The Growth and Characterization of Gallium Arsenide Nanowire Structures by Metal Organic Chemical Vapor Deposition

Total Page:16

File Type:pdf, Size:1020Kb

The Growth and Characterization of Gallium Arsenide Nanowire Structures by Metal Organic Chemical Vapor Deposition The Growth and Characterization of Gallium Arsenide Nanowire Structures by Metal Organic Chemical Vapor Deposition DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Nicholas G. Minutillo Graduate Program in Physics The Ohio State University 2014 Dissertation Committee: Professor Fengyuan Yang, Advisor Professor Jay A. Gupta Professor Klaus Honscheid Professor Mohit Randeria Copyright by Nicholas Gaetano Minutillo 2014 Abstract Semiconductor nanowires hold a wealth of promise for studying the fundamental physics of electron behavior and interactions in a quasi-one dimensional environment as well as components in or the foundation of technological advancement in electronic and spintronic devices. Especially in the case of spintronic applications, the crystalline environment must be highly controlled. Unlike in electronic devices, predicated on the transport or storage of charges, spintronic devices often depend on relative phases of spin states. These phases are easily lost in an environment where scattering probabilities are high. In any material system, control of the material fabrication is the limiting factor to achieving the theoretical characteristics and operation. Still an active area of research, bottom-up synthesis of semiconductor nanowires has yet to reach the level of control required for wide spread adoption as a base system in condensed matter research. At this point in time, the material synthesis to meet the criteria for advanced applications remains a bottle neck in advancing the application of GaAs or any other semiconductor nanowires. In this dissertation we discuss the vapor-liquid-solid (VLS) mechanism and its role in the growth of gallium arsenide and other III-V semiconductors. The VLS mechanism has become a foundation of bottom-up nanowire growth. We will further discuss metal organic chemical vapor deposition (MOCVD), an epitaxial technique ii developed for III-V semiconductor thin films that has risen to prominence in the field of nanowire growth. The physics that governs the VLS growth of GaAs nanowires is the subject of ongoing research. We systematically analyze the effect of core-growth temperature on VLS, epitaxial GaAs/AlGaAs core/shell nanowires in MOCVD by photoluminescence characterization of nanowire ensembles as a function of core growth temperature. To our knowledge, a systematic study of the photoluminescence dependence on growth temperature prior to ours does not exist in the peer-reviewed literature. We demonstrate photoluminescence linewidths on ensembles of nanowires that are competitive with the best single-wire linewidths reported in the literature. We thus demonstrate wires of highly uniform characteristics across the entire growth surface. Our results also indicate that the effect of the core growth temperature is coupled to the crystal orientation of the substrate surface. At low growth temperatures, nanowires grown on a GaAs (100) surface exhibit a narrower photoluminescence peak at the band edge in a wider growth temperature window than do the wires grown on a GaAs (111)B surface. This is contrary to what might be expected given that all the wires grow in the <111> direction and display the same growth rate on both substrate surfaces. Under the conditions used, the window in growth temperature for a high optical quality gallium arsenide core nanowire is narrow compared to common conditions in thin film epitaxy by MOCVD. We discuss our methods for the successful growth of a novel nanowire device structure by MOCVD. We grow vertical GaAs nanowires and embedded them in a continuous film of AlGaAs. This structure has thus far only been reported in molecular iii beam epitaxy, which by its directional nature, more naturally lends itself growth in high aspect ratio channels. In addition to being relatively uncommon, this structure has several advantages. First, the 40 nm diameter GaAs nanowires are protected by the in situ AlGaAs growth. Second, the geometry allows the use of thin film techniques for device processing to easily control the number of wires to be activated in the device by simply changing the area of the patterned contact. Development of this nanowire-thin-film geometry opens the door for the study of parallel ensembles of nanowires and nanowire heterostructures. iv Dedication To Gaetano Minutillo and Anthony Laudati v Acknowledgments I must first thank my advisor, Professor Fengyuan Yang for his guidance, support, and patience as I navigated my way through graduate research. I am fortunate to have had the opportunity to work in his lab and learn