PLATO Revealing Habitable Worlds Around Solar-Like Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gaia and WEAVE/Wxes: Supporting the PLATO Exoplanet Hunter Nicholas Walton Institute of Astronomy University of Cambridge
Gaia and WEAVE/WxES: supporting The PLATO Exoplanet Hunter Nicholas Walton Institute of Astronomy University of Cambridge WEAVE – Gaia – PLATO a winning planet hunter combo • Gaia releases its first all sky astrometric catalogues late 2017 • WEAVE begins on sky operations in 2018 • PLATO begins its planet hunt in 2024 • Why are these events linked? • Finding and characterising extra solar planets requires a detailed knowledge of the host stars • And it helps to know your target stars before you observe them 6 March 2015 Nic Walton - WEAVE/Plato @ MOS ING - La Palma 2 PLATO set for 2024 6 March 2015 Nic Walton - WEAVE/Plato @ MOS ING - La Palma 3 … but first … Gaia’s role in planets Recall Carme Jordi’s talk earlier this week 6 March 2015 Nic Walton - WEAVE/Plato @ MOS ING - La Palma 4 Gaia launched 19 Dec 2013 a powerful complement to PLATO NGC 1818 in LMC 212x212 arcsec2 (~1% of AF FoV) 2.85s integration time 6 March 2015 Nic Walton - WEAVE/Plato @ MOS ING - La Palma 5 Gaia End-of-Mission Parallax Errors Apply factors of ~ 0.7 and ~ 0.5 for positions and proper motions Figure from http://www.rssd.esa.int/index.php?project=GAIA&page=Science_Performance Non-uniformity over the sky: 2 70% – 116% 1 PLATO stars 1. bright-star regime (calibration errors, CCD saturation) 2. photon-noise regime, with sky-background noise and electronic noise setting in around G ~ 20 mag (equivalent to V = 20 to 22) 6 March 2015 Nic Walton - WEAVE/Plato @ MOS ING - La Palma 6 Gaia Performance (at IOCR) http://www.cosmos.esa.int/web/gaia/science-performance Typical -
HD 97658 and Its Super-Earth Spitzer & MOST Transit Analysis and Seismic Modeling of the Host Star
The space photometry revolution CoRoT3-KASC7 joint meeting HD 97658 and its super-Earth Spitzer & MOST transit analysis and seismic modeling of the host star Valerie Van Grootel (University of Liege, Belgium) M. Gillon (U. Liege), D. Valencia (U. Toronto), N. Madhusudhan (U. Cambridge), D. Dragomir (UC Santa Barbara), and the Spitzer team 1. Introducing HD 97658 and its super-Earth The second brightest star harboring a transiting super-Earth HD 97658 (V=7.7, K=5.7) HD 97658 b, a transiting super-Earth • • Teff = 5170 ± 50 K (Howard et al. 2011) Discovery by Howard et al. (2011) from Keck- Hires RVs: • [Fe/H] = -0.23 ± 0.03 ~ Z - M sin i = 8.2 ± 1.2 M • d = 21.11 ± 0.33 pc ; from Hipparcos P earth - P = 9.494 ± 0.005 d (Van Leeuwen 2007) orb • Transits discovered by Dragomir et al. (2013) with MOST: RP = 2.34 ± 0.18 Rearth From Howard et al. (2011) From Dragomir et al. (2013) Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 2 2. Modeling the host star HD 97658 Rp α R* 2/3 Mp α M* Radial velocities Transits + the age of the star is the best proxy for the age of its planets (Sun: 4.57 Gyr, Earth: 4.54 Gyr) • With Asteroseismology: T. Campante, V. Van Eylen’s talks • Without Asteroseismology: stellar evolution modeling Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 3 2. Modeling the host star HD 97658 • d = 21.11 ± 0.33 pc, V = 7.7 L* = 0.355 ± 0.018 Lsun • +Teff from spectroscopy: R* = 0.74 ± 0.03 Rsun • Stellar evolution code CLES (Scuflaire et al. -
Stellar Tidal Streams As Cosmological Diagnostics: Comparing Data and Simulations at Low Galactic Scales
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG DOCTORAL THESIS Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Author: Referees: Gustavo MORALES Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL Astronomisches Rechen-Institut Heidelberg Graduate School of Fundamental Physics Department of Physics and Astronomy 14th May, 2018 ii DISSERTATION submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of DOCTOR OF NATURAL SCIENCES Put forward by GUSTAVO MORALES born in Copiapo ORAL EXAMINATION ON JULY 26, 2018 iii Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Referees: Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL iv NOTE: Some parts of the written contents of this thesis have been adapted from a paper submitted as a co-authored scientific publication to the Astronomy & Astrophysics Journal: Morales et al. (2018). v NOTE: Some parts of this thesis have been adapted from a paper accepted for publi- cation in the Astronomy & Astrophysics Journal: Morales, G. et al. (2018). “Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume". arXiv:1804.03330. DOI: 10.1051/0004-6361/201732271 vii Abstract In hierarchical models of galaxy formation, stellar tidal streams are expected around most galaxies. Although these features may provide useful diagnostics of the LCDM model, their observational properties remain poorly constrained. Statistical analysis of the counts and properties of such features is of interest for a direct comparison against results from numeri- cal simulations. In this work, we aim to study systematically the frequency of occurrence and other observational properties of tidal features around nearby galaxies. -
