Global Analysis of Somatic Structural Genomic Alterations and Their Impact on Gene Expression in Diverse Human Cancers

Total Page:16

File Type:pdf, Size:1020Kb

Global Analysis of Somatic Structural Genomic Alterations and Their Impact on Gene Expression in Diverse Human Cancers Global analysis of somatic structural genomic alterations and their impact on gene expression in diverse human cancers Babak Alaei-Mahabadia, Joydeep Bhaduryb, Joakim W. Karlssona, Jonas A. Nilssonb, and Erik Larssona,1 aDepartment of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; and bDepartment of Surgery, Sahlgrenska Cancer Center, Institute of Clinical Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden Edited by Mary-Claire King, University of Washington, Seattle, WA, and approved October 21, 2016 (received for review April 19, 2016) Tumor genomes are mosaics of somatic structural variants (SVs) segments (14). Several factors complicate the analysis, in particular that may contribute to the activation of oncogenes or inactivation mappability issues due to repetitive sequence regions (15). Indeed, of tumor suppressors, for example, by altering gene copy number it has become clear that the results produced by different methods amplitude. However, there are multiple other ways in which SVs are not consistent, and some studies have intersected multiple ap- can modulate transcription, but the general impact of such events proaches to provide a presumed high-confidence set of predictions on tumor transcriptional output has not been systematically de- (16, 17). Adding to the challenges is the difficulty of assessing termined. Here we use whole-genome sequencing data to map SVs performance: True positive sets have thus far been obtained across 600 tumors and 18 cancers, and investigate the relationship through simulated genomic sequences (18), but this will not re- between SVs, copy number alterations (CNAs), and mRNA expression. flect the true complexity of cancer genomes. Improved bench- We find that 34% of CNA breakpoints can be clarified structurally marking is thus desirable before SVs can be comprehensively and that most amplifications are due to tandem duplications. We studied with WGS in human cancers. observe frequent swapping of strong and weak promoters in the Here, enabled by the availability of a large cancer cohort sub- context of gene fusions, and find that this has a measurable global jected to WGS by The Cancer Genome Atlas (TCGA) consor- impact on mRNA levels. Interestingly, several long noncoding RNAs tium, we map somatic SVs in 600 tumors across 18 different BIOPHYSICS AND were strongly activated by this mechanism. Additionally, SVs were cancer types and determine relationships between SVs, CNAs, COMPUTATIONAL BIOLOGY confirmed in telomere reverse transcriptase (TERT) upstream regions and mRNA expression. We compare SV breakpoints with those in several cancers, associated with elevated TERT mRNA levels. We from microarray-based CNA data to evaluate and optimize tools also highlight high-confidence gene fusions supported by both and parameters for SV detection, which additionally gives insights genomic and transcriptomic evidence, including a previously unde- into the structural basis of CNAs. We next investigate relation- scribed paired box 8 (PAX8)–nuclear factor, erythroid 2 like 2 ships between SVs and changes in gene expression levels, both in NFE2L2 ( ) fusion in thyroid carcinoma. In summary, we combine SV, the context of gene fusions as well as SVs affecting putative reg- CNA, and expression data to provide insights into the structural basis ulatory regions near TSSs. Finally, we combine breakpoints de- of CNAs as well as the impact of SVs on gene expression in tumors. termined from WGS and RNA-sequencing (RNA-seq) data to detect high-confidence fusion genes across this large cohort. cancer genomics | somatic structural variation | gene fusion | gene expression Results CNA-Based Evaluation of SV Detection Methodology. We first noted omatic structural variants (SVs) in genomic DNA can lead to large discrepancies, for example in terms of SV types, when Schanges in gene copy number, which may contribute to tumor development by altering gene expression levels (1). Several Significance studies have tried to systematically investigate the effect of copy number alterations (CNAs) on tumor transcriptomes (2, 3), but Structural changes in chromosomes can alter the expression and this can only explain part of the expression changes observed in function of genes in tumors, an important driving mechanism in tumors. Notably, there are several other mechanisms by which some tumors. Whole-genome sequencing makes it possible to SVs can alter tumor transcriptional