about semiconductor physics and be granted access and exposure to many areas of semiconductor science in both the academic and industrial realm. Above all, I have learned that crystal growth requires a unique combination of determination, patience, impatience, and resilience. Many thanks to Professor Zeke Johnston-Halperin, who has treated me like one of his own students throughout our collaboration and who has been a provider of helpful insights and perspectives. Thank you to Dr. John Carlin who taught me not only about semiconductor physics, but about the industry as well. His perspective as a scientist who straddles and succeeds in both worlds of semiconductor science remains invaluable to me as I move forward. Thank you for answering your phone at 2 am to help me bring the MOCVD out of an alarm state. Thank you to Yi-Hsin Chiu, my longest and most patient collaborator at OSU. I thank her for all the conversations about physics and about life, for her level headed demeanor and for her tireless efforts to measure every sample I could throw at her. vi I would like to further thank all the scientists who have lent me their invaluable time and expertise for my own edification and to the data contained herein. Thank you to Rob Williams and Professor Dave McComb for working with us and imaging our nanowires with both of their best (and coolest) STEM instruments. Thank you also to Dr. Camelia Selcu, who began our conductive AFM and gave me her expert advice as we continue on with the technique on our own. Thank you for your patience and hard work. Thank you to Adam Hauser for always being a positive source of encouragement and acting as a role model worthy of emulation. Thanks to Brian Peters for our many late night/early morning conversations and helping me keep my sanity when things went awry. Thank you to Jeremy Lucy for having a remarkable strength of character. For saying what needs to be said, but also staying around to help fix whatever needs fixing, either broken instruments or broken morale. Thanks to James Gallagher for his unique and always sincere perspective. Thanks to Hailong who has proven the value of relentless hard work. Thank you to Greg Smith for his contributions to both this project and myself as a scientist. I wish you all the best in your new group and I hope that you carry with you the tradition of bad jokes I have tried so hard to instill. Thank you to Mark Patrick, Megan Harberts, Ula Szafruga, Yaser Helal, and Richelle Teeling-Smith for your friendships throughout this journey we call graduate school. Thank you to Tricia Meyer for all of your loving support. Thank you for being the voice of calm, reason, and compassion when I needed it the most and seeing in me what I might otherwise not have seen myself. Thank you to Professor Paul Angiolillo for believing in me from the moment I said I wanted to study physics, halfway through my vii college career. Thank you for enabling me to make the step into graduate studies and for supporting me as a friend and a mentor the entire way. Thank you to Andrzej Latka for going on this adventure with me, for pushing me outside of my comfort zone, and for being the most loyal and true friend a person could hope to find. Finally thank you to my parents Angelo and Mary Ann and my sister Madeleine for supporting me in this and every chapter of my life. I could not have made it this far without your love and support, help through the growing pains and the triumphs. Thank you for keeping me grounded and giving me the confidence to push through the tough times. Thank you for helping me put everything in the proper perspective and allowing me to believe that my aspirations are possible. Above all thank you to my parents for every sacrifice you have made to provide us the environment and opportunity to achieve whatever level of education or career path we most desire. viii Vita May 2004 .......................................................Saint Joseph’s Preparatory School December 2008 ..............................................B.S. Physics, Saint Joseph’s University August 2011 ...................................................M.S. Physics, The Ohio State University September 2009 to June 2009 .......................Graduate Teaching Associate, Department of Physics, The Ohio State University June 2009 to August 2013 .............................Graduate Research Associate, Department of Physics, The Ohio State University September 2013 to present ............................Graduate Teaching Associate, Department of Physics, The Ohio State University ix Publications Nicholas G. Minutillo, Yi-Hsin Chiu, Robert E.A. Williams, Greg J. Smith, David W. McComb, John A. Carlin, Ezekiel Johnston-Halperin, Fengyuan Yang, Photoluminescence and Morphology Evolution in GaAs/AlGaAs Core/Shell Nanowires Grown by MOCVD: Effects of Core Growth Temperature – Submitted Fields
