6Th Grade SS (Roman Innovations and Technological Advances)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Map 44 Latium-Campania Compiled by N
Map 44 Latium-Campania Compiled by N. Purcell, 1997 Introduction The landscape of central Italy has not been intrinsically stable. The steep slopes of the mountains have been deforested–several times in many cases–with consequent erosion; frane or avalanches remove large tracts of regolith, and doubly obliterate the archaeological record. In the valley-bottoms active streams have deposited and eroded successive layers of fill, sealing and destroying the evidence of settlement in many relatively favored niches. The more extensive lowlands have also seen substantial depositions of alluvial and colluvial material; the coasts have been exposed to erosion, aggradation and occasional tectonic deformation, or–spectacularly in the Bay of Naples– alternating collapse and re-elevation (“bradyseism”) at a staggeringly rapid pace. Earthquakes everywhere have accelerated the rate of change; vulcanicity in Campania has several times transformed substantial tracts of landscape beyond recognition–and reconstruction (thus no attempt is made here to re-create the contours of any of the sometimes very different forerunners of today’s Mt. Vesuvius). To this instability must be added the effect of intensive and continuous intervention by humanity. Episodes of depopulation in the Italian peninsula have arguably been neither prolonged nor pronounced within the timespan of the map and beyond. Even so, over the centuries the settlement pattern has been more than usually mutable, which has tended to obscure or damage the archaeological record. More archaeological evidence has emerged as modern urbanization spreads; but even more has been destroyed. What is available to the historical cartographer varies in quality from area to area in surprising ways. -
A Pre-Feasibility Study on Water Conveyance Routes to the Dead
A PRE-FEASIBILITY STUDY ON WATER CONVEYANCE ROUTES TO THE DEAD SEA Published by Arava Institute for Environmental Studies, Kibbutz Ketura, D.N Hevel Eilot 88840, ISRAEL. Copyright by Willner Bros. Ltd. 2013. All rights reserved. Funded by: Willner Bros Ltd. Publisher: Arava Institute for Environmental Studies Research Team: Samuel E. Willner, Dr. Clive Lipchin, Shira Kronich, Tal Amiel, Nathan Hartshorne and Shae Selix www.arava.org TABLE OF CONTENTS 1 INTRODUCTION 1 2 HISTORICAL REVIEW 5 2.1 THE EVOLUTION OF THE MED-DEAD SEA CONVEYANCE PROJECT ................................................................... 7 2.2 THE HISTORY OF THE CONVEYANCE SINCE ISRAELI INDEPENDENCE .................................................................. 9 2.3 UNITED NATIONS INTERVENTION ......................................................................................................... 12 2.4 MULTILATERAL COOPERATION ............................................................................................................ 12 3 MED-DEAD PROJECT BENEFITS 14 3.1 WATER MANAGEMENT IN ISRAEL, JORDAN AND THE PALESTINIAN AUTHORITY ............................................... 14 3.2 POWER GENERATION IN ISRAEL ........................................................................................................... 18 3.3 ENERGY SECTOR IN THE PALESTINIAN AUTHORITY .................................................................................... 20 3.4 POWER GENERATION IN JORDAN ........................................................................................................ -
CALIFORNIA AQUEDUCT SUBSIDENCE STUDY San Luis Field Division San Joaquin Field Division
State of California California Natural Resources Agency DEPARTMENT OF WATER RESOURCES Division of Engineering CALIFORNIA AQUEDUCT SUBSIDENCE STUDY San Luis Field Division San Joaquin Field Division June 2017 State of California California Natural Resources Agency DEPARTMENT OF WATER RESOURCES Division of Engineering CALIFORNIA AQUEDUCT SUBSIDENCE STUDY Jeanne M. Kuttel ......................................................................................... Division Chief Joseph W. Royer .......................... Chief, Geotechnical and Engineering Services Branch Tru Van Nguyen ............................... Supervising Engineer, General Engineering Section G. Robert Barry .................. Supervising Engineering Geologist, Project Geology Section by James Lopes ................................................................................ Senior Engineer, W.R. John M. Curless .................................................................. Senior Engineering Geologist Anna Gutierrez .......................................................................................... Engineer, W.R. Ganesh Pandey .................................................................... Supervising Engineer, W.R. assisted by Bradley von Dessonneck ................................................................ Engineering Geologist Steven Friesen ...................................................................... Engineer, Water Resources Dan Mardock .............................................................................. Chief, Geodetic -
