Organic Farming and Permaculture at the MSU Student Organic Farm

Total Page:16

File Type:pdf, Size:1020Kb

Organic Farming and Permaculture at the MSU Student Organic Farm What is a Farm? Possible Farming Perspectives Organic Farming and Permaculture • Purpose - Focus • Place – Farm, Field, Forest, Frontyard (Where?) at the MSU Student Organic Farm • People – Farmers, Families, Friends (Who?) Presented to the North Central Nut Growers Association at the Annual Meeting held at Michigan State University, August 13, 2013 • Process – Farming (How?) • Product – Function (Food, Fiber, Flowers, Fuel, etc) (What?) John Biernbaum MSU Horticulture • Policies, Politics – Funding, Finances • Possibilities – Friends and Families Parts of this Power Point Presentation were prepared • Profit - Finish by Jay Tomczak as part of his Masters Thesis Project. • Passion – Fun 2 Reducing Risk for Small Scale Farmers Integral Agriculture Basic Curriculum Assumptions Farmers, Friends and Families • Build Soil Organic Matter – Use of cover crops, compost, etc Using Facts and Feelings to – Reduce risk of flooding, drought, disease, erosion • Increase Product Diversity Faithfully, Physically and Fearlessly – Mix annual and perennial crops and animals Farm – Reduce risk of production or market failure • Use Season Extension Front-yards, Forests, and Fields For Food, Feed, – Greenhouses, cold frames, hoophouses, transplants Fodder, Fiber, Fuel, Flowers, Fertility, Fun, – Reduce risk of crop loss and extend marketing • Use Direct Marketing Freedom, Fairness and the Future. – Farmer’s markets, CSA, Farm Stand – Reduce risk of market loss due to falling price 3 Practical Profitable Prolific Perpetual Produce Extended Season, Four Season, Year-Round Farming Practical Pieces of the Puzzle Quick For the Health of It! Low Hoops Let’s Eat! Plant Tunnels Elevation Spacing Cold High Vertical Exposure Frames Tunnels • Perennials Factors Space Heat Green- Soil Retention houses Factors • Organic Heating Frost & Placement Soil & Bed Freezing Preparation Cooling & • Permaculture Shading Process Transplants Protection Drainage Perpetual Succession Produce Pests & Irrigation Planting Pestilence • Productive/Prolific Planning Harvest Scheduling Preservation Methods • Profitable Crop Participation Cultivar Cold Selection Profit (People) Selection Storage • Perpetual Processing Fermentation Jobs Community Support John Biernbaum, MSU-SOF Freezing Canning September, 2011 Education Drying Majority of World Food Supply from Four Major Crops- What are they? With animal production, we would also • Wheat consider pasture and range land made • Rice up of grasses and broadleaf crops as • Potatoes • Corn perennial systems. • Two others to consider: – Sugarcane What are other perennial food – Soybeans crops that you can identify? • Are these annual or perennial crops? paw paw persimmons Possible Categories to Consider plums hazelnut nectarines cherry hickory nut peaches pears chestnut walnut apples “tree fruit” “tree nuts” mulberries sugar maple “tree other” “tree berries” serviceberries “tree fruit” “tree nuts” “tree other” elderberries “tree berries” culinary “vine “herbaceous” grapes medicinal “herbaceous” berries” Midwest Zone 5 hardy kiwi “vines” flowers 40 Midwest Zone 5 Perennial Farm & blueberries asparagus “vegetables” cranberries Perennial Farm & “vegetables” “bush Garden Crops “bush rhubarb gooseberries Garden Crops berries” berries” horseradish currants “root crops” ground nuts “root crops” bush cherries horseradish “berries” “berries” sunchoke strawberries “services – burdock raspberries “services – biodiversity” “services – “services – blackberries N-fixation” “mushrooms” N-fixation” biodiversity” pollen/nectar “mushrooms” Alfalfa, clover windbreaks many siberian pea water management Important Perennial Food Crops in Tropical Why are perennials important? and Subtropical Climates What are some advantages of perennial crops? • Banana • More rapid development in spring so longer growing • Coconut period (season extension). • Coffee • Larger root system so more potential to survive or • Tea tolerate drought. • Bamboo • Root system stores energy reserves and helps with • Olives survival under temperature extremes. • Mango • No regular cultivation of soil so potential to prevent • Yam or sweet potato soil erosion and build soil organic matter. • Cassava Annual Perennial Leaf Area Index (LIA) Annual Perennial Leaf Area Index (LIA) April May