Article and Photo's by Henk Stander Aquaculture Division, Department

Total Page:16

File Type:pdf, Size:1020Kb

Article and Photo's by Henk Stander Aquaculture Division, Department Article and photo’s by Henk Stander Aquaculture Division, Department of Animal Sciences University of Stellenbosch n the next few years we will and a rise in production cost. By the About 40% of the world’s land sur- see population growth contin- middle of the century (2050), the face is used for agriculture with uing, cropping land and farm- staggering population growth will only 12% used for growing crops. ing resources shortages, envi- see consumers having to reduce The remaining is used for grazing Ironmental disasters and rising food their animal protein intake by 75%. and forestry. While the FAO pre- prices, put increasing pressure on Existing protein food chains such as dicts the world has enough land to our capacity to produce affordable, meat, dairy and fish will need to meet increasing agriculture de- accessible, high quality food. We invest in improved productivity and mands, not all of the arable land is are heading for a point where we efficiencies in production, technolo- evenly distributed around the will consume more food compared gy and yields to meet these de- world. Countries, like China which to the volumes of what we pro- mands. hold 20% of the world’s popula- duce. All sectors of the food indus- tion, is losing farming land at an Approximately 70% of the worlds’ try have reached a turning point alarming rate and is now a net im- fresh water is used to irrigate crops, where we seek alternative solutions porter of food which puts pressure with just 20% of the world’s crop to achieve a greater capacity, to on other countries’ resources. In- lands irrigated and that irrigated produce more for less, reduce envi- vesting in new farming technolo- agriculture only supporting 40% of ronmental impacts and still remain gies to intensify crops and reduce all food production, environmental financially viable. A lot of farmers environmental impacts such as soil threats such as drought will have a are making plans to diversify crops, erosion, water pollution and defor- serious impact on food security to spread the production risk out estation has the potential to deliver worldwide. Competition for water and to get additional cash income vital food security to local markets. to produce food and an increasing from the harvest. water demand for energy produc- Possible and potential solutions: Global Challenges: tion, which is predicted to increase The objective should be to use new More than 20% of our protein in- by 60% over the next 30 years, will innovation and the latest technolo- take is made up of animal proteins see more integrated farming sys- gies to deliver farming systems spe- derived from fish, meat and dairy tems developed to increase produc- cifically designed to produce premi- and these protein supply chains are tivity of both of these essential re- um agricultural products in the under enormous pressure, especial- sources. most environmentally and economi- ly from a limited fresh water supply cally sustainable way to be able to tackle the Global Challenges. along with other nutrients, of grow- biggest Aquaponics farms in the ing produce is obtained from the United Arab Emirates. The farm, This can be achieved by: growth of fish and the proper recy- now completed, consists of a 4 500 Collaboration with industry ex- cling of waste. square metre shed which produces perienced people across the agri- around 40 tonnes of tilapia. The Standalone aquaculture farming culture industry aquaponics system can grow a has been and still is quite commer- Developing closed loop integrat- range of leafy greens, herbs, toma- cially viable. Standalone hydroponic ed systems with minimal to zero toes and cucumbers. Mr Van der farming has been and still is quite environmental emissions Werf, who is also the president of commercially viable. Aquaponic Utilizing all waste streams in de- the NSW Aquaculture Association, farming has been struggling to be signs to increase sustainability said farmers in Australia were suc- commercially viable due to the ad- and production yields cessfully integrating similar aqua- ditional equipment involved in pre- Integrating multi biotic compo- ponics principles. In South Africa, serving the fish waste so to be com- nents to mimic natural ecosys- Mr Leslie Ter Morshuizen from Gra- posted, that is mineralized and oth- tems in design hams Town was also successful in er equipment involved in recycling Continuing to maintain and pro- running his aquaponics system on the fish’s liquid excretion into prop- mote industry best management an economically viable model and er plant soluble nutrients. Also, and husbandry practices was making good profits for a few there has to be a degree of separa- Make use of renewable energy consecutive years now. (http:// tion between the aquaculture oper- to the best of your ability for all www.aquaafrica.co.za). Leslie is ations and the vegeta- your energy needs focusing on high value plant varie- flower operations and, yet, still Utilize all waste products and try ties for instance herbs and cucum- have a degree of assimilation be- to make use of innovation to bers, and makes use of