Report by the ESA–ESO Working Group on Extra-Solar Planets

Total Page:16

File Type:pdf, Size:1020Kb

Report by the ESA–ESO Working Group on Extra-Solar Planets Report by the ESA–ESO Working Group on Extra-Solar Planets 4 March 2005 Summary Various techniques are being used to search for extra-solar planetary signatures, including accurate measurement of radial velocity and positional (astrometric) dis- placements, gravitational microlensing, and photometric transits. Planned space experiments promise a considerable increase in the detections and statistical know- ledge arising especially from transit and astrometric measurements over the years 2005–15, with some hundreds of terrestrial-type planets expected from transit mea- surements, and many thousands of Jupiter-mass planets expected from astrometric measurements. Beyond 2015, very ambitious space (Darwin/TPF) and ground (OWL) experiments are targeting direct detection of nearby Earth-mass planets in the habitable zone and the measurement of their spectral characteristics. Beyond these, ‘Life Finder’ (aiming to produce confirmatory evidence of the presence of life) and ‘Earth Imager’ (some massive interferometric array providing resolved images of a distant Earth) arXiv:astro-ph/0506163v1 8 Jun 2005 appear as distant visions. This report, to ESA and ESO, summarises the direction of exo-planet research that can be expected over the next 10 years or so, identifies the roles of the major facilities of the two organisations in the field, and concludes with some recommendations which may assist development of the field. The report has been compiled by the Working Group members and experts (page iii) over the period June–December 2004. Introduction & Background Following an agreement to cooperate on science planning issues, the executives of the European Southern Observatory (ESO) and the European Space Agency (ESA) Science Programme and representatives of their science advisory structures have met to share information and to identify potential synergies within their future projects. The agreement arose from their joint founding membership of EIROforum (http://www.eiroforum.org) and a recognition that, as pan-European organisations, they served essentially the same scientific community. At a meeting at ESO in Garching during September 2003, it was agreed to estab- lish a number of working groups that would be tasked to explore these synergies in important areas of mutual interest and to make recommendations to both organisa- tions. The chair and co-chair of each group were to be chosen by the executives but thereafter, the groups would be free to select their membership and to act indepen- dently of the sponsoring organisations. The first working group to be established was on the topic of Extra-Solar Planet research, both detection and physical study, over a period extending from now until around 2015. The group worked on its report from June until December 2004 and reported its conclusions and recommendations to a second ESA-ESO meeting, held at ESA HQ in Paris in February 2005. Terms of Reference and Composition The goals set for the working group were to provide: A survey of the field: this will comprise: (a) a review of the methods used • or envisaged for extra-solar planet detection and study; (b) a survey of the associated instrumentation world-wide (operational, planned, or proposed, on- ground and in space); (c) for each, a summary of the potential targets, accuracy and sensitivity limits, and scientific capabilities and limitations. An examination of the role of ESO and ESA facilities: this will: (a) identify • areas in which current and planned ESA and ESO facilities will contribute; (b) analyse the expected scientific returns and risks of each; (c) identify areas of potential scientific overlap, and thus assess the extent to which the facilities complement or compete; (d) identify open areas which merit attention by one or