June July August September October November April May June July August September October November Corn Plant from Seed Chestnut Tree Nitrogen and minerals are moved from leaves back into the woody part of the plant. How is Leaf Area Index calculated and why is it important? Leaves provide important biomass for soil microorganisms as do dead roots. Why are perennials used less? Yield is a function of many What are some disadvantages of perennial crops? integrated and interacting factors • Variety • No regular cultivation of soil so competition from ground cover occurs (like quack grass). • Pruning • Training • Longer term rotations so potential for root pathogens to build up in the soil. • Spacing • Light and Canopy Management • Takes a longer time to establish and to get a harvest. • Rootstock – dwarfing (How does it work?) • Higher initial cost of plant material. • Flowering (flower formation the year before) • Takes time to learn how to manage all the different • Flower Set and Pollination crops – pruning and plant protection. • Thinning (Non organic vs organic methods?) • Pest and Disease Susceptibility More than Yield; Profit relates to Fruit Number, Size, Quality • Fruit number up, fruit size down • Fruit number down, fruit size up Tall Trees, hard to pick and spray, were replaced by • Quality usually associated with larger size trees pruned to keep them • Biennial Bearing – a higher yield year followed lower to the ground. by a lower yield year; depends on the variety. • Key factor is profit more than yield. • Perennial crops are more challenging to manage than annual crops? Maybe not? Orchard Floor Management Perennial Crop Ground Floor Management: Impact on Soil Biology and Pest Populations? Where’s the Mulch? Long Term Rotation? Harvest Trees Established Grazing Wooded Pasture Perennials N Fixation Infra- structure Mixed Annuals and Young Annual Crop Wooded Production Perennials What is a Organic Farming? Required Components • No Prohibited Inputs 3yrs prior to first harvest NOP (National Organic Program) – Synthetic Pesticides or Fertilizers • Organic production. A production system that – Prohibited non-synthetic substances (e.g. rotenone, is managed in accordance with the Act and KCL) regulations in this part to respond to site- specific conditions by integrating cultural, • Crop Rotation biological, and mechanical practices that • Pro-active / preventative mgnt of weeds, pests, foster cycling of resources, promote ecological disease. balance, and conserve biodiversity. 25 26 Required Components Organic Farming &Ethic Not what it “isn’t” but what it “is” • 3rd Party certification by USDA accredited • Emphasis on maintenance and building of certifier Soils, Natural resources and Biodiversity • Annual Inspection • Soil Health • Organic Systems Plan & Record Keeping • Crop and Animal Health • National Organic Standards Board governs and – rather than insect and disease management updates standards. • Stewardship and care of the land and animals 27 28 International Federation of Organic Organic Farming: What must you know to Agriculture Movements (IFOAM) create a productive agroecosystem? • IFOAM Principles 2005 – Health • Biology & Ecology of the different parts of the – Ecology system and how to manage them. – Fairness – Soil Management – Care – Ground Cover Management • Developed over two years with a participatory – Herbivore, Decomposer, Natural Enemy process. Management • Details available at www.ifoam.org – Crop Selection and Management 29 Soil Management • Pre-Establishment (site preparation) How are these factors • Post-Establishment (site management) applied/relevant/different in a Perennial • Amendments Cropping System? – Compost, Minerals, Mulch • Cover Crops (how would you use these?) • Excess nutrients cause un-balanced growth (too much shoot/leaf and not enough wood production) Non-Crop Competitors (Weeds) • Perennial weeds vs annual weeds • Effect/roles of weeds/competition on crop • Pre-Establishment (site preparation) • Post-Establishment (site managment) • Techniques – Mow and or grazing with animals – Mulch – Flame – Till (Swiss Sandwich) – Organic Herbicides? Pest & Disease Management Edible Forest Gardening • Pest population - preventing build up • Focus on the crop ecology aspect of • Farm-scaping / beneficial attraction permaculture • Low/Zero damage tolerance • Developing landscape evaluation, • Intensive Monitoring & IPM implementation and management plans for