Recommended publications
  • Comparison of Trimethylgallium and Triethylgallium As “Ga” Source
    Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma- assisted atomic layer deposition Mustafa AlevliAli Haider, Seda Kizir, Shahid A. Leghari, and Necmi Biyikli Citation: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 34, 01A137 (2016); doi: 10.1116/1.4937725 View online: http://dx.doi.org/10.1116/1.4937725 View Table of Contents: http://avs.scitation.org/toc/jva/34/1 Published by the American Vacuum Society Articles you may be interested in Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 34, 01A12501A125 (2015); 10.1116/1.4936230 Atomic layer deposition of GaN at low temperatures Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 30, 01A12401A124 (2011); 10.1116/1.3664102 Low-temperature self-limiting atomic layer deposition of wurtzite InN on Si(100) Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 6, 045203045203 (2016); 10.1063/1.4946786 Kinetics of thermal decomposition of triethylgallium, trimethylgallium, and trimethylindium adsorbed on GaAs(100) Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 9, (1998); 10.1116/1.577146 Substrate impact on the low-temperature growth of GaN thin films by plasma-assisted atomic layer deposition Journal of Vacuum Science & Technology A: Vacuum, Surfaces,
    [Show full text]
  • DFB Lasers Between 760 Nm and 16 Μm for Sensing Applications
    Sensors 2010, 10, 2492-2510; doi:10.3390/s100402492 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review DFB Lasers Between 760 nm and 16 µm for Sensing Applications Wolfgang Zeller *, Lars Naehle, Peter Fuchs, Florian Gerschuetz, Lars Hildebrandt and Johannes Koeth nanoplus Nanosystems and Technologies GmbH, Oberer Kirschberg 4, 97218 Gerbrunn, Germany; E-Mails: [email protected] (L.N.); [email protected] (P.F.); [email protected] (F.G.); [email protected] (L.H.); [email protected] (J.K.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-931-90827-10; Fax: +49-931-90827-19. Received: 20 January 2010; in revised form: 22 February 2010 / Accepted: 6 March 2010 / Published: 24 March 2010 Abstract: Recent years have shown the importance of tunable semiconductor lasers in optical sensing. We describe the status quo concerning DFB laser diodes between 760 nm and 3,000 nm as well as new developments aiming for up to 80 nm tuning range in this spectral region. Furthermore we report on QCL between 3 µm and 16 µm and present new developments. An overview of the most interesting applications using such devices is given at the end of this paper. Keywords: DFB; laser; QCL; sensing Classification: PACS 42.55.Px; 42.62.Fi; 42.62.-b 1. Introduction In recent years the importance of lasers in optical sensing has been continuously increasing [1]. Many apparatus use long-known techniques like fluorescence measurements after excitation by photons, e.g., to detect petroleum contamination in soils [2].
    [Show full text]
  • Arxiv:1010.1610V1 [Physics.Ins-Det] 8 Oct 2010 Ai Mouneyrac, David Emndtetm Osat O H Rpigadde- and Illumination
    Detrapping and retrapping of free carriers in nominally pure single crystal GaP, GaAs and 4H-SiC semiconductors under light illumination at cryogenic temperatures David Mouneyrac,1,2 John G. Hartnett,1 Jean-Michel Le Floch,1 Michael E. Tobar,1 Dominique Cros,2 Jerzy Krupka3∗ 1School of Physics, University of Western Australia 35 Stirling Hwy, Crawley 6009 WA Australia 2Xlim, UMR CNRS 6172, 123 av. Albert Thomas, 87060 Limoges Cedex - France 3Institute of Microelectronics and Optoelectronics Department of Electronics, Warsaw University of Technology, Warsaw, Poland (Dated: October 27, 2018) We report on extremely sensitive measurements of changes in the microwave properties of high purity non-intentionally-doped single-crystal semiconductor samples of gallium phosphide, gallium arsenide and 4H-silicon carbide when illuminated with light of different wavelengths at cryogenic temperatures. Whispering gallery modes were excited in the semiconductors whilst they were cooled on the coldfinger of a single-stage cryocooler and their frequencies and Q-factors measured under light and dark conditions. With these materials, the whispering gallery mode technique is able to resolve changes of a few parts per million in the permittivity and the microwave losses as compared with those measured in darkness. A phenomenological model is proposed to explain the observed changes, which result not from direct valence to conduction band transitions but from detrapping and retrapping of carriers from impurity/defect sites with ionization energies that lay in the semicon- ductor band gap. Detrapping and retrapping relaxation times have been evaluated from comparison with measured data. PACS numbers: 72.20.Jv 71.20.Nr 77.22.-d I.