both organisations (for example, follow-up observations by ESO to maximise the return from other major facilities); (e) conclude on the scientific case for the very large facilities planned or proposed. ii The working group membership was established by the chair and co-chair: the re- port is not a result of consultation with the community as a whole. The experts contributed considerable information for the report, but the conclusions and recom- mendations are the responsibility of the members. Chair: Michael Perryman ESA Co-Chair: Olivier Hainaut ESO Members: Dainis Dravins Lund Alain L´eger IAS Andreas Quirrenbach Leiden Heike Rauer DLR ECF support: Florian Kerber ESO–ECF Bob Fosbury ESA–ECF Experts: Fran¸cois Bouchy OHP Marseilles COROT Fabio Favata ESA Eddington Malcolm Fridlund ESA Darwin Roberto Gilmozzi ESO OWL Anne-Marie Lagrange LAOG Grenoble Planet Finder Tsevi Mazeh Tel Aviv Transits Daniel Rouan Obs de Paris-Meudon Genie Stephane Udry Gen`eve Radial velocity Joachim Wambsganss Heidelberg Microlensing Catherine Cesarsky (ESO) Alvaro´ Gim´enez Ca˜nete (ESA) March 2005 iii Contents 1 Survey of the Field 1 1.1 Introduction................................ 1 1.2 The Search for Earth-Mass Planets and Habitability . 2 1.3 PresentLimits:GroundandSpace . 5 2 The Period 2005–2015 9 2.1 GroundObservations: 2005–2015 . 9 2.1.1 Radial Velocity Searches . 9 2.1.2 TransitSearches.......................... 12 2.1.3 ReflectedLight .......................... 17 2.1.4 Microlensing Searches . 17 2.1.5 Astrometry ............................ 20 2.1.6 DirectDetection ......................... 22 2.1.7 OtherSearches .......................... 27 2.2 SpaceObservations: 2005–2015 . 28 2.2.1 Space Transit Measurements: COROT, Kepler and Eddington 28 2.2.2 SpaceAstrometryMissions: GaiaandSIM . 30 2.2.3 Space-BasedMicrolensing: MPF. 32 2.2.4 Other Space Missions: JWST, Spitzer, SOFIA . 34 2.3 SummaryofProspects2005–2015 . 38 3 The Period 2015–2025 40 3.1 GroundObservations: 2015–2025 . 40 3.1.1 OWL/ELT ............................ 40 3.1.2 ObservationsatanAntarcticSite . 44 3.2 SpaceObservations: 2015–2025 . 48 3.2.1 Darwin............................... 48 iv 3.2.2 The Darwin Ground-Based Precursor: GENIE . 51 3.2.3 TerrestrialPlanetFinder(TPF) . 52 3.3 ESAThemes:2015–2025. .. .. 53 3.4 OtherConceptsandFuturePlans . 56 3.5 SummaryofProspects: 2015–2025. 57 4 The Role of ESO and ESA Facilities 59 4.1 TheExpectedDirectionofResearch. 59 4.2 Follow-UpObservations . .. .. 60 4.2.1 High-MassPlanets ........................ 60 4.2.2 Low-MassPlanets......................... 62 4.2.3 Summary of Follow-Up Facilities Required . 63 4.3 Statistics of Exo-Planets: Implications for Darwin/OWL . 64 4.4 Astrophysical Characterisation of Host Stars . .. 65 4.4.1 ADedicatedSpectralSurvey. 65 4.5 PotentialOverlapandCompetition . 66 4.6 Open Areas: Survey Mission Beyond Kepler/Eddington . 68 4.7 OtherConsiderations........................... 68 4.7.1 FundamentalPhysicalData . 68 4.7.2 FundamentalPlanetaryData . 69 4.7.3 AmateurNetworks ........................ 69 5 Recommendations 72 Appendices 75 A Space Precursors: Interferometers, Coronographs and Apodizers 75 B Beyond 2025: Life Finder and Planet Imager 77 C ESO 1997 Working Group on Extra-Solar Planets 79 v vi 1 Survey of the Field 1.1 Introduction The field of exo-planet research has exploded dramatically since the discovery of the first such systems in 1995. Underlying this huge interest three main themes of exo-planet research can be identified: (a) characterising and understanding the planetary populations in our Galaxy; (b) understanding the formation and evolution of planetary systems (e.g., accretion, migration, interaction, mass-radius relation, albedo, distribution, host star properties, etc.); (c) the search for and study of biological markers in exo-planets, with resolved imaging and the search for intelligent life as ‘ultimate’ and much more distant