a sustainable agriculture • Pheromone Traps & Disruption • Incorporates concepts of efficient use of space • Use of Organic Sprays and the developmental changes that occur over time • Integration of annual and perennial crops Model of the Three Sisters Garden • Putting parts together in a way that the combination works better than the sum of the parts. Gardening Like the Forest • Corn, Beans and Squash and not • Beans grow up the corn. • Beans eventually provide nitrogen through nitrogen fixation. Gardening in the Forest • Prickly squash vines protect them all from animals and cover the ground to reduce weeds and conserve water. • All three provide food that can be stored for the winter. Add Rising Energy Costs, Energy/Biofuels and Edible Forest Gardening Climate Change to the Big Picture • Establishing a wide diversity
Recommended publications
  • Urban Agriculture
    GSDR 2015 Brief Urban Agriculture By Ibrahim Game and Richaela Primus, State University of New York College of Forestry and Environmental Science Related Sustainable Development Goals Goal 01 End poverty in all its forms everywhere (1.1, 1.4, 1.5 ) Goal 02 End hunger, achieve food security and improved nutrition and promote sustainable agriculture (2.1, 2.3, 2.4, 2.c) Goal 12 Ensure sustainable consumption and production patterns (12.1, 12.2, 12.3, 12.4,12.5, 12.7, 12.8) Goal 15 Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss (15.9 ) *The views and opinions expressed are the authors’ and do not represent those of the Secretariat of the United Nations. Online publication or dissemination does not imply endorsement by the United Nations. Authors can be reached at [email protected] and [email protected]. Introduction Examples of UEA include community gardens, vegetable gardens and rooftop farms, which exist Urban Agriculture (UA) and peri-urban agriculture can worldwide and are playing important roles in the urban be defined as the growing, processing, and distribution food systems. 17 CEA includes any form of agriculture of food and other products through plant cultivation where environmental conditions (such as, light, and seldom raising livestock in and around cities for temperature, humidity, radiation and nutrient cycling) 1 2 feeding local populations. Over the last few years, are controlled in conjunction with urban architecture UA has increased in popularity due to concerns about or green infrastructure.
    [Show full text]
  • Animal Nutrition
    GCSE Agriculture and Land Use Animal Nutrition Food production and Processing For first teaching from September 2013 For first award in Summer 2015 Food production and Processing Key Terms Learning Outcomes Intensive farming Extensive farming • Explain the differences between intensive and Stocking rates extensive farming. Organic methods • Assess the advantages and disadvantages of intensive and extensive farming systems, Information including organic methods The terms intensive and extensive farming refer to the systems by which animals and crops are grown and Monogastric Digestive Tract prepared for sale. Intensive farming is often called ‘factory farming’. Intensive methods are used to maximise yields and production of beef, dairy produce, poultry and cereals. Animals are kept in specialised buildings and can remain indoors for their entire lifetime. This permits precise control of their diet, breeding , behaviour and disease management. Examples of such systems include ‘barley beef’ cattle units, ‘battery’ cage egg production, farrowing crates in sow breeding units, hydroponic tomato production in controlled atmosphere greenhouses. The animals and crops are often iStockphoto / Thinkstock.com fertilised, fed, watered, cleaned and disease controlled by Extensive beef cattle system based on pasture automatic and semi automatic systems such as liquid feed lines, programmed meal hoppers, milk bacterial count, ad lib water drinkers and irrigation/misting units. iStockphoto / Thinkstock.com Extensive farming systems are typically managed outdoors, for example with free-range egg production. Animals are free to graze outdoors and are able to move around at will. Extensive systems often occur in upland farms with much lower farm stocking rates per hectare. Sheep and beef farms will have the animals grazing outdoors on pasture and only brought indoors and fed meals during lambing season and calving season or during the part of winter when outdoor conditions are too harsh.