Chemo-Kinematics of the Milky Way from the SDSS-III MARVELS Survey
MNRAS 000,1–22 (2018) Preprint 6 October 2020 Compiled using MNRAS LATEX style file v3.0 Chemo-kinematics of the Milky Way from the SDSS-III MARVELS Survey Nolan Grieves,1¢ Jian Ge,1 Neil Thomas,2 Kevin Willis,1 Bo Ma,1 Diego Lorenzo-Oliveira,3,4 A. B. A. Queiroz,5,4 Luan Ghezzi,6 Cristina Chiappini,7,4 Friedrich Anders,7,4 Letícia Dutra-Ferreira,5,4 Gustavo F. Porto de Mello,8,4 Basílio X. Santiago,5,4 Luiz N. da Costa,6,4 Ricardo L. C. Ogando,6,4 E. F. del Peloso,4 Jonathan C. Tan,9,1 Donald P. Schneider,10,11 Joshua Pepper,12 Keivan G. Stassun,13 Bo Zhao,1 Dmitry Bizyaev,14,15 and Kaike Pan14 1Department of Astronomy, University of Florida, Gainesville, FL 32611, USA 2Department of Astronautical Engineering, United States Air Force Academy, CO 80840, USA 3Universidade de São Paulo, Departamento de Astronomia IAG/USP, Rua do Matão 1226, Cidade Universitária, São Paulo, SP 05508-900, Brazil 4Laboratório Interinstitucional de e-Astronomia-LIneA, Rua Gereral José Cristino 77, São Cristóvão, Rio de Janeiro, RJ 20921-400, Brazil 5Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051,Porto Alegre, RS - 91501-970, Brazil 6Observatório Nacional, Rua General José Cristino 77, São Cristóvão, Rio de Janeiro, RJ 20921-400, Brazil 7Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany 8Observatório do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antônio 43, Rio de Janeiro, RJ 20080-090, Brazil 9Department of Astronomy, University of Virginia, Charlottesville, VA 22904 10Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 11Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 12Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA, 18015, USA 13Vanderbilt University, Physics & Astronomy Department, 6301 Stevenson Center Ln., Nashville, TN 37235 14Apache Point Observatory and New Mexico State University, P.O. -
Asteroseismology with Corot, Kepler, K2 and TESS: Impact on Galactic Archaeology Talk Miglio’S
Asteroseismology with CoRoT, Kepler, K2 and TESS: impact on Galactic Archaeology talk Miglio’s CRISTINA CHIAPPINI Leibniz-Institut fuer Astrophysik Potsdam PLATO PIC, Padova 09/2019 AsteroseismologyPlato as it is : a Legacy with CoRoT Mission, Kepler for Galactic, K2 and TESS: impactArchaeology on Galactic Archaeology talk Miglio’s CRISTINA CHIAPPINI Leibniz-Institut fuer Astrophysik Potsdam PLATO PIC, Padova 09/2019 Galactic Archaeology strives to reconstruct the past history of the Milky Way from the present day kinematical and chemical information. Why is it Challenging ? • Complex mix of populations with large overlaps in parameter space (such as Velocities, Metallicities, and Ages) & small volume sampled by current data • Stars move away from their birth places (migrate radially, or even vertically via mergers/interactions of the MW with other Galaxies). • Many are the sources of migration! • Most of information was confined to a small volume Miglio, Chiappini et al. 2017 Key: VOLUME COVERAGE & AGES Chiappini et al. 2018 IAU 334 Quantifying the impact of radial migration The Rbirth mix ! Stars that today (R_now) are in the green bins, came from different R0=birth Radial Migration Sources = bar/spirals + mergers + Inside-out formation (gas accretion) GalacJc Center Z Sun R Outer Disk R = distance from GC Minchev, Chiappini, MarJg 2013, 2014 - MCM I + II A&A A&A 558 id A09, A&A 572, id A92 Two ways to expand volume for GA • Gaia + complementary photometric information (but no ages for far away stars) – also useful for PIC! • Asteroseismology of RGs (with ages!) - also useful for core science PLATO (miglio’s talk) The properties at different places in the disk: AMR CoRoT, Gaia+, K2 + APOGEE Kepler, TESS, K2, Gaia CoRoT, Gaia+, K2 + APOGEE PLATO + 4MOST? Predicon: AMR Scatter increases towards outer regions Age scatter increasestowars outer regions ExtracGng the best froM GaiaDR2 - Anders et al. -