within the constellation, there are several spiral galaxies: M65, M66, M95, and M96. It is possible to fit M65 and M66 into the same view on a low powered telescope. In Greek mythology, Leo was the Nemean lion, who was completely impervious to bronze, steel and any kind of metal. As part of his 12 labors, Hercules was charged to fight the lion and killed him Photo Credit: Starry Night by strangling him. Hercules took the lion’s pelt as a prize and Leo, the lion, was placed in the stars to commemorate their fight. Virgo Virgo is best seen in the late spring and early summer, usually May to June. The bright star Arcturus, in the constellation Boötes, lines up with the Virgo’s brightest star Spica, which makes it easy to find. Within the constellation is the Virgo Galaxy Cluster, which is a conglomerate of thousands of unnamed galaxies. These galaxies are about 65 million light years away, and usually only appear as smudges in a telescope. Virgo, the maiden, is also known as Persephone, or the daughter of the Demeter. Hades, god of the Un- derworld, fell in love with Virgo and took her to the Underworld.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • CONSTELLATION BOÖTES, the HERDSMAN Boötes Is the Cultivator Or Ploughman Who Drives the Bears, Ursa Major and Ursa Minor Around the Pole Star Polaris
    CONSTELLATION BOÖTES, THE HERDSMAN Boötes is the cultivator or Ploughman who drives the Bears, Ursa Major and Ursa Minor around the Pole Star Polaris. The bears, tied to the Polar Axis, are pulling a plough behind them, tilling the heavenly fields "in order that the rotations of the heavens should never cease". It is said that Boötes invented the plough to enable mankind to better till the ground and as such, perhaps, immortalizes the transition from a nomadic life to settled agriculture in the ancient world. This pleased Ceres, the Goddess of Agriculture, so much that she asked Jupiter to place Boötes amongst the stars as a token of gratitude. Boötes was first catalogued by the Greek astronomer Ptolemy in the 2nd century and is home to Arcturus, the third individual brightest star in the night sky, after Sirius in Canis Major and Canopus in Carina constellation. It is a constellation of large extent, stretching from Draco to Virgo, nearly 50° in declination, and 30° in right ascension, and contains 85 naked-eye stars according to Argelander. The constellation exhibits better than most constellations the character assigned to it. One can readily picture to one's self the figure of a Herdsman with upraised arm driving the Greater Bear before him. FACTS, LOCATION & MAP • The neighbouring constellations are Canes Venatici, Coma Berenices, Corona Borealis, Draco, Hercules, Serpens Caput, Virgo, and Ursa Major. • Boötes has 10 stars with known planets and does not contain any Messier objects. • The brightest star in the constellation is Arcturus, Alpha Boötis, which is also the third brightest star in the night sky.
    [Show full text]
  • Long Delayed Echo: New Approach to the Problem
    Geometrical joke(r?)s for SETI. R. T. Faizullin OmSTU, Omsk, Russia Since the beginning of radio era long delayed echoes (LDE) were traced. They are the most likely candidates for extraterrestrial communication, the so-called "paradox of Stormer" or "world echo". By LDE we mean a radio signal with a very long delay time and abnormally low energy loss. Unlike the well-known echoes of the delay in 1/7 seconds, the mechanism of which have long been resolved, the delay of radio signals in a second, ten seconds or even minutes is one of the most ancient and intriguing mysteries of physics of the ionosphere. Nowadays it is difficult to imagine that at the beginning of the century any registered echo signal was treated as extraterrestrial communication: “Notable changes occurred at a fixed time and the analogy among the changes and numbers was so clear, that I could not provide any plausible explanation. I'm familiar with natural electrical interference caused by the activity of the Sun, northern lights and telluric currents, but I was sure, as it is possible to be sure in anything, that the interference was not caused by any of common reason. Only after a while it came to me, that the observed interference may occur as the result of conscious activities. I'm overwhelmed by the the feeling, that I may be the first men to hear greetings transmitted from one planet to the other... Despite the signal being weak and unclear it made me certain that soon people, as one, will direct their eyes full of hope and affection towards the sky, overwhelmed by good news: People! We got the message from an unknown and distant planet.