output, including creation of detect such events on a genome-wide scale, but comprehensive fusion genes. These may produce chimeric mRNAs encoding investigations are still missing. Here, enabled by a massive novel oncogenic proteins (4, 5) or, alternatively, fusion mRNAs amount of whole-genome sequencing data generated by The that maintain their protein-coding sequence while being tran- ′ Cancer Genome Atlas consortium, we map somatic structural scriptionally induced or repressed due to swapping of 5 ends, changes in 600 tumors of diverse origins. At a global level, we including the promoter (6). Additionally, SVs can affect mRNA find that such events often contribute to altered gene expres- levels by bringing distant regulatory elements into the proximity sion in human cancer, and also highlight specific events that may of transcription start sites (TSSs) without structurally altering the have functional roles during tumor development. mRNA (7). More systematic investigations of the impact of SVs on gene expression levels in tumors are, however, lacking, in part Author contributions: B.A.-M., J.A.N., and E.L. designed research; B.A.-M., J.B., and J.W.K. due to the fact that mapping of SVs is considerably more chal- analyzed data; and B.A.-M. and E.L. wrote the paper. lenging compared with determining CNA profiles. Additionally, The authors declare no conflict of interest. although CNAs arise as a result of SVs, the two have generally This article is a PNAS Direct Submission. been studied in isolation and the general structural basis of so- Freely available online through the PNAS open access option. matic CNAs in tumors is poorly investigated. Data deposition: The sequence reported in this paper has been deposited in the Gene Recent studies have started to use whole-genome sequencing Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. (WGS) to identify SVs in tumors, and multiple tools have been GSE79756). published (8–12). These are based on the idea that breakpoints 1To whom correspondence should be addressed. Email: [email protected]. should reveal themselves on the basis of discordant read pairs (13) This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. or split reads mapping partially to both ends of fused chromosomal 1073/pnas.1606220113/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1606220113 PNAS Early Edition | 1of6 Downloaded by guest on September 24, 2021 applying several available tools for SV detection to WGS data and 125 per sample, respectively). Few SVs were found in copy from TCGA tumor/normal pairs (Fig. 1A), and therefore sought number stable cancers such as thyroid carcinoma (THCA) (26) to carefully evaluate multiple options. A general problem in (∼8 per sample on average). Similarly, clear cell and chromo- assessing SV results is the lack of true positive data for com- phobe kidney carcinomas (KIRC and KICH) and low-grade gli- parison (19). To partially overcome this problem, we made use of oma (LGG) tumors exhibited a small number of SVs (Fig. 2A). orthogonal results in the form of CNA profiles from the Affy- We next investigated the relationship between somatic CNA metrix SNP6 microarray platform (SI Methods). CNAs arise as a and SV breakpoints. On average, 34% of CNA breakpoints consequence of somatic SVs in the genome, and segmented (segments with absolute log2 amplitude ≥0.3, SNP6 platform) CNA data therefore provide a true positive subset. Although this detected across all 600 tumors were confirmed in the SV data. subset is incomplete, an ideal experimental and computational Overlaps were reduced in CNA stable tumors such as KICH, pipeline should essentially be able to detect all CNA breakpoints. which are dominated by arm-level events and therefore may lack We applied four available tools, BreakDancer (20), SVDetect breakpoints detectable by WGS (Fig. 2B). Absolute numbers of (21), DELLY (22), and Meerkat (11), to high-coverage WGS CNA and SV breakpoints were strongly correlated across tumors data from 200 TCGA tumors of diverse origins, and quantified (Pearson’s r = 0.81; Fig. 2C). However, a small number of overlaps between SV and CNA breakpoints (<15-kb tolerance). samples had elevated CNAs not reflected in the SV data (Fig. To reduce the computational complexity, only a single chromo- 2C), again explainable by the predominance of arm-level changes some (chr) was considered in this analysis (chr8). To also address in these tumors (Fig. S2). These results further support the the specificity of the methods, we investigated overlaps with a set validity of the SV data and show that both approaches are ef- of randomized CNA breakpoints that maintained a similar po- fective for quantifying overall chromosomal instability. SI Methods sitional distribution across the genome ( ). SVDetect The overlap between CNA and SV data at the level of com- had the highest sensitivity score (35%), followed by Meerkat plete events (for example, both breakpoints for an