    [Show full text]
  • Basic Light Emitting Diodes
    The following is for information purposes only and comes with no warranty. See http://www.bristolwatch.com/ Light Emitting Diodes Light Emitting Diodes are made from compound type semiconductor materials such as Gallium Arsenide (GaAs), Gallium Phosphide (GaP), Gallium Arsenide Phosphide (GaAsP), Silicon Carbide (SiC) or Gallium Indium Nitride (GaInN). The exact choice of the semiconductor material used will determine the overall wavelength of the photon light emissions and therefore the resulting color of the light emitted, as in the case of the visible light colored LEDs, (RED, AMBER, GREEN etc). Before a light emitting diode can "emit" any form of light it needs a current to flow through it, as it is a current dependent device. As the LED is to be connected in a forward bias condition across a power supply it should be Current Limited using a series resistor to protect it from excessive current flow. From the table above we can see that each LED has its own forward voltage drop across the PN junction and this parameter which is determined by the semiconductor material used is the forward voltage drop for a given amount of forward conduction current, typically for a forward current of 20mA. In most cases LEDs are operated from a low voltage DC supply, with a series resistor to limit the forward current to a suitable value from say 5mA for a simple LED indicator to 30mA or more where a high brightness light output is needed. Typical LED Characteristics Semiconductor Material Wavelength Color voltage at 20mA GaAs 850-940nm Infra-Red 1.2v GaAsP 630-660nm Red 1.8v GaAsP 605-620nm Amber 2.0v GaAsP:N 585-595nm Yellow 2.2v GaP 550-570nm Green 3.5v SiC 430-505nm Blue 3.6v GaInN 450nm White 4.0v 1 Multi-LEDs LEDs are available in a wide range of shapes, colors and various sizes with different light output intensities available, with the most common (and cheapest to produce) being the standard 5mm Red LED.
    [Show full text]
  • The Low-Temperature Catalyzed Etching of Gallium Arsenide with Hydrogen Chloride Jeffrey L
    The low-temperature catalyzed etching of gallium arsenide with hydrogen chloride Jeffrey L. Dupuie and Erdogan Gulari Department of Chemical Engineering, The University of Michiggn, Ann Arbor, Michigan 48109 (Received 18 September 1991; accepted for publication 10 January 1992) A heated tungsten filament has been used to catalyze the gas phase etching of gallium arsenide with hydrogen chloride at a substrate temperature of 563 K. Rapid etch rates, between 1 and 3 microns per minute, were obtained in a pure hydrogen chloride ambient in the pressure range of 3.3 to 20.0 Pascal. Low flow rates of hydrogen quenched the etching reaction, and resulted in degradation of the quality of the etched gallium arsenide surface. Dilution of the hydrogen chloride to 10.5% in helium reduced the etch rate to 63 nanometers per minute. The removal of 83 nm of gallium arsenide with the helium-diluted gas mixture resulted in a specular surface. X-ray photoelectron spectroscopy indicated that the gallium arsenide surface became enriched in gallium after the etch in helium-diluted hydrogen chloride. No tungsten or other metal contamination on the etched gallium arsenide surface was detected by x-ray photoelectron spectroscopy. BACKGROUND We reported previously that high purity aluminum ni- tride and silicon nitride films could be deposited by low- Development of a dielectric deposition scheme for the pressure chemical vapor deposition (LPCVD) at low sub- fabrication of viable gallium arsenide metal-insulator- strate temperatures through the catalytic action of a heated semiconductor devices will probably include an in situ sur- filament.5’6 In this process, a heated tungsten filament is face pretreatment prior to dielectric deposition due to a used to decompose ammonia.