goals. Detection methods for extra-solar planets can be broadly classified into those based on: (i) dynamical effects (radial velocity, astrometry, or timing in the case of the pul- sar planets); (ii) microlensing (astrometric or photometric); (iii) photometric signals (transits and reflected light); (iv) direct imaging from ground or space in the optical or infrared; and (v) miscellaneous effects (such as magnetic superflares, or radio emission). Each have their strengths, and advances in each field will bring specific and often complementary discovery and diagnostic capabilities. Detections are a pre-requisite for the subsequent steps of detailed physical-chemical characterisation demanded by the emerging discipline of exo-planetology. As of December 2004, 135 extra-solar planets have been discovered from their ra- dial velocity signature, comprising 119 systems of which 12 are double and 2 are triple. One of these planets has also been observed to transit the parent star. Four additional confirmed planets have been discovered through transit detections using data from OGLE (and confirmed through radial velocity measurements), and one, TrES-1, using a small 10-cm ground-based telescope. One further, seemingly reli- able, planet candidate has been detected through its microlensing signature. The planets detected to date (apart from those surrounding radio pulsars, which are not considered further in this report) are primarily ‘massive’ planets, of order 1 MJ, but extending down to perhaps 0.05 MJ (around 15 M⊕) for three short-period systems, although the inclination (and hence true mass) of two of these is unknown1. Detection methods considered to date are summarised in Figure 1, which also gives an indication of the lower mass limits which are likely to be reached in the foreseeable future for each method. More information and ongoing projects
Recommended publications
  • Michael Garcia Hubble Space Telescope Users Committee (STUC)
    Hubble Space Telescope Users Committee (STUC) April 16, 2015 Michael Garcia HST Program Scientist [email protected] 1 Hubble Sees Supernova Split into Four Images by Cosmic Lens 2 NASA’s Hubble Observations suggest Underground Ocean on Jupiter’s Largest Moon Ganymede file:///Users/ file:///Users/ mrgarci2/Desktop/mrgarci2/Desktop/ hs-2015-09-a-hs-2015-09-a- web.jpg web.jpg 3 NASA’s Hubble detects Distortion of Circumstellar Disk by a Planet 4 The Exoplanet Travel Bureau 5 TESS Transiting Exoplanet Survey Satellite CURRENT STATUS: • Downselected April 2013. • Major partners: - PI and science lead: MIT - Project management: NASA GSFC - Instrument: Lincoln Laboratory - Spacecraft: Orbital Science Corp • Agency launch readiness date NLT June 2018 (working launch date August 2017). • High-Earth elliptical orbit (17 x 58.7 Earth radii). Standard Explorer (EX) Mission PI: G. Ricker (MIT) • Development progressing on plan. Mission: All-Sky photometric exoplanet - Systems Requirement Review (SRR) mapping mission. successfully completed on February Science goal: Search for transiting 12-13, 2014. exoplanets around the nearby, bright stars. Instruments: Four wide field of view (24x24 - Preliminary Design Review (PDR) degrees) CCD cameras with overlapping successfully completed Sept 9-12, 2014. field of view operating in the Visible-IR - Confirmation Review, for approval to enter spectrum (0.6-1 micron). implementation phase, successfully Operations: 3-year science mission after completed October 31, 2014. launch. - Mission CDR on track for August 2015 6 JWST Hardware Progress JWST remains on track for an October 2018 launch within its replan budget guidelines 7 WFIRST / AFTA Widefield Infrared Survey Telescope with Astrophysics Focused Telescope Assets Coronagraph Technology Milestones Widefield Detector Technology Milestones 1 Shaped Pupil mask fabricated with reflectivity of 7/21/14 1 Produce, test, and analyze 2 candidate 7/31/14 -4 10 and 20 µm pixel size.