Recommended publications
  • Evolution and Structure of Clinically Relevant Gene Fusions in Multiple Myeloma
    ARTICLE https://doi.org/10.1038/s41467-020-16434-y OPEN Evolution and structure of clinically relevant gene fusions in multiple myeloma Steven M. Foltz 1,2, Qingsong Gao 1,2, Christopher J. Yoon1,2, Hua Sun1,2, Lijun Yao1,2, Yize Li1,2, ✉ ✉ Reyka G. Jayasinghe1,2, Song Cao1,2, Justin King1, Daniel R. Kohnen1, Mark A. Fiala1, Li Ding1,2,3,4 & Ravi Vij1,4 Multiple myeloma is a plasma cell blood cancer with frequent chromosomal translocations leading to gene fusions. To determine the clinical relevance of fusion events, we detect gene 1234567890():,; fusions from a cohort of 742 patients from the Multiple Myeloma Research Foundation CoMMpass Study. Patients with multiple clinic visits enable us to track tumor and fusion evolution, and cases with matching peripheral blood and bone marrow samples allow us to evaluate the concordance of fusion calls in patients with high tumor burden. We examine the joint upregulation of WHSC1 and FGFR3 in samples with t(4;14)-related fusions, and we illustrate a method for detecting fusions from single cell RNA-seq. We report fusions at MYC and a neighboring gene, PVT1, which are related to MYC translocations and associated with divergent progression-free survival patterns. Finally, we find that 4% of patients may be eligible for targeted fusion therapies, including three with an NTRK1 fusion. 1 Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA. 2 McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA. 3 Department of Genetics, Washington University in St. Louis, St.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Procedure of Protoplast Electrofusion (In Solanum Genus)
    Procedure of protoplast electrofusion (in Solanum genus) A part of the output V002 within the project NAZV QF4108 “Use of protoplast fusion technique in breeding of economic important crops of Brassica, Cucumis and Solanum genus” applied and verified in the solution of MSM 6010980701 “Molecular and technological basis of quality potato production” Authors: Ing. Marie Greplová Mgr. Hana Polzerová Ing. Jaroslava Domkářová, Ph.D., MBA 1 Introduction The effective development of new varieties with desirable traits requires a combination of conventional breeding approaches and modern technologies such as in vitro cultures, involving production of dihaploid lines, protoplast fusions and use of genetic transformation. Modern plant biotechnologies are a necessary part of plant breeding for resistance to biotic and abiotic stresses. They contribute to an enlargement of variety spectrum and to decrease inputs for profitable yields. Breeding (sexual hybridization) of economic important crops for resistance to biotic and abiotic agents is often interfered with many complications as sexual incompatibility of parental genotypes, unsuitable EBN ratio (Endosperm Balance Number, Carputo et al. 1997) or small success in conventional sexual hybridization. Problems with resistance transfer in classical approaches resulted in development of unconventional approaches. Interspecific or intergeneric protoplast fusions offer an alternative way of gene transfer (Millam et al. 1995). Since there are no barriers to protoplast fusion, hitherto incompatible and therefore reproductively isolated species, can be brought together at the protoplast level. Following fusion, heterocaryons, containing nuclei of two species in common cytoplasm regenerate a new cell wall, enter division and nuclear fusion results in the formation of a somatic hybrid cell.
    [Show full text]
  • The Autophagy Receptor SQSTM1/P62 Mediates Anti-Inflammatory Actions of the Selective NR3C1/ Glucocorticoid Receptor Modulator Compound a (Cpda) in Macrophages
    Autophagy ISSN: 1554-8627 (Print) 1554-8635 (Online) Journal homepage: http://www.tandfonline.com/loi/kaup20 The autophagy receptor SQSTM1/p62 mediates anti-inflammatory actions of the selective NR3C1/ glucocorticoid receptor modulator compound A (CpdA) in macrophages Viacheslav Mylka, Julie Deckers, Dariusz Ratman, Lode De Cauwer, Jonathan Thommis, Riet De Rycke, Francis Impens, Claude Libert, Jan Tavernier, Wim Vanden Berghe, Kris Gevaert & Karolien De Bosscher To cite this article: Viacheslav Mylka, Julie Deckers, Dariusz Ratman, Lode De Cauwer, Jonathan Thommis, Riet De Rycke, Francis Impens, Claude Libert, Jan Tavernier, Wim Vanden Berghe, Kris Gevaert & Karolien De Bosscher (2018) The autophagy receptor SQSTM1/p62 