    [Show full text]
  • Organometallic Pnictogen Chemistry
    Institut für Anorganische Chemie 2014 Fakultät für Chemie und Pharmazie | Sabine Reisinger aus Regensburg, geb. Scheuermayer am 15.07.1983 Studium: Chemie, Universität Regensburg Abschluss: Diplom Promotion: Prof. Dr. Manfred Scheer, Institut für Anorganische Chemie Sabine Reisinger Die vorliegende Arbeit enthält drei Kapitel zu unterschiedlichen Aspekten der metallorganischen Phosphor- und Arsen-Chemie. Zunächst werden Beiträge zur supramolekularen Chemie mit 5 Pn-Ligandkomplexen basierend auf [Cp*Fe(η -P5)] und 5 i [Cp*Fe(η - Pr3C3P2)] gezeigt, gefolgt von der Eisen-vermittelten Organometallic Pnictogen Aktivierung von P4, die zu einer selektiven C–P-Bindungsknüpfung führt, während das dritte Kapitel die Verwendung von Phosphor Chemistry – Three Aspects und Arsen als Donoratome in mehrkernigen Komplexen mit paramagnetischen Metallionen behandelt. Sabine Reisinger 2014 Alumniverein Chemie der Universität Regensburg E.V. [email protected] http://www.alumnichemie-uniregensburg.de Aspects Three – Chemistry Pnictogen Organometallic Fakultät für Chemie und Pharmazie ISBN 978-3-86845-118-4 Universität Regensburg Universitätsstraße 31 93053 Regensburg www.uni-regensburg.de 9 783868 451184 4 Sabine Reisinger Organometallic Pnictogen Chemistry – Three Aspects Organometallic Pnictogen Chemistry – Three Aspects Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von Sabine Reisinger, geb. Scheuermayer Regensburg 2014 Die Arbeit wurde von Prof. Dr. Manfred Scheer angeleitet. Das Promotionsgesuch wurde am 20.06.2014 eingereicht. Das Kolloquium fand am 11.07.2014 statt. Prüfungsausschuss: Vorsitzender: Prof. Dr. Helmut Motschmann 1. Gutachter: Prof. Dr. Manfred Scheer 2. Gutachter: Prof. Dr. Henri Brunner weiterer Prüfer: Prof. Dr. Bernhard Dick Dissertationsreihe der Fakultät für Chemie und Pharmazie der Universität Regensburg, Band 4 Herausgegeben vom Alumniverein Chemie der Universität Regensburg e.V.
    [Show full text]
  • LOW LOSS ORIENTATION-PATTERNED GALLIUM ARSENIDE (Opgaas)
    LOW LOSS ORIENTATION-PATTERNED GALLIUM ARSENIDE (OPGaAs) WAVEGUIDES FOR NONLINEAR INFRARED FREQUENCY CONVERSION Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Electrical and Computer Engineering By Izaak Vincent Kemp Dayton, Ohio December 2012 LOW LOSS ORIENTATION-PATTERNED GALLIUM ARSENIDE (OPGaAs) WAVEGUIDES FOR NONLINEAR INFRARED FREQUENCY CONVERSION Name: Kemp, Izaak Vincent APPROVED BY: Dr. Andrew Sarangan Dr. Peter Powers Advisory Committee Chairman Committee Member Professor Professor Electrical and Computer Engineering Department of Physics Dr. Partha Banerjee Dr. Guru Subramanyam Committee Member Committee Member Professor Department Chair Electrical and Computer Engineering Electrical and Computer Engineering Dr. Rita Peterson Dr. Kenneth Schepler Committee Member Committee Member Adjunct Professor Adjunct Professor Electro-Optics Electro-Optics John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering &Wilke Distinguished Professor ii © Copyright by Izaak Vincent Kemp All rights reserved 2012 iii Distribution Statement A: Approved for public release, distribution is unlimited. This dissertation contains information regarding currently ongoing U.S. Department of Defense (DoD) research that has been approved for public release. Distribution of this dissertation is unlimited pursuant to DoD Directive 5230.24 subsection A4. Requests for further information may be referred to the author, Izaak V. Kemp AFRL/RYMWA. iv ABSTRACT LOW LOSS ORIENTATION-PATTERNED GALLIUM ARSENIDE (OPGaAs) WAVEGUIDES FOR NONLINEAR INFRARED FREQUENCY CONVERSION Name: Kemp, Izaak Vincent University of Dayton Advisor: Dr. Andrew Sarangan The mid-IR frequency band (λ = 2-5 μm) contains several atmospheric transmission windows making it a region of interest for a variety of medical, scientific, commercial, and military applications.