Map of La Rioja Haro Wine Festival
TRAVEL AROUND SPAIN SPAIN Contents Introduction.................................................................6 General information......................................................7 Transports.................................................................10 Accommodation..........................................................13 Food.........................................................................15 Culture......................................................................16 Region by region and places to visit..............................18 Andalusia........................................................19 Aragon............................................................22 Asturias..........................................................25 Balearic Islands...............................................28 Basque Country................................................31 Canary Islands.................................................34 Cantabria........................................................37 Castille-La Mancha...........................................40 Castille and León.............................................43 Catalonia........................................................46 Ceuta.............................................................49 Extremadura....................................................52 Galicia............................................................55 La Rioja..........................................................58 Madrid............................................................61 -
9781107013995 Index.Pdf
Cambridge University Press 978-1-107-01399-5 — Rome Rabun Taylor , Katherine Rinne , Spiro Kostof Index More Information INDEX abitato , 209 , 253 , 255 , 264 , 273 , 281 , 286 , 288 , cura(tor) aquarum (et Miniciae) , water 290 , 319 commission later merged with administration, ancient. See also Agrippa ; grain distribution authority, 40 , archives ; banishment and 47 , 97 , 113 , 115 , 116 – 17 , 124 . sequestration ; libraries ; maps ; See also Frontinus, Sextus Julius ; regions ( regiones ) ; taxes, tarif s, water supply ; aqueducts; etc. customs, and fees ; warehouses ; cura(tor) operum maximorum (commission of wharves monumental works), 162 Augustan reorganization of, 40 – 41 , cura(tor) riparum et alvei Tiberis (commission 47 – 48 of the Tiber), 51 censuses and public surveys, 19 , 24 , 82 , cura(tor) viarum (roads commission), 48 114 – 17 , 122 , 125 magistrates of the vici ( vicomagistri ), 48 , 91 codes, laws, and restrictions, 27 , 29 , 47 , Praetorian Prefect and Guard, 60 , 96 , 99 , 63 – 65 , 114 , 162 101 , 115 , 116 , 135 , 139 , 154 . See also against permanent theaters, 57 – 58 Castra Praetoria of burial, 37 , 117 – 20 , 128 , 154 , 187 urban prefect and prefecture, 76 , 116 , 124 , districts and boundaries, 41 , 45 , 49 , 135 , 139 , 163 , 166 , 171 67 – 69 , 116 , 128 . See also vigiles (i re brigade), 66 , 85 , 96 , 116 , pomerium ; regions ( regiones ) ; vici ; 122 , 124 Aurelian Wall ; Leonine Wall ; police and policing, 5 , 100 , 114 – 16 , 122 , wharves 144 , 171 grain, l our, or bread procurement and Severan reorganization of, 96 – 98 distribution, 27 , 89 , 96 – 100 , staf and minor oi cials, 48 , 91 , 116 , 126 , 175 , 215 102 , 115 , 117 , 124 , 166 , 171 , 177 , zones and zoning, 6 , 38 , 84 , 85 , 126 , 127 182 , 184 – 85 administration, medieval frumentationes , 46 , 97 charitable institutions, 158 , 169 , 179 – 87 , 191 , headquarters of administrative oi ces, 81 , 85 , 201 , 299 114 – 17 , 214 Church. -
C HAPTER THREE Dissertation I on the Waters and Aqueducts Of
Aqueduct Hunting in the Seventeenth Century: Raffaele Fabretti's De aquis et aquaeductibus veteris Romae Harry B. Evans http://www.press.umich.edu/titleDetailDesc.do?id=17141, The University of Michigan Press C HAPTER THREE Dissertation I on the Waters and Aqueducts of Ancient Rome o the distinguished Giovanni Lucio of Trau, Raffaello Fabretti, son of T Gaspare, of Urbino, sends greetings. 1. introduction Thanks to your interest in my behalf, the things I wrote to you earlier about the aqueducts I observed around the Anio River do not at all dis- please me. You have in›uenced my diligence by your expressions of praise, both in your own name and in the names of your most learned friends (whom you also have in very large number). As a result, I feel that I am much more eager to pursue the investigation set forth on this subject; I would already have completed it had the abundance of waters from heaven not shown itself opposed to my own watery task. But you should not think that I have been completely idle: indeed, although I was not able to approach for a second time the sources of the Marcia and Claudia, at some distance from me, and not able therefore to follow up my ideas by surer rea- soning, not uselessly, perhaps, will I show you that I have been engaged in the more immediate neighborhood of that aqueduct introduced by Pope Sixtus and called the Acqua Felice from his own name before his ponti‹- 19 Aqueduct Hunting in the Seventeenth Century: Raffaele Fabretti's De aquis et aquaeductibus veteris Romae Harry B. -