tilapia as tween the two. All of this adds sig- turn the left-over opportunities the preferred fish species in his sys- nificant capital and overhead costs. into profits by recycling tem. The water for the tilapia is Currently, many aquaponic farmers heated during the winter months Aquaponic Farming: require the involvement of addition- with a heat pump. The fresh tilapia Aquaponic farming is the collision al income, through tourism, selling is supplied to a niche market which of aquaculture farming and hydro- consultations or training or some consists of a local Deli in the area ponic farming. Aquaculture farming other products and government and a sales price of R 45.00/kg for involves the breeding, growing, and assistance and subsidized labour, to G&G fish is received. The Deli only selling of edible fish livestock and help their financials break even. The takes in small volumes of fish at a other seafood in a controlled facili- successes in aquaponic farming time though. ty. Hydroponic farming involves have been quite rare, quite small, growing vegetables, fruit, and other Chinese Integrated Fish Farming: and only been limited to small niche crops without a soil medium, with Integrated fish farming is regarded markets. highly concentrated nutrient sup- by aquaculturists of other countries plements, minimal water usage, In late 2013, aquaponics consultant as a model farming system for full and tremendous yield per square Mr Paul Van der Werf from Queens- utilization of local resources, for foot area. Aquaponics is the colli- land’s Earthen Group was quite suc- waste recycling and energy saving, sion of these two farms where pri- cessful in the design, construction and for maintaining ecological bal- marily the nitrogen component, and operating of one of the world’s ance and circulation. Chinese integrated fish farming is for future fodder crops. Thus, an building, are created and main- so broad in scope and has so many integrated fish farm can produce tained. The FAO Code of Conduct models that there is no comparative not only fish but also meat, milk, for Responsible Fisheries contains farming system in the world. The eggs, fruit, vegetables, etc. Inte- principles and provisions in support Chinese system had developed its grated fish farming can fully utilize of ecological sustainable aquacul- own characteristics and has attract- the water body, the water surface, ture development. The Code recog- ed world attention. The reason for the land, and the pond silt to in- nizes the Special Requirements of this is the full systems’ development crease the food available for human Developing Countries, and its Arti- and utilization of local natural re- consumption. cle 5 addresses in particular these sources and subsequent production needs, especially in the areas of fi- Conclusion: of food and attainment of econom- nancial and technical assistance, The promotion of ecological sus- ic self-sufficiency. Geese and ducks technology transfer, training and tainable aquaculture development may be raised on the pond, pond scientific cooperation. requires that “enabling environ- dikes may be used for fruit tree and ments”, in particular those aimed at Contact the author: mulberry cultivation or for raising ensuring continuing human re- E-mail: [email protected] pigs, and dike slopes may be used source development and capacity .
Recommended publications
  • Master's Thesis
    Master’s Thesis - master Innovation Science Aquaponics Development in the Netherlands The Role of the Emerging Aquaponics Technology and the Transition towards Sustainable Agriculture Mascha Wiegand 6307345 Tulpenweg 17 63579 Freigericht Germany [email protected] +49 1607561911 Supervisor: Prof. Dr. Ellen H.M. Moors Copernicus Institute of Sustainable Development [email protected] +31 30 253 7812 Second Reader: Dr. Koen Beumer Summary A sustainability transition in the agri-food regime is urgently required to interrupt the strong reciprocal effect between current food production standards and climate change (Willett et al., 2019). One sustainable innovation in the agri-food sector is aquaponics. Aquaponics is the combination of hydroponics and recirculating aquaculture in one controlled environment (Somerville, Cohen, Pantanella, Stankus & Lovatelli, 2014). At first sight, the water and nutrient-saving character of aquaponics, amongst other features (Somerville et al., 2014), sound promising for a transition towards sustainable agriculture. Therefore, the following research question emerged: How can the emerging aquaponics technology contribute to the sustainability transition in the Dutch agri- food sector based on Dutch aquaponics developments in the period 2008-2018? To answer this overarching research question, three sub-questions were developed. An integrated framework combining the multilevel perspective (MLP) and the technological innovation system (TIS) was used to understand the dynamics between overall structural trends, the current Dutch agri-food sector and the emerging aquaponics innovation. The innovation was also set into a broader European context. The research was of exploratory nature and used a qualitative content analysis to process 23 interviews, scientific articles, practitioner websites, publication, patent and Google Trend statistics, etc.