    [Show full text]
  • Gallium Arsenide and Related Compounds for Device Applications
    l 79 (1991 ACTA YSICA OOICA Α 1 oc I Ieaioa Scoo o Semicoucig Comous asowiec 199 GALLIUM ARSENIDE AND RELATED COMPOUNDS FOR DEVICE APPLICATIONS WOO Uiesiy o Yok e o Eecoics esigo Yok YO 5 UK A MOGA Uiesiy o Waes Coege o Cai Cai UK (eceie Augus 199θ e eice aicaios o gaium aseie a eae I— comou a aoy semicoucos ae eiewe A age o eecoic eices is escie a e cue sae o e a eomace is iicae o eac ye o eice e eices wic wi e escie ae asee eeco eices - as osciaos u o G GaAs MESEs — e wokose micowae soi sae eice some mooiic micowae iegae cicui /MMIC/ a eeoucio eices e use o moecua eam eiay ME o gow I- semicoucos wi gea coo oe e oig moe acio o e cosiues a e ickess o e eiaye as emie e cosucio o eices wi aomicay au ieaces ewee egios o iee o- ig a aoy e eecoic eices wic make use o suc au ee o -ucios icue ig eeco moiiy asisos eeoucio ioa asiso a ase ioes A ume o oe eices ase o muie aie a quaum we sucues is aso escie icuig esoa ueig eices ACS umes 7Ey 73Κρ 7s Intrdtn Gaium aseie a eae III- comous wee is iesigae as semicoucig maeias oe iy yeas ago e maeia oeies o ese comous ossess some oa simiaiies wi ose o a aceya semi- couco siico ey ae a simia cysaie sucue a e ieaomic oig is agey coae [1] u e III— comous wee aso ecogise o (97 9 Woo Mogα ei oica a eecoic oeies suc as a iec a ga a ig eeco moiiy a wee o ou i siico o gemaium ese oeies e e omise o ew a uique eices suc as ig eiciecy ig emies a ig sesos a ig see swicig eices ies wee siico cou o eaiy comee e easos ei ese eecoic a oica oeies a e cose- que iees i gaium aseie GaAs a simia III- comous ie i e eaie aue o ei eeco eegy a sucues akig GaAs as yica o III— semicoucos i wic we ae ieese Gallium arsenide has a direct energy band gap.
    [Show full text]
  • Gallium in 2017 (PDF)
    2017 Minerals Yearbook GALLIUM [ADVANCE RELEASE] U.S. Department of the Interior April 2020 U.S. Geological Survey Gallium By Brian W. Jaskula Domestic survey data and tables were prepared by Wanda G. Wooten, statistical assistant. Low-grade primary gallium was recovered globally as a gallium production was 5% from 2007 through 2017. World byproduct of processing bauxite and zinc ores. No domestic high-grade secondary refined gallium production increased at a low-grade primary gallium was recovered in 2017. Imports CAGR of 7%. World gallium consumption, which increased at of gallium metal and gallium arsenide (GaAs) wafers plus a CAGR of 6% from 2007 through 2017, was estimated to have domestically refined and recycled gallium continued to account been 355 t in 2017. for all U.S. gallium consumption (metal and gallium in GaAs). Metal imports were 93% higher than those in 2016 (table 1). Production The leading sources of imported gallium metal were, in No domestic production of low-grade primary gallium was descending order, China (including Hong Kong), the United reported in 2017. Neo Performance Materials Inc. (Canada) Kingdom, France, Ukraine, Russia, and the Republic of Korea recovered gallium from new scrap materials, predominantly (table 4). A significant portion of imports was thought to be those generated during the production of GaAs ingots and low-grade gallium that was refined in the United States and wafers. Neo’s facility in Blanding, UT, had the capability to shipped to other countries. Data on refined gallium exports, produce about 50 metric tons per year of high-grade gallium. however, were not available.
    [Show full text]
  • Download Article (PDF)
    Z. Kristallogr. 226 (2011) 435–446 / DOI 10.1524/zkri.2011.1363 435 # by Oldenbourg Wissenschaftsverlag, Mu¨nchen Structural chemistry of superconducting pnictides and pnictide oxides with layered structures Dirk JohrendtI, Hideo HosonoII, Rolf-Dieter HoffmannIII and Rainer Po¨ttgen*, III I Department Chemie und Biochemie, Ludwig-Maximilians-Universita¨t Mu¨nchen, Butenandtstraße 5–13 (Haus D), 81377 Mu¨nchen, Germany II Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan III Institut fu¨r Anorganische und Analytische Chemie, Universita¨t Mu¨nster, Corrensstraße 30, 48149 Mu¨nster, Germany Received October 29, 2010; accepted February 6, 2011 Pnictide / Pnictide oxide / Superconductivity / for hydride formation of CeRuSi ! CeRuSiH [6] and Intermetallics / Group-subgroup relation CeRuGe ! CeRuGeH [7]. The crystal chemical data of the huge number of ZrCuSiAs materials have recently Abstract. The basic structural chemistry of supercon- been reviewed [8]. ducting pnictides and pnictide oxides is reviewed. Crystal Although the basic crystallographic data of the many chemical details of selected compounds and group sub- ThCr2Si2 and ZrCuSiAs type compounds are known for group schemes are discussed with respect to phase transi- several years, especially for the ZrCuSiAs family, systema- tions upon charge-density formation, the ordering of va- tic property studies have been performed only recently. cancies, or the ordered displacements of oxygen atoms. These investigations mainly focused on p-type transparent Furthermore, the influences of doping and solid solutions semiconductors like LaCuSO (for a review see [9]) or the on the valence electron concentration are discussed in or- colored phosphide and arsenide oxides REZnPO [10] and der to highlight the structural and electronic flexibility of REZnAsO [11].