    [Show full text]
  • Sample Costs for Beef Cattle, Cow-Calf Production
    UNIVERSITY OF CALIFORNIA AGRICULTURE AND NATURAL RESOURCES COOPERATIVE EXTENSION AGRICULTURAL ISSUES CENTER UC DAVIS DEPARTMENT OF AGRICULTURAL AND RESOURCE ECONOMICS SAMPLE COSTS FOR BEEF CATTLE COW – CALF PRODUCTION 300 Head NORTHERN SACRAMENTO VALLEY 2017 Larry C. Forero UC Cooperative Extension Farm Advisor, Shasta County. Roger Ingram UC Cooperative Extension Farm Advisor, Placer and Nevada Counties. Glenn A. Nader UC Cooperative Extension Farm Advisor, Sutter/Yuba/Butte Counties. Donald Stewart Staff Research Associate, UC Agricultural Issues Center and Department of Agricultural and Resource Economics, UC Davis Daniel A. Sumner Director, UC Agricultural Issues Center, Costs and Returns Program, Professor, Department of Agricultural and Resource Economics, UC Davis Beef Cattle Cow-Calf Operation Costs & Returns Study Sacramento Valley-2017 UCCE, UC-AIC, UCDAVIS-ARE 1 UC AGRICULTURE AND NATURAL RESOURCES COOPERATIVE EXTENSION AGRICULTURAL ISSUES CENTER UC DAVIS DEPARTMENT OF AGRICULTURAL AND RESOURCE ECONOMICS SAMPLE COSTS FOR BEEF CATTLE COW-CALF PRODUCTION 300 Head Northern Sacramento Valley – 2017 STUDY CONTENTS INTRODUCTION 2 ASSUMPTIONS 3 Production Operations 3 Table A. Operations Calendar 4 Revenue 5 Table B. Monthly Cattle Inventory 6 Cash Overhead 6 Non-Cash Overhead 7 REFERENCES 9 Table 1. COSTS AND RETURNS FOR BEEF COW-CALF PRODUCTION 10 Table 2. MONTHLY COSTS FOR BEEF COW-CALF PRODUCTION 11 Table 3. RANGING ANALYSIS FOR BEEF COW-CALF PRODUCTION 12 Table 4. EQUIPMENT, INVESTMENT AND BUSINESS OVERHEAD 13 INTRODUCTION The cattle industry in California has undergone dramatic changes in the last few decades. Ranchers have experienced increasing costs of production with a lack of corresponding increase in revenue. Issues such as international competition, and opportunities, new regulatory requirements, changing feed costs, changing consumer demand, economies of scale, and competing land uses all affect the economics of ranching.
    [Show full text]
  • Master's Thesis
    Master’s Thesis - master Innovation Science Aquaponics Development in the Netherlands The Role of the Emerging Aquaponics Technology and the Transition towards Sustainable Agriculture Mascha Wiegand 6307345 Tulpenweg 17 63579 Freigericht Germany [email protected] +49 1607561911 Supervisor: Prof. Dr. Ellen H.M. Moors Copernicus Institute of Sustainable Development [email protected] +31 30 253 7812 Second Reader: Dr. Koen Beumer Summary A sustainability transition in the agri-food regime is urgently required to interrupt the strong reciprocal effect between current food production standards and climate change (Willett et al., 2019). One sustainable innovation in the agri-food sector is aquaponics. Aquaponics is the combination of hydroponics and recirculating aquaculture in one controlled environment (Somerville, Cohen, Pantanella, Stankus & Lovatelli, 2014). At first sight, the water and nutrient-saving character of aquaponics, amongst other features (Somerville et al., 2014), sound promising for a transition towards sustainable agriculture. Therefore, the following research question emerged: How can the emerging aquaponics technology contribute to the sustainability transition in the Dutch agri- food sector based on Dutch aquaponics developments in the period 2008-2018? To answer this overarching research question, three sub-questions were developed. An integrated framework combining the multilevel perspective (MLP) and the technological innovation system (TIS) was used to understand the dynamics between overall structural trends, the current Dutch agri-food sector and the emerging aquaponics innovation. The innovation was also set into a broader European context. The research was of exploratory nature and used a qualitative content analysis to process 23 interviews, scientific articles, practitioner websites, publication, patent and Google Trend statistics, etc.