    [Show full text]
  • Planetas Extrasolares
    Local Extrasolar Planets Universidad Andres Bello ESO Vitacura 4 June 2015 Foto: Dante Joyce Minniti Pullen The big picture 1. Increase human resources and networks for national Astronomy 2. Develop new areas of research and do quality science 3. Promote science in Chile Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers Wolfgang Gieren Maria Teresa Ruiz Grzegorz Pietrzynski Dante Minniti School on Extrasolar Planets and Brown Dwarfs Santiago, 2003 Invited Lecturers: Michel Mayor, Scott Tremaine, Gill Knapp, France Allard Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti It is all about time... Telescope time is the most precious... Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers Wolfgang Gieren Maria Teresa Ruiz Grzegorz Pietrzynski Dante Minniti The first exoplanet for us: M. Konacki, G. Torres, D. D. Sasselov, G. Pietrzynski, A. Udalski, S. Jha, M. T. Ruiz, W. Gieren, & D. Minniti, “A Transiting Extrasolar Giant Planet Around the Star OGLE-TR-113'', 2004, ApJ, 609, L37” Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers Paul Butler Debra Fischer Dante Minniti The First Planets from the N2K Consortium Fischer et al., ``A Hot Saturn Planet Orbiting HD 88133, from the N2K Consortium", 2005, The Astrophysical Journal, 620, 481 Sato, et al., ``The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core", 2005, The Astrophysical Journal, 633, 465 Universidad Andres Bello ESO Vitacura 4 June 2015 Dante Minniti The Pioneers
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Copyrighted Material
    Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED
    [Show full text]
  • Miniature Exoplanet Radial Velocity Array I: Design, Commissioning, and Early Photometric Results
    Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results Jonathan J. Swift Steven R. Gibson Michael Bottom Brian Lin John A. Johnson Ming Zhao Jason T. Wright Paul Gardner Nate McCrady Emilio Falco Robert A. Wittenmyer Stephen Criswell Peter Plavchan Chantanelle Nava Reed Riddle Connor Robinson Philip S. Muirhead David H. Sliski Erich Herzig Richard Hedrick Justin Myles Kevin Ivarsen Cullen H. Blake Annie Hjelstrom Jason Eastman Jon de Vera Thomas G. Beatty Andrew Szentgyorgyi Stuart I. Barnes Downloaded From: http://astronomicaltelescopes.spiedigitallibrary.org/ on 05/21/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx Journal of Astronomical Telescopes, Instruments, and Systems 1(2), 027002 (Apr–Jun 2015) Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results Jonathan J. Swift,a,*,† Michael Bottom,a John A. Johnson,b Jason T. Wright,c Nate McCrady,d Robert A. Wittenmyer,e Peter Plavchan,f Reed Riddle,a Philip S. Muirhead,g Erich Herzig,a Justin Myles,h Cullen H. Blake,i Jason Eastman,b Thomas G. Beatty,c Stuart I. Barnes,j,‡ Steven R. Gibson,k,§ Brian Lin,a Ming Zhao,c Paul Gardner,a Emilio Falco,l Stephen Criswell,l Chantanelle Nava,d Connor Robinson,d David H. Sliski,i Richard Hedrick,m Kevin Ivarsen,m Annie Hjelstrom,n Jon de Vera,n and Andrew Szentgyorgyil aCalifornia Institute of Technology, Departments of Astronomy and Planetary Science, 1200 E. California Boulevard, Pasadena, California 91125, United States bHarvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States cThe Pennsylvania State University, Department of Astronomy and Astrophysics, Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, University Park, Pennsylvania 16802, United States dUniversity of Montana, Department of Physics and Astronomy, 32 Campus Drive, No.