    [Show full text]
  • The Role of Animals in Eco-Functional Intensification of Organic Agriculture
    Sustainable Agriculture Research; Vol. 4, No. 3; 2015 ISSN 1927-050X E-ISSN 1927-0518 Published by Canadian Center of Science and Education The Role of Animals in Eco-functional Intensification of Organic Agriculture Mette Vaarst1 1 Department of Animal Science, Aarhus University, Research Centre Foulum, P. O. Box 50, 8830 Tjele, Denmark Correspondence: Mette Vaarst, Department of Animal Science, Aarhus University, Research Centre Foulum, P. O. Box 50, 8830 Tjele, Denmark. Tel: 45-2290-1344. E-mail: [email protected] Received: February 22, 2015 Accepted: May 4, 2015 Online Published: June 20, 2015 doi:10.5539/sar.v4n3p103 URL: http://dx.doi.org/10.5539/sar.v4n3p103 Abstract Eco-functional intensification is understood as building synergies in multi-functional and resilient agricultural systems in harmony with their surrounding environment and human systems, to the benefit of diversified production of food and beyond, as in, for example, ecosystem services. Integration of animals into eco-functionally intensified agricultural systems to enhance agricultural, ecological and social systems, can contribute to driving a future sustainable development of organic agricultural and food systems. This approach may respond to challenges of an increasing industrialization of livestock in the global north, a process which has led to heavy reliance on external inputs, and, to a large extent, a detachment of animals from farming systems, especially in the global south. Animals are living sentient beings, but often not acknowledged as such. Complex, well-integrated systems can be organized so that they support the health and welfare of animals, and let these animals be valuable resources within the farming system.
    [Show full text]
  • Sustainable Alternatives to Industrial Agriculture Brian Koch ENVR 395 Research Seminar Advisors: Derek Larson & Jean Lavigne
    The Global Food System: Sustainable Alternatives to Industrial Agriculture Brian Koch ENVR 395 Research Seminar Advisors: Derek Larson & Jean Lavigne Abstract Methods Results A functioning food system should produce food effectively and An evaluation of six agro-ecological farming techniques (organic, hydroponics, perennial, -The Green Revolution spurred the beginning of industrialized sustainably. The current global food system relies unsustainably on integrated pest management, aquaponics, and no till agriculture) provided a means to agriculture, an unsustainable system which utilizes chemicals, industrial agriculture. Alternative techniques could solve the issues of critique sustainable farming systems in comparison with industrial agriculture. A matrix monoculture, degrades the environment, human health, and promotes unsustainable production. Six agro-ecological farming methods were scaling system was constructed to compare each of the proposed techniques could large-scale farming evaluated through environmental, social, and economic lenses which improve or degrade within the specific criteria: environmental degradation, human health, specifically addressed environmental degradation, human health, and -Six agro-ecological agricultural techniques analyzed provide the educational and communal importance of small scale farming. and farm size. The status quo was the baseline at three for each criteria. Environmental environmental, social, and economic benefits degradation must be improved by signs of soil health, biodiversity, and drastic reductions These techniques would promote sustainability by improving soil health -Implementation of these techniques provides potential to increase and integrity and enhancing biodiversity within cropping systems, in chemical applications must be exhibited to score a four and a five or six if significant biodiverse crop production, improve soil integrity, increasing resource improving human health by producing various types of crops necessary signs are shown.
    [Show full text]
  • Organic Farming As a Development Strategy: Who Are Interested and Who Are Not?
    Vol. 3, No. 1 Journal of Sustainable Development Organic Farming as A Development Strategy: Who are Interested and Who are not? Mette Vaarst Faculty of Agricultural Sciences, University of Aarhus P.O.Box 50, DK-8830 Tjele, Denmark Tel: 45-22-901-344 E-mail: Mette.Vaarst[a]agrsci.dk Abstract Much evidence shows that implementation of organic farming (OF) increases productivity in the Global South, and that it will be possible to feed a growing world population with food produced in OF systems. OF is explored, analysed and discussed in relation to the principles of Ecology, Health, Care and Fairness as enunciated by IFOAM, as a developmental strategy. Major financial powers are involved in the agro-related industries. A number of civil society-based organisations point to the major negative side effects of the trade with and use of agro-chemical products environmentally and in the further deepening of the gaps between rich and poor. The MDGs target the environmental sustainability explicitly, and OF is regarded as being a relevant strategy to meet many goals. A global development strategy is needed that explicitly includes future generations, ecosystems, biodiversity and plant and animal species threatened by eradication. Keywords: Organic farming principles, Health, Care, Fairness, Ecology, Development strategy, Millennium Development Goals (MDGs), Food security 1. Introduction: Organic and agro-ecological agriculture can feed the world – if we want to Organic and agro-ecological farming methods are based on the key principles of Health, Ecology, Fairness and Care enunciated by IFOAM (IFOAM, 2005; see Table 1). These principles are implemented in various sets of standards, legislation and guidelines in different countries, and are valued by the consumers and citizens of those countries for different reasons, such as that they guarantee healthy food production, assure environmental protection and emphasise local resources and food systems.