mediates anti- inflammatory actions of the selective NR3C1/glucocorticoid receptor modulator compound A (CpdA) in macrophages, Autophagy, 14:12, 2049-2064, DOI: 10.1080/15548627.2018.1495681 To link to this article: https://doi.org/10.1080/15548627.2018.1495681 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Published online: 14 Sep 2018. Submit your article to this journal Article views: 907 View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kaup20 AUTOPHAGY 2018, VOL. 14, NO. 12, 2049–2064 https://doi.org/10.1080/15548627.2018.1495681 RESEARCH PAPER - BASIC SCIENCE The autophagy receptor SQSTM1/p62 mediates anti-inflammatory actions of the selective NR3C1/glucocorticoid receptor modulator
    [Show full text]
  • Protoplast Cultures and Protoplast Fusion Focused on Brassicaceae – a Review
    Protoplast cultures and protoplast fusion focused on Brassicaceae – a review B. NAVRÁTILOVÁ Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic ABSTRACT: The subjects of this article are protoplast isolations and protoplast fusions, in particular their history, a review of factors influencing the protoplasts isolation and fusion, selection of hybrid plants and utilization of somatic hybrids in plant breed- ing. Somatic hybridization through protoplast fusion can overcome sexual incompatibility among plant species or genera; transfer genes of resistance to diseases (viral, bacterial, fungal), pests, herbicides and others stress factors; obtain cybrid plants; transfer cytoplasmic male sterility or incease content of secondary metabolites in hybrid plants. The article is focussed mainly on the family Brassicaceae because among representatives are significant crops for the human population. Various successful combination of intraspecific, interspecific and intergeneric protoplast fusion were reported between representatives of the family Brassicaceae with the genus Brassica which belonged to the first agricultural crops used for the isolation of protoplast. Keywords: Brassicaceae; Brassica; protoplast isolation; protoplast fusion; somatic hybridization; resistance to diseases and abiotic factors Isolated protoplasts are a unique system for studying interspecific hybrid obtained by the protoplast fusion of the structure and function of cell organelles, cytoplasmic Nicotiana glauca + Nicotiana langsdorffii appeared in membrane transport in plants and cell wall formation. 1972 (CARLSON et al. 1972), but this hybrid could also Another possibility of their use is protoplast fusions, ge- be produced by sexual crossing. The finding was that the netic manipulations or experimental mutagenesis. hybrids were characterized by spontaneous emergence Somatic hybridization through plant protoplast fu- of tumours without any need to add growth regulators sion enables not only to combine parent genes in higher into the culture medium.
    [Show full text]
  • Genome-Scale Identification of Transcription Factors That Mediate An
    ARTICLE DOI: 10.1038/s41467-018-04406-2 OPEN Genome-scale identification of transcription factors that mediate an inflammatory network during breast cellular transformation Zhe Ji 1,2,4, Lizhi He1, Asaf Rotem1,2,5, Andreas Janzer1,6, Christine S. Cheng2,7, Aviv Regev2,3 & Kevin Struhl 1 Transient activation of Src oncoprotein in non-transformed, breast epithelial cells can initiate an epigenetic switch to the stably transformed state via a positive feedback loop that involves 1234567890():,; the inflammatory transcription factors STAT3 and NF-κB. Here, we develop an experimental and computational pipeline that includes 1) a Bayesian network model (AccessTF) that accurately predicts protein-bound DNA sequence motifs based on chromatin accessibility, and 2) a scoring system (TFScore) that rank-orders transcription factors as candidates for being important for a biological process. Genetic experiments validate TFScore and suggest that more than 40 transcription factors contribute to the oncogenic state in this model. Interestingly, individual depletion of several of these factors results in similar transcriptional profiles, indicating that a complex and interconnected transcriptional network promotes a stable oncogenic state. The combined experimental and computational pipeline represents a general approach to comprehensively identify transcriptional regulators important for a biological process. 1 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. 2 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. 3 Department of Biology, Howard Hughes Medical Institute and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 20140, USA. 4Present address: Department of Pharmacology and Biomedical Engineering, Northwestern University, Evanston 60611 IL, USA.