    [Show full text]
  • Astrophysics with New Horizons: Making the Most of a Generational Opportunity
    Draft version October 3, 2018 Typeset using LATEX twocolumn style in AASTeX62 Astrophysics with New Horizons: Making the Most of a Generational Opportunity Michael Zemcov,1, 2 Iair Arcavi,3, 4 Richard Arendt,5 Etienne Bachelet,6 Ranga Ram Chary,7 Asantha Cooray,8 Diana Dragomir,9 Richard Conn Henry,10 Carey Lisse,11 Shuji Matsuura,12, 13 Jayant Murthy,14 Chi Nguyen,1 Andrew R. Poppe,15 Rachel Street,6 and Michael Werner16 1Center for Detectors, School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA 2Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 3Einstein Fellow at the Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA 4Las Cumbres Observatory, 6740 Cortona Drive, Suite 102, Goleta, CA 93117-5575, USA 5CRESST II/UMBC Observational Cosmology Laboratory, Code 665, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 6Las Cumbres Observatory, 6740 Cortona Dr Ste 102, Goleta, CA 93117-5575, USA 7U. S. Planck Data Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA 8Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA 9NASA Hubble Fellow, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 10Henry A. Rowland Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA 11Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD
    [Show full text]
  • New Constraints on the Membership of the T Dwarf S Ori 70 in the Σ Orionis Cluster
    A&A 477, 895–900 (2008) Astronomy DOI: 10.1051/0004-6361:20078600 & c ESO 2008 Astrophysics New constraints on the membership of the T dwarf S Ori 70 in the σ Orionis cluster M. R. Zapatero Osorio1,V.J.S.Béjar1,G.Bihain1,2, E. L. Martín1,3,R.Rebolo1,2, I. Villó-Pérez4, A. Díaz-Sánchez5, A. Pérez Garrido5, J. A. Caballero6, T. Henning6, R. Mundt6, D. Barrado y Navascués7, and C. A. L. Bailer-Jones6 1 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain e-mail: [email protected] 2 Consejo Superior de Investigaciones Científicas, Spain 3 University of Central Florida, Department of Physics, PO Box 162385, Orlando, FL 32816, USA 4 Departamento de Electrónica, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain 5 Departamento de Física Aplicada, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain 6 Max-Planck Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 7 LAEFF-INTA, PO 50727, 28080 Madrid, Spain Received 2 September 2007 / Accepted 10 October 2007 ABSTRACT Aims. The nature of S Ori 70 (S Ori J053810.1−023626), a faint mid-T type object found towards the direction of the young σ Orionis cluster, is still under debate. We intend to find out whether it is a field brown dwarf or a 3-Myr old planetary-mass member of the cluster. Methods. We report on near-infrared JHKs and mid-infrared [3.6] and [4.5] IRAC/Spitzer photometry recently obtained for S Ori 70. The new near-infrared images (taken 3.82 yr after the discovery data) allowed us to derive the first proper motion measurement for this object.
    [Show full text]
  • Using the Microlensing Technique, Astronomers Discover an Earth-Like Planet Outside Our Solar System
    S&TR July/August 2006 11 Using the microlensing technique, astronomers discover an Earth-like planet outside our solar system. OOKING out to the vastness of the L night sky, stargazers often ponder questions about the universe, many wondering if planets like ours can be found somewhere out there. But teasing out the details in astronomical data that point to a possible Earth-like planet is exceedingly difficult. To find an extrasolar planet—a planet that circles a star other than the Sun— astrophysicists have in the past searched for Doppler shifts, changes in the wavelength emitted by an object because of its motion. When an astronomical object moves toward an observer on Earth, the light it emits becomes higher in frequency and shifts to the blue end of the spectrum. When the object moves away from the observer, its light becomes lower in frequency and shifts to the red end. By measuring these changes in wavelength, astrophysicists can precisely calculate how quickly objects are moving toward or away from Earth. When This artist’s rendition shows the Earth-like extrasolar planet discovered in 2005. (Reprinted courtesy of the European Southern Observatory.) Lawrence Livermore National Laboratory 12 An Earth-Like Extrasolar Planet S&TR July/August 2006 a giant planet orbits a star, the planet’s About the New Planet we consider the number of stars out there,” gravitational pull on the star produces a According to Livermore astrophysicist Cook says, “the fact that we stumbled on small (meters-per-second) back-and-forth Kem Cook, OGLE-2005-BLG-290-Lb is a one small planet means that thousands Doppler shift in the star’s light.