    [Show full text]
  • How to Design a Pro-Poor Payment for Environmental Service
    How to design a pro-poor payments for environmental services (PES) mechanism in the forest frontier? Lessons from action-research in Madagascar A. Toillier* and G. Serpantié** *CIRAD, UMR Innovation **IRD, UMR GRED Keywords: PES, watershed, pro-poor, co-design, local knowledge, farm-level, smallholders, slash-and- burn agriculture, forest conservation, Madagascar. Abstract PES is considered new incentive tools for managing both the environment and rural development in developing countries. However, designing mechanisms tailored to smallholder characteristics and rural development requirements remains a challenge, particularly in tropical countries where the forest sector is characterized by long-standing patterns of inequality and poverty. In order to switch from theoretical principles to a really innovative management tool addressing local issues, we argue that it is necessary to include as from the beginning the characteristics of agricultural dynamics, and to involve local stakeholders in co-designing the ES and in solving problems encountered in their delivery. Through an action-research framework, we explored the characteristics of a “pro-poor” watershed-based PES mechanism associated with a hydropower project. The study site is located in the agricultural frontier of a rainforest in eastern Madagascar. We built a local and inclusive knowledge system based on (1) local and scientific knowledge on the relationships between land use and water services, (2) stakeholder perceptions on the electrification project, and (3) the heterogeneity of livelihoods of targeted households. We were then able to clarify what the environmental service and governance scheme could be. The main results show the necessity of going beyond economic and hydrologic rationales that usually underlie watershed-based PES development.
    [Show full text]
  • AGROECOLOGY: the Bold Future of Farming in Africa
    AGROECOLOGY The Bold Future of Farming in Africa ! Agroecology: The Bold Future of Farming in Africa • 1 “If anyone still entertained doubts as to the benefits of agroecology and as to whether it can meet the challenges of this century, this collection of essays provides a compelling answer.” Olivier De Schutter, Co-Chair of IPES-Food and Former UN Special Rapporteur on the Right to Food “There could not have been a more opportune time to publish Agroecology: The Bold Future of Farming in Africa.” Hans R Herren, World Food Prize (1995) and Right Livelihood (2013) Laureate. “It would be unscientific to ignore this evidence. The future of Africa’s agriculture lies in the hands and minds of Africa’s ecological farmers.” “The evidence and case studies Dr Vandana Shiva, Founder of in this report point to one Navdanya, Author of The Violence of the Green Revolution, Stolen inevitable conclusion: African Harvest, Who Really Feeds farmers hold the keys to the World. unlocking the potential of agroecological farming systems for improved nutrition, livelihoods, and biodiversity.” Jennifer Astone, Executive Director, Swift Foundation “Agroecology is the most important word no one knows: It represents a proven way of growing food that is best for people, the planet and the climate.” Anna Lappe, Small Planet Institute Cover Photo: Drought resistant pearl millet for resilience. Photo: Mwanzo Millinga Photo:2 • Agroecology: Kerry Farrelly The Bold Future of Farming in Africa AGROECOLOGY: The Bold Future of Farming in Africa With contributions from: Case studies from: Miguel Altieri TRAX, Ghana Mariann Bassey BERMA, Kenya Nnimmo Bassey Never Ending Food, Malawi Million Belay Send a Cow, Ethiopia Lim Li Ching Ruzivo Trust, Zimbabwe Steve Gliessman G BIACK, Kenya Bernard Y.
    [Show full text]
  • Holistic Management Case Studies, Profiles and Articles
    Holistic Management Case Studies, Profiles and Articles For many years, large areas of grasslands around the world have been turning into barren deserts. This process, called desertification, is happening at an alarming rate and plays a critical role in many of the world’s most pressing problems, including climate change, drought, famine, poverty and social violence. One major cause of desertification is agriculture – or the production of food and fiber from the world’s land by human beings for human beings. In the past, large wild herds of grass-eating herbivores migrated and were pushed along by predators over the grasslands. These herds grazed, defecated, stomped and salivated as they moved around, building soil and deepening plant roots. Over time, the wild herds were largely replaced by small numbers of domestic, sedentary livestock and populations of predators were mostly destroyed. Without the constant activity of large numbers of cattle, the cycle of biological decay on the grasslands was interrupted and the once-rich soils turned into dry, exposed desert land. Over forty years ago, Allan Savory developed Holistic Management, an approach that helps land managers, farmers, ranchers, environmentalists, policymakers and others understand the relationship between large herds of wild herbivores and the grasslands and develop strategies for managing herds of domestic livestock to mimic those wild herds to heal the grasslands. Holistic Management is successful because it is a cost- effective, highly scalable, and a nature-based solution. It is sustainable because it increases land productivity, livestock stocking rates, and profits. Today, there are successful Holistic Management practitioners spread across the globe, from Canada to Patagonia and from Zimbabwe to Australia to Montana.