    [Show full text]
  • To Trappist-1 RAIR Golaith Ship
    Mission Profile Navigator 10:07 AM - 12/2/2018 page 1 of 10 Interstellar Mission Profile for SGC Navigator - Report - Printable ver 4.3 Start: omicron 2 40 Eri (Star Trek Vulcan home star) (HD Dest: Trappist-1 2Mass J23062928-0502285 in Aquarii [X -9.150] [Y - 26965) (Keid) (HIP 19849) in Eridani [X 14.437] [Y - 38.296] [Z -3.452] 7.102] [Z -2.167] Rendezvous Earth date arrival: Tuesday, December 8, 2420 Ship Type: RAIR Golaith Ship date arrival: Tuesday, January 8, 2419 Type 2: Rendezvous with a coasting leg ( Top speed is reached before mid-point ) Start Position: Start Date: 2-December-2018 Star System omicron 2 40 Eri (Star Trek Vulcan home star) (HD 26965) (Keid) Earth Polar Primary Star: (HIP 19849) RA hours: inactive Type: K0 V Planets: 1e RA min: inactive Binary: B, C, b RA sec: inactive Type: M4.5V, DA2.9 dec. degrees inactive Rank from Earth: 69 Abs Mag.: 5.915956445 dec. minutes inactive dec. seconds inactive Galactic SGC Stats Distance l/y Sector X Y Z Earth to Start Position: 16.2346953 Kappa 14.43696547 -7.10221947 -2.16744969 Destination Arrival Date (Earth time): 8-December-2420 Star System Earth Polar Trappist-1 2Mass J23062928-0502285 Primary Star: RA hours: inactive Type: M8V Planets 4, 3e RA min: inactive Binary: B C RA sec: inactive Type: 0 dec. degrees inactive Rank from Earth 679 Abs Mag.: 18.4 dec. minutes inactive Course Headings SGC decimal dec. seconds inactive RA: (0 <360) 232.905748 dec: (0-180) 91.8817176 Galactic SGC Sector X Y Z Destination: Apparent position | Start of Mission Omega -9.09279603 -38.2336637 -3.46695345 Destination: Real position | Start of Mission Omega -9.09548281 -38.2366036 -3.46626331 Destination: Real position | End of Mission Omega -9.14988933 -38.2961361 -3.45228825 Shifts in distances of Destination Distance l/y X Y Z Change in Apparent vs.
    [Show full text]
  • Harappan Astronomy
    In Nakamura, T., Orchiston, W., Sôma, M., and Strom, R. (eds.), 2011. Mapping the Oriental Sky. Proceedings of the Seventh International Conference on Oriental Astronomy. Tokyo, National Astronomical Observatory of Japan. Pp. xx-xx. THEORETICAL FRAMEWORK OF HARAPPAN ASTRONOMY Mayank N. VAHIA Tata Institute of Fundamental Research, Mumbai, India and Manipal Advanced Research Group, Manipal University, Manipal – 576104, Karnataka, India. E-mail: [email protected] and Srikumar M. MENON Faculty of Architecture, Manipal Institite of Technology, Manipal – 576104, Karnataka, India. E-mail: [email protected] Abstract: Archaeo astronomy normally consists of interpreting available data and archaeological evidence about the astronomical knowledge of a civilisation. In the present study, we attempt to „reverse engineer‟ and attempt to define the nature of astronomy of a civilisation based on other evidence of its cultural complexity. We then compare it with somewhat sketchy data available so far and suggest the possible manner in which their observatories can be identified. 1 INTRODUCTION The Harappan civilisation lasted from about 7,000 BC to 2,000 BC. At its peak it spread over an area of more than a million square kilometres, and boasted more than 5,000 rural centres, over a dozen which had population densities >3 per m2 (Kenoyer, 1998, Possehl, 2002, Agarwal, 2007, Wright 2010). Harappan culture evolved and merged and transformed over this period (Gangal et al., 2011), and it also went through a complex evolutionary pattern (Vahia and Yadav, 2011a). It was the most advanced pre- iron civilisation in the world. It is no surprise, therefore, that the Harappans had a vibrant intellectual tradition.
    [Show full text]
  • The Evening Sky Map
    I N E D R I A C A S T N E O D I T A C L E O R N I G D S T S H A E P H M O O R C I . Z N O p l f e i n h d o P t O o N ) l h a r g Z i u s , o I l C t P h R I r e o R N ( O o r C r H e t L p h p E E i s t D H a ( r g T F i . O B NORTH D R e N M h t E A X O e s A H U M C T . I P N S L E E P Z “ E A N H O NORTHERN HEMISPHERE M T R T Y N H E ” K E η ) W S . T T E W U B R N W D E T T W T H h A The Evening Sky Map e MAY 2021 E . C ) Cluster O N FREE* EACH MONTH FOR YOU TO EXPLORE, LEARN & ENJOY THE NIGHT SKY r S L a o K e Double r Y E t B h R M t e PERSEUS A a A r CASSIOPEIA n e S SKY MAP SHOWS HOW Get Sky Calendar on Twitter P δ r T C G C A CEPHEUS r E o R e J s O h Sky Calendar – May 2021 http://twitter.com/skymaps M39 s B THE NIGHT SKY LOOKS T U ( O i N s r L D o a j A NE I I a μ p T EARLY MAY PM T 10 r 61 M S o S 3 Last Quarter Moon at 19:51 UT.
