The PLATO 2.0 Mission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Stellar Tidal Streams As Cosmological Diagnostics: Comparing Data and Simulations at Low Galactic Scales
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG DOCTORAL THESIS Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Author: Referees: Gustavo MORALES Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL Astronomisches Rechen-Institut Heidelberg Graduate School of Fundamental Physics Department of Physics and Astronomy 14th May, 2018 ii DISSERTATION submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of DOCTOR OF NATURAL SCIENCES Put forward by GUSTAVO MORALES born in Copiapo ORAL EXAMINATION ON JULY 26, 2018 iii Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Referees: Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL iv NOTE: Some parts of the written contents of this thesis have been adapted from a paper submitted as a co-authored scientific publication to the Astronomy & Astrophysics Journal: Morales et al. (2018). v NOTE: Some parts of this thesis have been adapted from a paper accepted for publi- cation in the Astronomy & Astrophysics Journal: Morales, G. et al. (2018). “Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume". arXiv:1804.03330. DOI: 10.1051/0004-6361/201732271 vii Abstract In hierarchical models of galaxy formation, stellar tidal streams are expected around most galaxies. Although these features may provide useful diagnostics of the LCDM model, their observational properties remain poorly constrained. Statistical analysis of the counts and properties of such features is of interest for a direct comparison against results from numeri- cal simulations. In this work, we aim to study systematically the frequency of occurrence and other observational properties of tidal features around nearby galaxies. -
Chemo-Kinematics of the Milky Way from the SDSS-III MARVELS Survey
MNRAS 000,1–22 (2018) Preprint 6 October 2020 Compiled using MNRAS LATEX style file v3.0 Chemo-kinematics of the Milky Way from the SDSS-III MARVELS Survey Nolan Grieves,1¢ Jian Ge,1 Neil Thomas,2 Kevin Willis,1 Bo Ma,1 Diego Lorenzo-Oliveira,3,4 A. B. A. Queiroz,5,4 Luan Ghezzi,6 Cristina Chiappini,7,4 Friedrich Anders,7,4 Letícia Dutra-Ferreira,5,4 Gustavo F. Porto de Mello,8,4 Basílio X. Santiago,5,4 Luiz N. da Costa,6,4 Ricardo L. C. Ogando,6,4 E. F. del Peloso,4 Jonathan C. Tan,9,1 Donald P. Schneider,10,11 Joshua Pepper,12 Keivan G. Stassun,13 Bo Zhao,1 Dmitry Bizyaev,14,15 and Kaike Pan14 1Department of Astronomy, University of Florida, Gainesville, FL 32611, USA 2Department of Astronautical Engineering, United States Air Force Academy, CO 80840, USA 3Universidade de São Paulo, Departamento de Astronomia IAG/USP, Rua do Matão 1226, Cidade Universitária, São Paulo, SP 05508-900, Brazil 4Laboratório Interinstitucional de e-Astronomia-LIneA, Rua Gereral José Cristino 77, São Cristóvão, Rio de Janeiro, RJ 20921-400, Brazil 5Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051,Porto Alegre, RS - 91501-970, Brazil 6Observatório Nacional, Rua General José Cristino 77, São Cristóvão, Rio de Janeiro, RJ 20921-400, Brazil 7Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany 8Observatório do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antônio 43, Rio de Janeiro, RJ 20080-090, Brazil 9Department of Astronomy, University of Virginia, Charlottesville, VA 22904 10Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 11Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 12Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA, 18015, USA 13Vanderbilt University, Physics & Astronomy Department, 6301 Stevenson Center Ln., Nashville, TN 37235 14Apache Point Observatory and New Mexico State University, P.O. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Space in Central and Eastern Europe