    [Show full text]
  • Can Ecological Agriculture Feed Nine Billion People? - Monthly Review 2/11/10 5:28 PM
    Can Ecological Agriculture Feed Nine Billion People? - Monthly Review 2/11/10 5:28 PM November 2009 Can Ecological Agriculture Feed Nine Billion People? Jules Pretty Home Something is wrong with our agricultural and food systems.1 Despite Subscribe great progress in increasing productivity in the last century, hundreds of millions of people remain hungry and malnourished. Further Notes from the Editors hundreds of millions eat too much, or consume the wrong sorts of food, and it is making them ill. The health of the environment suffers Jules Pretty is professor of too, as degradation of soil and water seems to accompany many of environment and society at the the agricultural systems we have developed in recent years. Can University of Essex, UK. nothing be done, or is it time for the expansion of an agriculture ESSAYS ON: founded more on ecological principles and in harmony with people, their societies, and cultures? » AFRICA » ASIA As we advance into the second decade of the twenty-first century, we » EMPIRE & THE NEW IMPERIALISM have some critical choices. Humans have been farming for some 600 » EUROPE generations, and for most of that time the production and consumption » FEMINISM/WOMEN of food has been intimately connected to cultural and social systems. » FOOD & HUNGER Yet, over the last two or three generations, we have developed hugely » GLOBALIZATION successful agricultural systems based largely on industrial principles. » IRAQ & U.S. IMPERIALISM These systems produce more food per hectare and per worker than » LABOR/WORKING-CLASS ever before, but only look efficient if the harmful side-effects — the use » LATIN AMERICA & CARIBBEAN of fossil fuels, the loss of soil health, the damage to biodiversity, the » MEDIA/COMMUNICATIONS pollution of water and air, the harm to human health caused by » THE WAR ON TERRORISM & THE agricultural pesticides on food and in the environment, and the NEW POLICE STATE development of antibiotic-resistant bacteria in large-scale animal » U.S.
    [Show full text]
  • Aquaponics: the Future of Ecological Farming
    Aquaponics: The Future of Ecological Farming Benjamin Oif What Is It? • The Combination of Aquaculture (raising fish) and Hydroponics (growing plants without soil) Aquaculture Hydroponics Problems • Aquaculture – Fish are crammed into small spaces. – Waste is produced quickly which can cause the fish to become sick – Frequent water changes and filtering must be performed ($$$$) • Hydroponics – Chemicals are used to grow the plants – Non-Organic Solution! • Aquaponics – Using fish waste as fertilizer for plants and using plants as a filter for the fish tank • Organic • Economical - no filter and no chemical fertilizers • Ecological - Reusing the waste produced by the fish and the water Proposal • Design and build two Aquaponics systems that can be used to perform various experiments – Experiment would test Ebb and Flow vs. Constantly Filled systems • 3 Phases – 1. Construction – 2. Setup – 3. Experiment The Design: Vertical Aquaponics Ebb and Flow Plant Bed Sometimes Submerged Always Submerged Constantly Filled (Constant) Plant Bed Always Submerged Construction • Building the Acrylic Plant Tanks… Construction Construction • Building the tables… Construction Construction The Setup • Longest phase of the project – From October to March • Many things went wrong – 1. Piping leaked – 2. Plants did not germinate properly – 3. ACRYLIC TANKS CRACKED • In several places Cascio brothers helping after the tank leaked The Setup Rockwool Hydroton Experiment • 8 Tilapia in each tank • Green Beans, Lettuce, Cucumbers, Basil, Celery, Parsley and Tomatoes • Hypothesis:
    [Show full text]
  • Agroecological Niches As Ecosystem-Based Adaptive Option to Environmental Change in the Forest-Savanna Transition Zone of Ghana
    Journal of Sustainable Development; Vol. 8, No. 9; 2015 ISSN 1913-9063 E-ISSN 1913-9071 Published by Canadian Center of Science and Education Agroecological Niches as Ecosystem-Based Adaptive Option to Environmental Change in the Forest-Savanna Transition Zone of Ghana Benjamin D. Ofori1, Jesse S. Ayivor1, Opoku Pabi1 & Christopher Gordon1 1Institute for Environment and Sanitation Studies, University of Ghana, Ghana Correspondence: Benjamin D. Ofori, Institute for Environment and Sanitation Studies, University of Ghana. P. O. Box LG209 Legon, Accra, Ghana. Tel: 20-813-4292. E-mail: [email protected] Received: September 4, 2015 Accepted: September 16, 2015 Online Published: November 29, 2015 