Spanish Study Tour 2020
Sample Itinerary Salamanca Weekday Mornings- 9.00 - 13.00 Language School in Salamanca. Afternoon Activities- Guided Tour of the Cathedral and Ieronimus Tower, Contemporary Art Museum; Salsa Classes; Treasure Hunt/ Gincana. Breakfast, lunch and dinner provided by host family. Spanish Study Granada School of Languages students on Mornings from 9.00-13.00 - Language School the 2017 Spanish Study Tour. in Granada. Tour 2020 Afternoon Activities- Guided Tour of the Alhambra, Explore the Albaycin, Flamenco lessons, Spanish Cultural workshop, Museums, How do I register my interest? City Exploration, Tour de Fantasmas and more. Breakfast, lunch and dinner provided by host family. Contact: Ben Anderson 1st Weekend Tour of Segovia & Ávila: Roman Aqueduct, [email protected] Alcázar de Segovia, Alfresco lunch in La Plaza 08 8301 4800 Mayor Tour of Ávila, including the fortress wall, Church of Saint Teresa and Ávila Cathedral. Parent Information Evening: 2nd Weekend Seville: La Giralda, La Catedral, Plaza de España, School of Languages, Alcazar, Barrio Santa Cruz, and more. Friday 22nd March @ 6.30pm 225 Torrens Road, West Croydon. Salamanca- Granada www.schooloflanguages.sa.edu.au 3rd April - 25th April 2020. Government of South Australia Department for Education Salamanca Segovia and Ávila Salamanca Segovia and Ávila Salamanca was are historic cities in Castilla Leon. Segovia elected the is home to the Roman Cultural Capital Aqueduct of Segovia, of Europe in 2003. built in the 1st century It is the heartland of Spanish language education AD and the Alcazar of and derives almost 100% of its economy from the Segovia (King’s summer residence). -
The Fairly Hydrated Knight
THE FAIRLY GAMES BOOKLET HYDRATED Play & Learn KNIGHT When building a fort, the engineers would try to enclose a natural Water in forts spring inside its walls. Often this was not possible, so they had to make other waterworks, such as large cisterns (gwiebi), smaller close-bottom wells (bjar) or a groundwater well (spiera). In some cases they brought water from afar with an aqueduct (akwedott) or an underground tunnel (mina). Draining the sewage and storm water outside the fort was equally important in order to avoid contamination and diseases. When under siege, what was the most important thing for any fort to have? High strong walls? Surrounding ditches? Weapons and gunpowder? A lot of guards? Guess again … No fort, no matter how strongly built and well armed, could survive any siege if it lacked access to fresh water! 2 3 Inside a close-bottom cistern (gibjun, bir) Fill in the missing words: bell, clean, cool, dust, evaporation, gravity, inclined, lid, locked, rainfalls, summer, terraces. 1. The rain is collected from the nearby _ _ _ _ _ _ _ _. All collection surfaces must be kept _ _ _ _ _. 2. The feeding gutter is slightly _ _ _ _ _ _ _ _, so water moves only with the power of _ _ _ _ _ _ _. 3. The _ _ _ _ shape gives stability and strength to the cistern. 4. The _ _ _ is closed when the cistern is not in use and sometimes _ _ _ _ _ _ to prevent water theft. -
Simulation of Flows and Water Quality in the California Aqueduct Using DSM2
Simulation of Flows and Water Quality in the California Aqueduct Using DSM2 Siqing Liu, Bob Suits DWR, Bay Delta Office, Modeling Support Branch 2011 CWEMF Annual Meeting, February 28 –March 2 1 Topics • Project objectives • Aqueduct System modeled • Assumptions / issues with modeling • Model results –Flows / Storage, EC, Bromide 2 Objectives Simulate Aqueduct hydraulics and water quality • 1990 – 2010 period • DSM2 Aqueduct version calibrated by CH2Mhill Achieve 1st step in enabling forecasting Physical System Canals simulated • South Bay Aqueduct (42 miles) • California Aqueduct (444 miles) • East Branch to Silverwood Lake • West Branch to Pyramid Lake (40 miles) • Delta‐Mendota Canal (117 miles) 4 Physical System, cont Pumping Plants Banks Pumping Plant Buena Vista (Check 30) Jones Pumping Plant Teerink (Check 35) South Bay Chrisman (Check 36) O’Neill Pumping-Generating Edmonston (Check 40) Gianelli Pumping-Generating Alamo (Check 42) Dos Amigos (Check 13) Oso (West Branch) Las Perillas (Costal branch) Pearblossom (Check 58) 5 Physical System, cont Check structures and gates • Pools separated by check structures throughout the aqueduct system (SWP: 66, DMC: 21 ) • Gates at check structures regulate flow rates and water surface elevation 6 Physical System, cont Turnout and diversion structures • Water delivered to agricultural and municipal contractors through diversion structures • Over 270 diversion structures on SWP • Over 200 turnouts on DMC 7 Physical System, cont Reservoirs / Lakes Represented as complete mixing of water body • -
