Cosmic Evolution Through Uv Surveys (Cetus) Final Report
Total Page:16
File Type:pdf, Size:1020Kb
COSMIC EVOLUTION THROUGH UV SURVEYS (CETUS) FINAL REPORT Thematic Activity: Project (probe mission concept) Program: Electromagnetic observations from space Authors of Final Report: Jonathan Arenberg, Northrop Grumman Corporation Sally Heap, Univ. of Maryland, [email protected] Tony Hull, Univ. of New Mexico Steve Kendrick, Kendrick Aerospace Consulting LLC Bob Woodruff, Woodruff Consulting Scientific Contributors: Maarten Baes, Rachel Bezanson, Luciana Bianchi, David Bowen, Brad Cenko, Yi-Kuan Chiang, Rachel Cochrane, Mike Corcoran, Paul Crowther, Simon Driver, Bill Danchi, Eli Dwek, Brian Fleming, Kevin France, Pradip Gatkine, Suvi Gezari, Lea Hagen, Chris Hayward, Matthew Hayes, Tim Heckman, Edmund Hodges-Kluck, Alexander Kutyrev, Thierry Lanz, John MacKenty, Steve McCandliss, Harvey Moseley, Coralie Neiner, Goren Östlin, Camilla Pacifici, Marc Rafelski, Bernie Rauscher, Jane Rigby, Ian Roederer, David Spergel, Dan Stark, Alexander Szalay, Bryan Terrazas, Jonathan Trump, Arjun van der Wel, Sylvain Veilleux, Kate Whitaker, Isak Wold, Rosemary Wyse Technical Contributors: Jim Burge, Kelly Dodson, Chip Eckles, Brian Fleming, Jamie Kennea, Gerry Lemson, John MacKenty, Steve McCandliss, Greg Mehle, Shouleh Nikzad, Trent Newswander, Lloyd Purves, Manuel Quijada, Ossy Siegmund, Dave Sheikh, Phil Stahl, Ani Thakar, John Vallerga, Marty Valente, the Goddard IDC/MDL. September 2019 Cosmic Evolution Through UV Surveys (CETUS) TABLE OF CONTENTS INTRODUCTION TO CETUS ................................................................................................................. 1 SCIENCE CASE FOR THE CETUS PROBE MISSION ......................................................................... 4 THE LOW-Z UNIVERSE ............................................................................................................................... 4 STAR-FORMING GALAXIES AT Z=1 ......................................................................................................... 13 TRANSIENTS ............................................................................................................................................. 14 MULTI-WAVELENGTH SURVEYS .............................................................................................................. 17 SCIENCE FLOWDOWN ............................................................................................................................... 18 INSTRUMENTATION – ENGINEERING IMPLEMENTATION TO FACILITATE SCIENCE ........ 21 THE CETUS CONCEPT IS MATURE AND WHY MATURITY MATTERS ...................................... 21 TOP-LEVEL DESCRIPTION OF THE CETUS DESIGN ...................................................................... 22 INSTRUMENT-LEVEL DESCRIPTION OF THE CETUS SCIENCE PAYLOAD: ................................ 24 MAJOR CETUS COMPONENTS .......................................................................................................... 29 PAYLOAD MECHANICAL/ELECTRICAL/THERMAL DESIGN ........................................................................ 31 ALIGNMENT, INTEGRATION, AND TEST (AIT) .......................................................................................... 34 MISSION DESIGN .................................................................................................................................. 36 OVERVIEW ............................................................................................................................................ 36 ORBIT ....................................................................................................................................................... 37 GROUND STATIONS AND OPERATIONS ..................................................................................................... 38 SPACECRAFT BUS ..................................................................................................................................... 38 LAUNCH VEHICLE (LV) ........................................................................................................................... 40 CONCEPT OF OPERATIONS ............................................................................................................... 40 SCIENCE OPERATIONS .............................................................................................................................. 40 MISSION OPERATIONS .............................................................................................................................. 41 TECHNOLOGY DRIVERS AND ROADMAPS .................................................................................... 43 NEXT-GENERATION MICRO-SHUTTER ARRAY (NG-MSA) ...................................................................... 