doi:10.5539/jsd.v8n9p281 URL: http://dx.doi.org/10.5539/jsd.v8n9p281 Abstract Generally, local farmers are able to adapt to environmental change (and developments in socio-economic conditions) by engaging in a range of creative practices of on-farm management, use of improved crop varieties and adoption of new technologies. However in the past few decades, there has been growing interest in other adaptive options with the potential of addressing household food security and the multiple dimensions of sustainable agriculture. This study therefore examined the use of niche environments in the agricultural landscape as ecosystem-based adaptive strategy to environmental change among 102 farmers of 9 fringe communities of the Kogyae Strict Nature Reserve of the forest-savanna transition zone in Ghana. The study noted the increasing shift from maize cultivation to rice production using marshy areas and low-lying parts of farm fields and farms. The farmers mentioned climatic, ecological and other socio-economic reasons for this trend.
    [Show full text]
  • Cultivating Ecological Community Literacies with Permaculture
    Community Literacy Journal Volume 10 Issue 1 Autumn Article 8 Fall 2015 Feed Your Mind: Cultivating Ecological Community Literacies with Permaculture Stephanie Wade Bates College, [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/communityliteracy Recommended Citation Wade, Stephanie. “Feed Your Mind: Cultivating Ecological Community Literacies with Permaculture.” Community Literacy Journal, vol. 10, no. 1, 2015, pp. 87–98, doi:10.25148/clj.10.1.009277. This work is brought to you for free and open access by FIU Digital Commons. It has been accepted for inclusion in Community Literacy Journal by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. autumn 2015 Feed Your Mind: Cultivating Ecological Community Literacies with Permaculture Stephanie Wade Tis article proposes permaculture, an ecological alternative to industrial agriculture, as a way to design frst-year composition and community literacy classes. First, the paper connects permaculture with post-humanism to describe ecological community literacies—the type of knowledge that ecological theorists say we need to navigate the end of the anthropocene. Next, it describes assignments that can lead college students to this knowledge, and fnally, it describes actual community literacy projects where college students can lead elementary students through assignments to gain this knowledge. As a college writing teacher, I ofen feel that my work—teaching writing at Unity College, a small, private, liberal
    [Show full text]
  • Permaculture: Challenges and Benefits in Improving Rural Livelihoods in South Africa and Zimbabwe
    Article Permaculture: Challenges and Benefits in Improving Rural Livelihoods in South Africa and Zimbabwe Zahra Didarali *,† and James Gambiza † Department of Environmental Science, Rhodes University, Grahamstown 6139, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-46-603-7002 † These authors contributed equally to this work. Received: 16 February 2019; Accepted: 4 April 2019; Published: 12 April 2019 Abstract: Feeding a growing global population using conventional agricultural practices is leading to adverse environmental impacts. There is a call for alternative forms of agriculture that address social, economic, and environmental aspects of sustainability. Permaculture is a holistic design framework that incorporates sustainable agricultural practices, potentially improving livelihoods. This study looked at the challenges and benefits of permaculture in improving rural livelihoods in Zimbabwe and South Africa. We used semi-structured interviews to collect data. Permaculture contributed over 40% to total income for participants in both countries. However, permaculture was not the dominant source of income and periodically straddled multiple livelihood strategies. The main benefits of permaculture were identified as improved human health, increased resilience to environmental changes, and reduction of input costs. The key challenges included high labour input, infestation of pests and diseases, and lack of knowledge on permaculture practices. Although permaculture presents significant challenges, its integration with other forms of sustainable agricultural practices can contribute to improved rural livelihoods. Keywords: agriculture; agroecology; livelihoods; permaculture 1. Introduction Agriculture is one of the most important human endeavours [1,2]. It serves as the main source of food, which is crucial for the survival of the human race.
    [Show full text]