    [Show full text]
  • Euclid: Superluminous Supernovae in the Deep Survey? C
    A&A 609, A83 (2018) Astronomy DOI: 10.1051/0004-6361/201731758 & c ESO 2018 Astrophysics Euclid: Superluminous supernovae in the Deep Survey? C. Inserra1; 2, R. C. Nichol3, D. Scovacricchi3, J. Amiaux4, M. Brescia5, C. Burigana6; 7; 8, E. Cappellaro9, C. S. Carvalho30, S. Cavuoti5; 11; 12, V. Conforti13, J.-C. Cuillandre4; 14; 15, A. da Silva10; 16, A. De Rosa13, M. Della Valle5; 17, J. Dinis10; 16, E. Franceschi13, I. Hook18, P. Hudelot19, K. Jahnke20, T. Kitching21, H. Kurki-Suonio22, I. Lloro23, G. Longo11; 12, E. Maiorano13, M. Maris24, J. D. Rhodes25, R. Scaramella26, S. J. Smartt2, M. Sullivan1, C. Tao27; 28, R. Toledo-Moreo29, I. Tereno16; 30, M. Trifoglio13, and L. Valenziano13 (Affiliations can be found after the references) Received 11 August 2017 / Accepted 3 October 2017 ABSTRACT Context. In the last decade, astronomers have found a new type of supernova called superluminous supernovae (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z ∼ 4 and therefore, offer the possibility of probing the distant Universe. Aims. We aim to investigate the possibility of detecting SLSNe-I using ESA’s Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission. Methods. We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS.
    [Show full text]
  • ARIEL – 13Th Appleton Space Conference PLANETS ARE UBIQUITOUS
    Background image credit NASA ARIEL – 13th Appleton Space Conference PLANETS ARE UBIQUITOUS OUR GALAXY IS MADE OF GAS, STARS & PLANETS There are at least as many planets as stars Cassan et al, 2012; Batalha et al., 2015; ARIEL – 13th Appleton Space Conference 2 EXOPLANETS TODAY: HUGE DIVERSITY 3700+ PLANETS, 2700 PLANETARY SYSTEMS KNOWN IN OUR GALAXY ARIEL – 13th Appleton Space Conference 3 HUGE DIVERSITY: WHY? FORMATION & EVOLUTION PROCESSES? MIGRATION? INTERACTION WITH STAR? Accretion Gaseous planets form here Interaction with star Planet migration Ices, dust, gas ARIEL – 13th Appleton Space Conference 4 STAR & PLANET FORMATION/EVOLUTION WHAT WE KNOW: CONSTRAINTS FROM OBSERVATIONS – HERSCHEL, ALMA, SOLAR SYSTEM Measured elements in Solar system ? Image credit ESA-Herschel, ALMA (ESO/NAOJ/NRAO), Marty et al, 2016; André, 2012; ARIEL – 13th Appleton Space Conference 5 THE SUN’S PLANETS ARE COLD SOME KEY O, C, N, S MOLECULES ARE NOT IN GAS FORM T ~ 150 K Image credit NASA Juno mission, NASA Galileo ARIEL – 13th Appleton Space Conference 6 WARM/HOT EXOPLANETS O, C, N, S (TI, VO, SI) MOLECULES ARE IN GAS FORM Atmospheric pressure 0.01Bar H2O gas CO2 gas CO gas CH4 gas HCN gas TiO gas T ~ 500-2500 K Condensates VO gas H2S gas 1 Bar Gases from interior ARIEL – 13th Appleton Space Conference 7 CHEMICAL MEASUREMENTS TODAY SPECTROSCOPIC OBSERVATIONS WITH CURRENT INSTRUMENTS (HUBBLE, SPITZER,SPHERE,GPI) • Precision of 20 ppm can be reached today by Hubble-WFC3 • Current data are sparse, instruments not absolutely calibrated • ~ 40 planets analysed
    [Show full text]
  • Stsci Newsletter: 2011 Volume 028 Issue 02