    [Show full text]
  • Characterization and Applications of Low-Temperature-Grown MBE Gallium
    AN ABSTRACT OF THE THESIS OF Pin Zhao for the degree of Master of Science in Materials Science through the Department of Electrical & Computer Engineering presented on January 14, 1994. Title:Characterization and Applications of Low-Temperature-Grown MBE Gallium Arsenide. Redacted for privacy Abstract approved: Thomas K. Plant Low-temperature (LT) MBE-grown GaAs material has recently been used for fast response, low dark current photodetectors.The material contains a high concentration of As precipitates which appear to act as spherical Schottky barriers with overlapping depletion regions making the GaAs semi-insulating. In this work, the electrical and optical characteristics of LT-GaAs are studied in p-i-n diodes, MSM photoconductors, and a new modulation-doped photoconductor using LT-GaAs grown at 225 °C, 300 °C, and 350 °C. The goal of this work was to measure the transport properties of LT-GaAs to resolve an ambiguity in the literature. Direct Hall mobility measurements proved unreliable due to high resistivity even in photoexcited samples. From the I-V behavior ofp-i-n diodes, an estimate of carrier lifetime ranging from 4 ps to 130 ps for growth temperatures from 225 °C to 350 °C was made. MSM photoconductors fabricated on the LT-GaAs showed sub-nanosecond response and no evidence of the long tail always found in MSM photodetectors on semi-insulating GaAs. The new modulation-doped LT-GaAs photoconductor shows a gain of 300, a mobility of 500 cm2 / Vs, and a response to wavelengths longer than 1500 nm. There appears to be both a transient, trap-related transport mechanism and a steady-state, recombination-related transport mechanism with significantly different properties.
    [Show full text]
  • Adduct Purification of Trimethylgallium Using 4-Dimethylaminopyridine
    International Journal of Advanced Science and Technology Vol. 41, April, 2012 Adduct Purification of Trimethylgallium using 4-Dimethylaminopyridine Selvakumar Dhanasingh1*, Rajendra Singh2 and Mohammed Nasim3 1Defence BioEngineering and Electromedical laboratory, C. V. Raman Nagar, Bangalore – 560 093, India 2Directorate of ER & IPR, DRDO Bhawan, Rajaji Marg, New Delhi – 110105, India 3Defence Materials & Stores Research and Development Establishment, DMSRDE P.O., G.T. Road, Kanpur – 208 013, India [email protected] Abstract 1:1 and 2:1 adducts of trimethylgallium (TMGa) with 4-dimethylaminopyridine (DMAP) were synthesized and characterized by 1H, 13C NMR, FAB-MS and Trace elemental analyses using ICP-MS. Both adducts are non-pyrophoric, thermally dissociable and easy to handle. FAB-MS study suggests that the adducts are associated in tetrameric forms. TMGa of purity more than 99.999% (5N) was released from these adducts, which shows the adducts are potential candidates to produce high pure metal alkyl sources for Metal-Organic Chemical Vapor Deposition (MOCVD). Keywords: Trimethylgallium, pyrophoric, MOCVD precursor, adduct purification technique 1. Introduction The electronic properties of II-VI and III-V compound semiconducting thin films deposited by MOCVD method are mainly determined by the purity of the precursors [1, 2]. As most of the metal alkyls for MOCVD are volatile and highly reactive pyrophoric liquids, the physical purification methods such as, fractional distillation and low temperature crystallization are difficult to employ and often large amount of metal alkyls need to be discarded to obtain them with high purity. However, these metal alkyls can be purified by ‘adduct purification technique’, which involves the formation of adducts between the metal alkyl with an appropriate Lewis base, which are easy to handle and can be purified by re- crystallization [3, 4, 5].
    [Show full text]