EU 4+ SPACE IN CENTRAL AND EASTERN EUROPE OPPORTUNITIES AND CHALLENGES FOR THE EUROPEAN SPACE ENDEAVOUR Report 5, September 2007 Charlotte Mathieu, ESPI European Space Policy Institute Report 5, September 2007 1 Short Title: ESPI Report 5, September 2007 Editor, Publisher: ESPI European Space Policy Institute A-1030 Vienna, Schwarzenbergplatz 6 Austria http://www.espi.or.at Tel.: +43 1 718 11 18 - 0 Fax - 99 Copyright: ESPI, September 2007 This report was funded, in part, through a contract with the EUROPEAN SPACE AGENCY (ESA). Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “source: ESPI Report 5, September 2007. All rights reserved” and sample transmission to ESPI before publishing. Price: 11,00 EUR Printed by ESA/ESTEC Compilation, Layout and Design: M. A. Jakob/ESPI and Panthera.cc Report 5, September 2007 2 EU 4+ Executive Summary ....................................................................................... 5 Introduction…………………………………………………………………………………………7 Part I - The New EU Member States Introduction................................................................................................... 9 1. What is really at stake for Europe? ....................................................... 10 1.1. The European space community could benefit from a further cooperation with the ECS ................................................................. 10 1.2. However, their economic weight remains small in the European landscape and they still suffer from organisatorial and funding issues .... 11 1.2.1. Economic weight of the ECS in Europe ........................................... 11 1.2.2. Reality of their impact on competition ............................................ 11 1.2.3. Foreign policy issues ................................................................... 12 1.2.4. Internal challenges ..................................................................... 12 1.3. -
Formation of Disc Galaxies from Cosmological Simulations: Galactic Outflows and Chemical Evolution
Scuola Internazionale Superiore di Studi Avanzati - Trieste Formation of disc galaxies from cosmological simulations: galactic outflows and chemical evolution Author: Milena Valentini Supervisors: Prof. Stefano Borgani, Prof. Alessandro Bressan, Dr. Giuseppe Murante International School for Advanced Studies SISSA/ISAS A thesis submitted in fulfilment of the requirements for the degree of Doctor Philosophiae in ASTROPHYSICS and COSMOLOGY October 2018 SISSA - Via Bonomea 265 - 34136 TRIESTE - ITALY To Nicola Abstract In this Thesis, I study the formation of late-type galaxies and the role that feedback from stars and supermassive black holes (SMBHs) plays in galaxy evolution across cosmic time. By carrying out cosmological hydrodynamical simulations, I investigate how different processes, such as the cosmological gas accretion from the large scale environment, star formation and chemical enrichment, stellar and AGN (Active Galactic Nucleus) feedback, affect the early stages of forming galaxies and contribute to determine their present-day properties. Driven by the challenging task of simulating late-type galaxies with a limited bulge and a dominant disc in a cosmological context, I study the impact of galactic outflow modelling on the formation and evolution of a disc galaxy. I find that galactic outflows regulate the timing of gas accretion and determine the star formation history of the forming galaxy. Also, I quantify the strong interplay between the adopted hydrodynamical scheme and the sub-resolution model describing star formation and stellar feedback. Throughout this Thesis, I devote particular emphasis to connect chemical evolution and gas dynamics, in order to interpret observations of metal abundance in the interstellar medium (ISM) and circumgalactic medium (CGM). -
METEOR CSILLAGÁSZATI ÉVKÖNYV 2019 Meteor Csillagászati Évkönyv 2019
METEOR CSILLAGÁSZATI ÉVKÖNYV 2019 meteor csillagászati évkönyv 2019 Szerkesztette: Benkő József Mizser Attila Magyar Csillagászati Egyesület www.mcse.hu Budapest, 2018 Az évkönyv kalendárium részének összeállításában közreműködött: Tartalom Bagó Balázs Görgei Zoltán Kaposvári Zoltán Kiss Áron Keve Kovács József Bevezető ....................................................................................................... 7 Molnár Péter Sánta Gábor Kalendárium .............................................................................................. 13 Sárneczky Krisztián Szabadi Péter Cikkek Szabó Sándor Szőllősi Attila Zsoldos Endre: 100 éves a Nemzetközi Csillagászati Unió ........................191 Zsoldos Endre Maria Lugaro – Kereszturi Ákos: Elemkeletkezés a csillagokban.............. 203 Szabó Róbert: Az OGLE égboltfelmérés 25 éve ........................................218 A kalendárium csillagtérképei az Ursa Minor szoftverrel készültek. www.ursaminor.hu Beszámolók Mizser Attila: A Magyar Csillagászati Egyesület Szakmailag ellenőrizte: 2017. évi tevékenysége .........................................................................242 Szabados László Kiss László – Szabó Róbert: Az MTA CSFK Csillagászati Intézetének 2017. évi tevékenysége .........................................................................248 Petrovay Kristóf: Az ELTE Csillagászati Tanszékének működése 2017-ben ............................................................................ 262 Szabó M. Gyula: Az ELTE Gothard Asztrofi zikai Obszervatórium -