    [Show full text]
  • Gene-Expression Signature Regulated by the KEAP1-NRF2-CUL3 Axis Is Associated with a Poor Prognosis in Head and Neck Squamous Cell Cancer Akhileshwar Namani1†, Md
    Namani et al. BMC Cancer (2018) 18:46 DOI 10.1186/s12885-017-3907-z RESEARCH ARTICLE Open Access Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer Akhileshwar Namani1†, Md. Matiur Rahaman2†, Ming Chen2* and Xiuwen Tang1* Abstract Background: NRF2 is the key regulator of oxidative stress in normal cells and aberrant expression of the NRF2 pathway due to genetic alterations in the KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2 like 2)-CUL3 (cullin 3) axis leads to tumorigenesis and drug resistance in many cancers including head and neck squamous cell cancer (HNSCC). The main goal of this study was to identify specific genes regulated by the KEAP1-NRF2-CUL3 axis in HNSCC patients, to assess the prognostic value of this gene signature in different cohorts, and to reveal potential biomarkers. Methods: RNA-Seq V2 level 3 data from 279 tumor samples along with 37 adjacent normal samples from patients enrolled in the The Cancer Genome Atlas (TCGA)-HNSCC study were used to identify upregulated genes using two methods (altered KEAP1-NRF2-CUL3 versus normal, and altered KEAP1-NRF2-CUL3 versus wild-type). We then used a new approach to identify the combined gene signature by integrating both datasets and subsequently tested this signature in 4 independent HNSCC datasets to assess its prognostic value. In addition, functional annotation using the DAVID v6.8 database and protein-protein interaction (PPI) analysis using the STRING v10 databasewereperformedonthesignature. Results: A signature composed of a subset of 17 genes regulated by the KEAP1-NRF2-CUL3 axis was identified by overlapping both the upregulated genes of altered versus normal (251 genes) and altered versus wild-type (25 genes) datasets.
    [Show full text]
  • Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition
    Published OnlineFirst February 21, 2013; DOI: 10.1158/2159-8290.CD-12-0418 RESEARCH ARTICLE Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition Alexandre Puissant1,3, Stacey M. Frumm1,3, Gabriela Alexe1,3,5,6, Christopher F. Bassil1,3, Jun Qi2, Yvan H. Chanthery8, Erin A. Nekritz8, Rhamy Zeid2, William Clay Gustafson8, Patricia Greninger7, Matthew J. Garnett10, Ultan McDermott10, Cyril H. Benes7, Andrew L. Kung1,3, William A. Weiss8,9, James E. Bradner2,4, and Kimberly Stegmaier1,3,6 Downloaded from cancerdiscovery.aacrjournals.org on October 2, 2021. © 2013 American Association for Cancer Research. 15-CD-12-0418_p308-323.indd 1 22/02/13 12:15 AM Published OnlineFirst February 21, 2013; DOI: 10.1158/2159-8290.CD-12-0418 A BSTRACT Bromodomain inhibition comprises a promising therapeutic strategy in cancer, particularly for hematologic malignancies. To date, however, genomic biomarkers to direct clinical translation have been lacking. We conducted a cell-based screen of genetically defined cancer cell lines using a prototypical inhibitor of BET bromodomains. Integration of genetic features with chemosensitivity data revealed a robust correlation between MYCN amplification and sensitivity to bromodomain inhibition. We characterized the mechanistic and translational significance of this finding in neuroblastoma, a childhood cancer with frequent amplification of MYCN. Genome-wide expression analysis showed downregulation of the MYCN transcriptional program accompanied by suppression of MYCN transcription. Functionally, bromodomain-mediated inhibition of MYCN impaired growth and induced apoptosis in neuroblastoma. BRD4 knockdown phenocopied these effects, establishing BET bromodomains as transcriptional regulators of MYCN. BET inhibition conferred a significant survival advantage in 3 in vivo neuroblastoma models, providing a compelling rationale for developing BET bro- modomain inhibitors in patients with neuroblastoma.