    [Show full text]
  • Permaculture Design Plan Alderleaf Farm
    PERMACULTURE DESIGN PLAN FOR ALDERLEAF FARM Alderleaf Farm 18715 299th Ave SE Monroe, WA 98272 Prepared by: Alderleaf Wilderness College www.WildernessCollege.com 360-793-8709 [email protected] January 19, 2011 TABLE OF CONTENTS INTRODUCTION 1 What is Permaculture? 1 Vision for Alderleaf Farm 1 Site Description 2 History of the Alderleaf Property 3 Natural Features 4 SITE ELEMENTS: (Current Features, Future Plans, & Care) 5 Zone 0 5 Residences 5 Barn 6 Indoor Classroom & Office 6 Zone 1 7 Central Gardens & Chickens 7 Plaza Area 7 Greenhouses 8 Courtyard 8 Zone 2 9 Food Forest 9 Pasture 9 Rabbitry 10 Root Cellar 10 Zone 3 11 Farm Pond 11 Meadow & Native Food Forest 12 Small Amphibian Pond 13 Parking Area & Hedgerow 13 Well house 14 Zone 4 14 Forest Pond 14 Trail System & Tenting Sites 15 Outdoor Classroom 16 Flint-knapping Area 16 Zone 5 16 Primitive Camp 16 McCoy Creek 17 IMPLEMENTATION 17 CONCLUSION 18 RESOURCES 18 APPENDICES 19 List of Sensitive Natural Resources at Alderleaf 19 Invasive Species at Alderleaf 19 Master List of Species Found at Alderleaf 20 Maps 24 Frequently Asked Questions and Property Rules 26 Forest Stewardship Plan 29 Potential Future Micro-Businesses / Cottage Industries 29 Blank Pages for Input and Ideas 29 Introduction The permaculture plan for Alderleaf Farm is a guiding document that describes the vision of sustainability at Alderleaf. It describes the history, current features, future plans, care, implementation, and other key information that helps us understand and work together towards this vision of sustainable living. The plan provides clarity about each of the site elements, how they fit together, and what future plans exist.
    [Show full text]
  • Cover Crop Trends, Programs, and Service
    Economic Research Cover Crop Trends, Programs, and Service Economic Practices in the United States Information Bulletin Number 222 February 2021 Steven Wallander, David Smith, Maria Bowman, and Roger Claassen Economic Research Service www.ers.usda.gov Steven Wallander, David Smith, Maria Bowman, and Roger Claassen. Cover Crop Trends, Programs, and Practices in the United States, EIB 222, U.S. Department of Agriculture, Economic Research Service, February 2021. Cover is a derivative of images from Getty Images. Use of commercial and trade names does not imply approval or constitute endorsement by USDA. To ensure the quality of its research reports and satisfy governmentwide standards, ERS requires that all research reports with substantively new material be reviewed by qualified technical research peers. This technical peer review process, coordinated by ERS' Peer Review Coordinating Council, allows experts who possess the technical background, perspective, and expertise to provide an objective and meaningful assessment of the output’s substantive content and clarity of communication during the publication’s review. In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.
    [Show full text]
  • Salix Production for the Floral Industry in the USA Who Grow Willows
    Salix production for the floral industry in the USA Who grow willows • Plant nurseries (ornamental and erosion control) • Biomass growers • Basket makers • Floral cut-stem production The USDA Specialty Crop Initiative • the production of woody ornamental cut stems, representing a specialty niche in cut flower production, has risen in popularity • dogwood (Cornus), Forsythia, Hydrangea, lilac (Syringa), and Viburnum • potential as an off-season production option, or third crop enterprise Objectives • to characterize the extent of Salix cultivation as a floral crop in the USA by identifying the active willow growers and their profiles, production acreage and gross sales • to identify if the production practices are well defined and consistent to support crop expansion • the potential the crop’s expansion Distribution and concentration of Salix survey recipients in the United States 52 growers The Association of Specialty Cut Flower Growers (ASCFG) Grower profile • Small scale specialty cut flower producers (58.6%) • Large scale specialty cut flower producers (24.1%) • 24.1% considered Salix as “major crop” –Total gross sales for 80.0% was less than $25,000; 17.0% grossed $25,000- 50,000 and 3% grossed $50,000- 100,000 • good cash return, up to $1.25 to $1.75 per stem of common pussy willow • annual gross financial returns for willow plants, up to $24.94, is much higher than for many other woody florals Taxa in cultivation • For catkins •For Stems The seasonality of the crop Willow harvest for ornamental value by number of growers reporting
    [Show full text]
  • Organic Agriculture As an Opportunity for Sustainable Agricultural Development