    [Show full text]
  • Bibliography from ADS File: Mathioudakis.Bib August 16, 2021 1
    Bibliography from ADS file: mathioudakis.bib Nelson, C. J., Freij, N., Bennett, S., Erdélyi, R., & Mathioudakis, M., “Spatially August 16, 2021 Resolved Signatures of Bidirectional Flows Observed in Inverted-Y Shaped Jets”, 2019ApJ...883..115N ADS Keys, P. H., Reid, A., Mathioudakis, M., et al., “The magnetic properties of pho- Campbell, R. J., Mathioudakis, M., Collados, M., et al., “Temporal evolution of tospheric magnetic bright points with high-resolution spectropolarimetry”, small-scale internetwork magnetic fields in the solar photosphere (Corrigen- 2019MNRAS.488L..53K ADS dum)”, 2021A&A...652C...2C ADS Procházka, O., Reid, A., & Mathioudakis, M., “Hydrogen Emission in Type II Nelson, C. J., Campbell, R. J., & Mathioudakis, M., “Oscillations In The Line- White-light Solar Flares”, 2019ApJ...882...97P ADS of-Sight Magnetic Field Strength In A Pore Observed By The GREGOR In- Quinn, S., Reid, A., Mathioudakis, M., et al., “The Chromospheric Re- frared Spectrograph (GRIS)”, 2021arXiv210710183N ADS sponse to the Sunquake Generated by the X9.3 Flare of NOAA 12673”, Campbell, R. J., Shelyag, S., Quintero Noda, C., et al., “Constraining the mag- 2019ApJ...881...82Q ADS netic vector in the quiet solar photosphere and the impact of instrumental Christian, D. J., Kuridze, D., Jess, D. B., Yousefi, M., & Mathioudakis, M., degradation”, 2021arXiv210701519C ADS “Multi-wavelength observations of the 2014 June 11 M3.9 flare: temporal Monson, A. J., Mathioudakis, M., Reid, A., Milligan, R., & Kuridze, D., “Flare- and spatial characteristics”, 2019RAA....19..101C ADS induced Photospheric Velocity Diagnostics”, 2021ApJ...915...16M Cegla, H. M., Watson, C. A., Shelyag, S., Mathioudakis, M., & Moutari, ADS S., “Stellar Surface Magnetoconvection as a Source of Astrophysical Srivastava, A.
    [Show full text]
  • Searching for New Young Stars in the Northern Hemisphere: the Pisces
    Mon. Not. R. Astron. Soc. 000, 1–?? (2017) Printed September 1, 2017 (MN LATEX style file v2.2) Searching for new young stars in the northern hemisphere: The Pisces Moving Group A. S. Binks1⋆, R. D. Jeffries2 and J. L. Ward3 1Instituto de Radioastronom´ıa y Astrof´ısica, Universidad Nacional Aut´onoma de M´exico, PO Box 3-72, 58090 Morelia, Michoac´an, M´exico 2Astrophysics Group, School of Chemistry and Physics, Keele University, Keele, Staffordshire ST5 5BG 3Astronomisches Rechen-Institut, Zentrum f¨ur Astronomie der Universit¨at Heidelberg, M¨onchhofstraße 12-14, D-69120 Heidelberg, Germany Accepted. Received, in original form ABSTRACT Using the kinematically unbiased technique described in Binks, Jeffries & Maxted (2015), we present optical spectra for a further 122 rapidly-rotating (rotation periods < 6 days), X-ray active FGK stars, selected from the SuperWASP survey. We identify 17 new examples of young, probably single stars with ages of < 200 Myr and provide additional evidence for a new northern hemisphere kinematic association: the Pisces Moving Group (MG). The group consists of 14 lithium-rich G- and K-type stars, that have a dispersion of only ∼ 3 kms−1 in each Galactic space velocity coordinate. The group members are approximately co-eval in the colour-magnitude diagram, with an age of 30–50 Myr, and have similar, though not identical, kinematics to the Octans- Near MG. Key words: stars: low-mass – stars: pre-main-sequence 1 INTRODUCTION for evolutionary stellar models and are excellent laborato- ries for testing the conditions and history of our nearest, Historically, the majority of young stars in the Solar neigh- young stars.
    [Show full text]
  • TAAS Fabulous Fifty
    TAAS Fabulous Fifty Friday April 21, 2017 19:30 MDT (7:30 pm) Ursa Major Photo Courtesy of Naoyuki Kurita All TAAS and other new and not so new astronomers are invited Evening Events 7:30 pm Meet inside church for overview of winter sky 8:30 pm View night sky outside 9:00 pm Social session inside church 10:00 pm Optional additional viewing outside Objectives Provide new astronomers a list of 50 night sky objects 1. Locate with the naked eye 2. Showcases the night sky for an entire year 3. Beginner astronomer will remember from one observing session to the next 4. Basis for knowing the night sky well enough to perform more detailed observing Methodology 1. Divide the observing activities into the four seasons: Winter Dec-Jan-Feb Spring Mar-Apr-May Summer Jun-Jul-Aug Fall Sep-Oct-Nov Boötes Photo Courtesy of Naoyuki Kurita 2. Begin with the bright and easy to locate and identify stars and associated constellations 3. Add the other constellations for each season Methodology (cont.) 4. Add a few naked eye Messier Objects 5. Include planets as a separate observing activity M 44 “The Beehive” Photo Courtesy of Naoyuki Kurita 6. Include the Moon as a separate observing activity 7. Include meteor showers as separate observing activity Spring Constellations Stars Messier Object Ursa Major Dubhe Merak Leo Regulus M 44 “The Beehive” Boötes Arcturus M 3 The Spring Sky Map Ursa Major Boötes Leo What Are the Messier Objects (M)? 100 astronomical objects listed by French astronomer Charles Messier in 1771 Messier was a comet hunter, and frustrated by
    [Show full text]