The Aqua Traiana / Aqua Paola and Their Effects on The
THE AQUA TRAIANA / AQUA PAOLA AND THEIR EFFECTS ON THE URBAN FABRIC OF ROME Carolyn A. Mess A Thesis Presented to the Faculty of the Department of Architectural History In Partial Fulfillment of the Requirements for the Degree Master of Architectural History May 2014 Cammy Brothers __________________ Sheila Crane __________________ John Dobbins __________________ ii ABSTRACT Infrastructure has always played an important role in urban planning, though the focus of urban form is often the road system and the water system is only secondary. This is a misconception as often times the hydraulic infrastructure determined where roads were placed. Architectural structures were built where easily accessible potable water was found. People established towns and cities around water, like coasts, riverbanks, and natural springs. This study isolates two aqueducts, the Aqua Traiana and its Renaissance counterpart, the Aqua Paola. Both of these aqueducts were exceptional feats of engineering in their planning, building techniques, and functionality; however, by the end of their construction, they symbolized more than their outward utilitarian architecture. Within their given time periods, these aqueducts impacted an entire region of Rome that had twice been cut off from the rest of the city because of its lack of a water supply and its remote location across the Tiber. The Aqua Traiana and Aqua Paola completely transformed this area by improving residents’ hygiene, building up an industrial district, and beautifying the area of Trastevere. This study -
Rome, November 10 - 18, 2018
International Conference of the Frontinus-Society on the History of Water Management and Hydraulic Engineering in the Mediterranean Region Rome, November 10 - 18, 2018 INVITATION AND CALL FOR PAPERS The conference will be held as a series of lectures and excursions on the history of water management and hydraulic engineering in the Mediterranean region. Its aim is to stimulate interdisciplinary discussion about water in antiquity. The participation of archaeologists, historians, hydraulic engineers, civil engineers, town planners and geologists ensures an information exchange about the latest findings and theories. The emphasis will be on ancient water supply and use. The organizer of this conference is the Frontinus-Society, with support of the American University of Rome, the Centro Ricerche Speleo Archeologiche Sotterranei di Roma, Deutsches Archäologisches Institut Rom, Istituto Austriaco di Studii Storici at Rome and the John Cabot University at Rome. One full and two half days of lectures will be followed or interrupted by excursions to ancient water installations outside and inside of Rome. The following list intends to suggest some of the topics which could be discussed at the symposium. NEWEST RESEARCH RESULTS ON AQUEDUCTS AT THE BEGINNING OF THE THIRD MILLENIUM: Water supply systems of ancient cities are increasingly documented as a whole. This is the reason why todays research results are clearer and offer more detailed analyses than in the past when only monumental sections of aqueducts were studied closely. For instance the recently resumed explorations of the aqueducts at Ephesus made clear, that ordinary sections often reveal more important insights than spectacular aqueduct bridges or siphons. -
Calendar of Roman Events
Introduction Steve Worboys and I began this calendar in 1980 or 1981 when we discovered that the exact dates of many events survive from Roman antiquity, the most famous being the ides of March murder of Caesar. Flipping through a few books on Roman history revealed a handful of dates, and we believed that to fill every day of the year would certainly be impossible. From 1981 until 1989 I kept the calendar, adding dates as I ran across them. In 1989 I typed the list into the computer and we began again to plunder books and journals for dates, this time recording sources. Since then I have worked and reworked the Calendar, revising old entries and adding many, many more. The Roman Calendar The calendar was reformed twice, once by Caesar in 46 BC and later by Augustus in 8 BC. Each of these reforms is described in A. K. Michels’ book The Calendar of the Roman Republic. In an ordinary pre-Julian year, the number of days in each month was as follows: 29 January 31 May 29 September 28 February 29 June 31 October 31 March 31 Quintilis (July) 29 November 29 April 29 Sextilis (August) 29 December. The Romans did not number the days of the months consecutively. They reckoned backwards from three fixed points: The kalends, the nones, and the ides. The kalends is the first day of the month. For months with 31 days the nones fall on the 7th and the ides the 15th. For other months the nones fall on the 5th and the ides on the 13th.