    National Aeronautics and Space Administration Interacting Galaxies UGC 1810 and UGC 1813 Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) 2011 VOL 28 ISSUE 02 NEWSLETTER Space Telescope Science Institute We received a total of 1,007 proposals, after accounting for duplications Hubble Cycle 19 and withdrawals. Review process Proposal Selection Members of the international astronomical community review Hubble propos- als. Grouped in panels organized by science category, each panel has one or more “mirror” panels to enable transfer of proposals in order to avoid conflicts. In Cycle 19, the panels were divided into the categories of Planets, Stars, Stellar Rachel Somerville, [email protected], Claus Leitherer, [email protected], & Brett Populations and Interstellar Medium (ISM), Galaxies, Active Galactic Nuclei and Blacker, [email protected] the Inter-Galactic Medium (AGN/IGM), and Cosmology, for a total of 14 panels. One of these panels reviewed Regular Guest Observer, Archival, Theory, and Chronology SNAP proposals. The panel chairs also serve as members of the Time Allocation Committee hen the Cycle 19 Call for Proposals was released in December 2010, (TAC), which reviews Large and Archival Legacy proposals. In addition, there Hubble had already seen a full cycle of operation with the newly are three at-large TAC members, whose broad expertise allows them to review installed and repaired instruments calibrated and characterized. W proposals as needed, and to advise panels if the panelists feel they do not have The Advanced Camera for Surveys (ACS), Cosmic Origins Spectrograph (COS), the expertise to review a certain proposal. Fine Guidance Sensor (FGS), Space Telescope Imaging Spectrograph (STIS), and The process of selecting the panelists begins with the selection of the TAC Chair, Wide Field Camera 3 (WFC3) were all close to nominal operation and were avail- about six months prior to the proposal deadline.
    [Show full text]
  • Cosmic Evolution Through Uv Surveys (Cetus) Final Report
    COSMIC EVOLUTION THROUGH UV SURVEYS (CETUS) FINAL REPORT Thematic Activity: Project (probe mission concept) Program: Electromagnetic observations from space Authors of Final Report: Jonathan Arenberg, Northrop Grumman Corporation Sally Heap, Univ. of Maryland, [email protected] Tony Hull, Univ. of New Mexico Steve Kendrick, Kendrick Aerospace Consulting LLC Bob Woodruff, Woodruff Consulting Scientific Contributors: Maarten Baes, Rachel Bezanson, Luciana Bianchi, David Bowen, Brad Cenko, Yi-Kuan Chiang, Rachel Cochrane, Mike Corcoran, Paul Crowther, Simon Driver, Bill Danchi, Eli Dwek, Brian Fleming, Kevin France, Pradip Gatkine, Suvi Gezari, Lea Hagen, Chris Hayward, Matthew Hayes, Tim Heckman, Edmund Hodges-Kluck, Alexander Kutyrev, Thierry Lanz, John MacKenty, Steve McCandliss, Harvey Moseley, Coralie Neiner, Goren Östlin, Camilla Pacifici, Marc Rafelski, Bernie Rauscher, Jane Rigby, Ian Roederer, David Spergel, Dan Stark, Alexander Szalay, Bryan Terrazas, Jonathan Trump, Arjun van der Wel, Sylvain Veilleux, Kate Whitaker, Isak Wold, Rosemary Wyse Technical Contributors: Jim Burge, Kelly Dodson, Chip Eckles, Brian Fleming, Jamie Kennea, Gerry Lemson, John MacKenty, Steve McCandliss, Greg Mehle, Shouleh Nikzad, Trent Newswander, Lloyd Purves, Manuel Quijada, Ossy Siegmund, Dave Sheikh, Phil Stahl, Ani Thakar, John Vallerga, Marty Valente, the Goddard IDC/MDL. September 2019 Cosmic Evolution Through UV Surveys (CETUS) TABLE OF CONTENTS INTRODUCTION TO CETUS ................................................................................................................
    [Show full text]