Author Manuscript Published OnlineFirst on December 9, 2013; DOI: 10.1158/0008-5472.CAN-13-1655 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination Bridgid E. Hast1, Erica W. Cloer1, Dennis Goldfarb2, Heng Li3, Priscila F. Siesser1, Feng Yan1, Vonn Walter4, Ning Zheng3, D. Neil Hayes5 and Michael B. Major1,2 1Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Box#7295, Chapel Hill, NC 27599, USA. 2Department of Computer Science, University of North Carolina at Chapel Hill, Box#3175, Chapel Hill, NC 27599, USA. 3Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Box#357280, Seattle, WA 98195-7280, USA 4Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Box#7295, Chapel Hill, NC 27599, USA. 5Department of Internal Medicine and Otolaryngology, Division of Medical Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Box#7295, Chapel Hill, NC 27599, USA. Corresponding author: Michael B. Major Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill Box#7295 Chapel Hill, NC 27599 Email:
[email protected] Phone: 919-966-9258 Fax: 919-966-8212 Running title: KEAP1 Cancer Mutations Impair NRF2 Degradation, not Ubiquitination. Word count: 5487 The authors declare no conflicts of interest. 1 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 9, 2013; DOI: 10.1158/0008-5472.CAN-13-1655 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.