    [Show full text]
  • High-Throughput Bioinformatics Approaches to Understand Gene Expression Regulation in Head and Neck Tumors
    High-throughput bioinformatics approaches to understand gene expression regulation in head and neck tumors by Yanxiao Zhang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in The University of Michigan 2016 Doctoral Committee: Associate Professor Maureen A. Sartor, Chair Professor Thomas E. Carey Assistant Professor Hui Jiang Professor Ronald J. Koenig Associate Professor Laura M. Rozek Professor Kerby A. Shedden c Yanxiao Zhang 2016 All Rights Reserved I dedicate this thesis to my family. For their unfailing love, understanding and support. ii ACKNOWLEDGEMENTS I would like to express my gratitude to Dr. Maureen Sartor for her guidance in my research and career development. She is a great mentor. She patiently taught me when I started new in this field, granted me freedom to explore and helped me out when I got lost. Her dedication to work, enthusiasm in teaching, mentoring and communicating science have inspired me to feel the excite- ment of research beyond novel scientific discoveries. I’m also grateful to have an interdisciplinary committee. Their feedback on my research progress and presentation skills is very valuable. In particular, I would like to thank Dr. Thomas Carey and Dr. Laura Rozek for insightful discussions on the biology of head and neck cancers and human papillomavirus, Dr. Ronald Koenig for expert knowledge on thyroid cancers, Dr. Hui Jiang and Dr. Kerby Shedden for feedback on the statistics part of my thesis. I would like to thank all the past and current members of Sartor lab for making the lab such a lovely place to stay and work in.
    [Show full text]
  • Viewed BMC Genomics 2001, 2:10
    BMC Genomics BioMed Central BMC Genomics :10 Research2 2001, article Genomic organisation and alternative splicing of mouse and human thioredoxin reductase 1 genes Simone A Osborne and Kathryn F Tonissen* Address: School of Biomolecular and Biomedical Science, Griffith University, Nathan, Queensland 4111, Australia E-mail: Simone A Osborne - [email protected]; Kathryn F Tonissen* - [email protected] *Corresponding author Published: 22 November 2001 Received: 28 August 2001 Accepted: 22 November 2001 BMC Genomics 2001, 2:10 This article is available from: http://www.biomedcentral.com/1471-2164/2/10 © 2001 Osborne and Tonissen; licensee BioMed Central Ltd. Verbatim copying and redistribution of this article are permitted in any medium for any non-commercial purpose, provided this notice is preserved along with the article's original URL. For commercial use, contact [email protected] Abstract Background: Thioredoxin reductase (TR) is a redox active protein involved in many cellular processes as part of the thioredoxin system. Presently there are three recognised forms of mammalian thioredoxin reductase designated as TR1, TR3 and TGR, that represent the cytosolic, mitochondrial and novel forms respectively. In this study we elucidated the genomic organisation of the mouse (Txnrd1) and human thioredoxin reductase 1 genes (TXNRD1) through library screening, restriction mapping and database mining. Results: The human TXNRD1 gene spans 100 kb of genomic DNA organised into 16 exons and the mouse Txnrd1 gene has a similar exon/intron arrangement. We also analysed the alternative splicing patterns displayed by the mouse and human thioredoxin reductase 1 genes and mapped the different mRNA isoforms with respect to genomic organisation.
    [Show full text]
  • Structural Basis of O-Glcnac Recognition by Mammalian 14-3-3 Proteins
    Structural basis of O-GlcNAc recognition by mammalian 14-3-3 proteins Clifford A. Tolemana,1, Maria A. Schumachera,1, Seok-Ho Yub, Wenjie Zenga, Nathan J. Coxa, Timothy J. Smitha, Erik J. Soderblomc, Amberlyn M. Wandsb, Jennifer J. Kohlerb, and Michael Boycea,2 aDepartment of Biochemistry, Duke University School of Medicine, Durham, NC 27710; bDepartment of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; and cDuke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC 27710 Edited by Carolyn R. Bertozzi, Stanford University, Stanford, CA, and approved April 23, 2018 (received for review December 24, 2017) O-GlcNAc is an intracellular posttranslational modification that gov- Results erns myriad cell biological processes and is dysregulated in human We developed a biochemical approach to test the hypothesis that diseases. Despite this broad pathophysiological significance, the O-GlcNAc is specifically recognized by mammalian reader pro- biochemical effects of most O-GlcNAcylation events remain unchar- teins. First, we derived a consensus O-GlcNAcylated peptide acterized. One prevalent hypothesis is that O-GlcNAc moieties may sequence by aligning 802 mapped Ser-O-GlcNAc sites (34–36) be recognized by “reader” proteins to effect downstream signaling. (Fig. 1A)(www.phosphosite.org). We noted that a Pro-Val-Ser However, no general O-GlcNAc readers have been identified, leav- tripeptide observed previously in smaller datasets (37, 38) also ing a considerable gap in the field. To elucidate O-GlcNAc signaling emerged in our sequence, suggesting that this motif may be mechanisms, we devised a biochemical screen for candidate O-GlcNAc important for O-GlcNAc modification and/or recognition.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]