44 OPTICAL COATINGS, STRAYLIGHT, AND CONTAMINATION CONTROL ...................................................... 44 CCD DETECTOR ....................................................................................................................................... 45 MCP DETECTOR ...................................................................................................................................... 45 ORGANIZATION, PARTNERSHIPS, AND CURRENT STATUS ....................................................... 46 COST ESTIMATION .............................................................................................................................. 48 CONCLUSIONS ...................................................................................................................................... 49 REFERENCES TO RELEVANT ASTRO2020 SCIENCE WHITE PAPERS ........................................ 49 REFERENCES ........................................................................................................................................ 50 ACRONYM LIST .................................................................................................................................... 52 RESUMÉS ..............................................................................................................................................R-1 Cosmic Evolution Through UV Surveys Final Report INTRODUCTION TO CETUS We introduce the CETUS probe-class mission concept by comparing it with a mission we already know: the Hubble Space Telescope. Hubble is a UV-optical-IR telescope. By design, it does things that only a telescope in space can do: it obtains exquisite images of astronomical sources unmarred by atmospheric seeing effects; and from above Earth’s atmosphere, it observes UV radiation from astronomical sources. CETUS is an all-UV space mission concept, and it does things that only CETUS can do. The four main capabilities of CETUS that even Hubble doesn’t have are: (1) wide-field (17.4’x17.4’) imaging and spectroscopy of astronomical sources with £0.5” resolution; (2) spectral sensitivity to UV radiation at wavelengths as short as 1000 Å; (3) near-UV multi-object slit spectroscopy; and (4) rapid-response UV spectroscopy and deep imaging of transients like GW 170817; and (5) 23 times higher sensitivity to extended sources. Table 1-1 gives a full list of CETUS parameters and capabilities. To UV observers on Hubble, CETUS is obviously an outgrowth of Hubble: The CETUS FUV+NUV1 camera is similar to Hubble’s WFC3 working in the NUV and Hubble’s ACS solar-blind channel whose forté is in the FUV. The CETUS camera is not only a consolidation of the two instruments but the result of new, added capabilities. One new capability is an enormous field of view of 17.4’x17.4’, which is 1,000 times larger than that of ACS and nearly 40 times larger than that of WFC3. The other is a fast f-ratio, f/5, of the CETUS telescope that enables the CETUS camera to detect emission from extended sources 23 times fainter than can be detected by any Hubble camera. The CETUS FUV+NUV point/slit spectrograph (PSS) is a near-copy of COS’ far-UV spectrograph and STIS’s near-UV echelle spectrograph. Again, the CETUS spectrograph comes with added capabilities. One new capability is sensitivity to UV radiation at wavelengths as short as 1,000 Å, whereas STIS or COS are insensitive below 1,150 Å. This extra 150 Å is important as it contains the only spectral diagnostic of warm- hot plasma as well as numerous H2 lines. In addition, the FUV PSS has a 6’-long slit for imaging spectroscopy - 12 times longer than STIS’s long slit, while COS has no imaging capabilities at all. Like STIS, the NUV PSS has a R~40,000 spectrograph, which is essential for research on stars like the extremely metal-poor stars whose NUV spectra bear the imprint of explosive ejecta from the first stars. The CETUS NUV Multi-Object Spectrograph (MOS) has no analogue on Hubble. With its microshutter array (MSA), its closest cousin is the MOS on JWST’s NIRspec instrument. The CETUS MSA has over 72,000 shutters in a 380x190 array. Each shutter is commandable to be open or closed. The MSA shutters can be configured to contain a set of 17.4’-long slits - >40 times longer than the long slit of STIS. CETUS’ strategic objective is to serve the astronomical community as a worthy successor to Hubble. Like Hubble, CETUS will make a reconnaissance of the UV universe to address a broad suite of scientific questions, including 9 of the 20 “Key Science Questions” posed by Astro2010. Although it is a probe-class mission concept, its science program includes all Hubble programs being carried out under the Hubble UV Initiative except those requiring extremely high angular resolution. The new capabilities