10. Scientific Programme 10.1
10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic -
Enrichment of the Galactic Disc with Neutron-Capture Elements: Mo and Ru
This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stz2202/5548790 Enrichment of the Galactic disc with neutron-capture Downloaded from https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/stz2202/5548790 by University of Hull user on 14 August 2019 elements: Mo and Ru T. Mishenina1 ⋆, M. Pignatari2,3,6 † *, T. Gorbaneva1, C. Travaglio4,5 † , B. Cˆot´e3,6 † , F.-K. Thielemann7,8, C. Soubiran9 1Astronomical Observatory, Odessa National University, Shevchenko Park, 65014, Odessa, Ukraine 2 E.A. Milne Centre for Astrophysics, Dept of Physics & Mathematics, University of Hull, HU6 7RX, United Kingdom 3 Konkoly Observatory, Hungarian Academy of Sciences, Konkoly Thege Miklos ut 15-17, H-1121 Budapest, Hungary 4 INFN, University of Turin, Via Pietro Giuria 1, 10025 Turin, Italy 5 B2FH Association, Turin, Italy 6 Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements, USA 7 Department of Physics, University of Basel, Klingelbergstrabe 82, 4056 Basel, Switzerland 8 GSI Helmholtzzentrum fr Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany 9 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux - CNRS, B18N, all´ee Geoffroy Saint-Hilaire, 33615 Pessac, France Accepted 2015 xxx. Received 2015 xxx; in original form 2015 xxx ABSTRACT We present new observational data for the heavy elements molybdenum (Mo, Z = 42) and ruthenium (Ru, Z = 44) in F-, G-, and K-stars belonging to different substructures of the Milky Way. -
Stacking Emission Lines from Distant Galaxies
DF A study of galaxy evolution: stacking emission lines from distant galaxies JEAN-BAPTISTE JOLLY Department of Space Earth and Environment CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2019 Thesis for the degree of Licentiate of Engineering A study of galaxy evolution: stacking emission lines from distant galaxies Jean-Baptiste Jolly DF Department of Space Earth and Environment Division of Astronomy and Plasma Physics Chalmers University of Technology Gothenburg, Sweden 2019 A study of galaxy evolution: stacking emission lines from distant galaxies Jean-Baptiste Jolly © Jean-Baptiste Jolly, 2019. Division of Astronomy and Plasma Physics Department of Space Earth and Environment Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Contact information: Jean-Baptiste Jolly Onsala Space Observatory Chalmers University of Technology SE–439 92 Onsala, Sweden Phone: +46 (0)31 772 55 44 Email: [email protected] Cover image: This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACSJ0717.5+3745. This is one of six being studied by the Hub- ble Frontier Fields programme, which together have produced the deepest images of gravitational lensing ever made. Due to the huge mass of the cluster it is bending the light of background objects, acting as a magnifying lens. It is one of the most massive galaxy clusters known, and it is also the largest known gravitational lens. Of all of the galaxy clusters known and measured, MACS J0717 lenses the largest area of the sky. Credit: NASA, ESA and the HST Frontier Fields team (STScI) Printed by Chalmers Reproservice Gothenburg, Sweden 2019 A study of galaxy evolution: stacking emission lines from distant galaxies Jean-Baptiste Jolly Department of Space Earth and Environment Chalmers University of Technology Abstract To draw up a thorough description of galaxy evolution exhaustive observations are needed, of distant but mainly of faint galaxies. -
GTO Keypad Manual, V5.001
ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN! -
FY13 High-Level Deliverables
National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................