    Research to Practice Policy Briefs Policy Brief No. 13 Organic Agriculture as an Opportunity for Sustainable Agricultural Development Verena Seufert [email protected] These papers are part of the research project, Research to Practice – Strengthening Contributions to Evidence-based Policymaking, generously funded by the Canadian International Development Agency (CIDA). Policy Brief - Verena Seufert 1 Executive summary We need drastic changes in the global food system in order to achieve a more sustainable agriculture that feeds people adequately, contributes to rural development and provides livelihoods to farmers without destroying the natural resource basis. Organic agriculture has been proposed as an important means for achieving these goals. Organic agriculture currently covers only a small area in developing countries but its extent is continuously growing as demand for organic products is increasing. Should organic agriculture thus become a priority in development policy and be put on the agenda of international assistance as a means of achieving sustainable agricultural development? Can organic agriculture contribute to sustainable food security in developing countries? In order to answer these questions this policy brief tries to assess the economic, social and environmental sustainability of organic agriculture and to identify its problems and benefits in developing countries. Organic agriculture shows several benefits, as it reduces many of the environmental impacts of conventional agriculture, it can increase productivity in small farmers’ fields, it reduces reliance on costly external inputs, and guarantees price premiums for organic products. Organic farmers also benefit from organizing in farmer cooperatives and the building of social networks, which provide them with better access to training, credit and health services.
    [Show full text]
  • Integrating Ecological Risk Assessment and Economic Analysis in Watersheds: a Conceptual Approach and Three Case Studies
    EPA/600/R-03/140R September 2003 Integrating Ecological Risk Assessment and Economic Analysis in Watersheds: A Conceptual Approach and Three Case Studies National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ABSTRACT This document reports on a program of research to investigate the integration of ecological risk assessment (ERA) and economics, with an emphasis on the watershed as the scale for analysis. In 1993, the U.S. Environmental Protection Agency initiated watershed ERA (W- ERA) in five watersheds to evaluate the feasibility and utility of this approach. In 1999, economic case studies were funded in conjunction with three of those W-ERAs: the Big Darby Creek watershed in central Ohio; the Clinch Valley (Clinch and Powell River watersheds) in southwestern Virginia and northeastern Tennessee; and the central Platte River floodplain in Nebraska. The ecological settings, and the analytical approaches used, differed among the three locations, but each study introduced economists to the ERA process and required the interpretation of ecological risks in economic terms. A workshop was held in Cincinnati, OH in 2001 to review progress on those studies, to discuss environmental problems involving other watershed settings, and to discuss the ideal characteristics of a generalized approach for conducting studies of this type. Based on the workshop results, a conceptual approach for the integration of ERA and economic analysis in watersheds was developed.
    [Show full text]
  • Cover Crop-Based, Organic Rotational No-Till Corn and Soybean Production Systems in the Mid-Atlantic United States
    agriculture Article Cover Crop-Based, Organic Rotational No-Till Corn and Soybean Production Systems in the Mid-Atlantic United States John M. Wallace 1, Alwyn Williams 2, Jeffrey A. Liebert 3, Victoria J. Ackroyd 2,4, Rachel A. Vann 5, William S. Curran 1, Clair L. Keene 6, Mark J. VanGessel 7, Matthew R. Ryan 3 and Steven B. Mirsky 4,* 1 Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA; [email protected] (J.M.W.); [email protected] (W.S.C.) 2 Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; [email protected] (A.W.); [email protected] (V.J.A.) 3 Section of Soil and Crop Sciences, Cornell University, Ithaca, NY 14853, USA; [email protected] (J.A.L.); [email protected] (M.R.R.) 4 Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705, USA 5 Department of Crop and Soil Sciences, North Carolina State University, NC 27695, USA; [email protected] 6 Williston Research Extension Center, North Dakota State University, Williston, ND 58801, USA; [email protected] 7 Department of Plant and Soil Sciences, University of Delaware, Georgetown, DE 19947, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-301-504-5324 Academic Editor: Patrick Carr Received: 11 February 2017; Accepted: 31 March 2017; Published: 6 April 2017 Abstract: Cover crop-based, organic rotational no-till (CCORNT) corn and soybean production is becoming a viable strategy for reducing tillage in organic annual grain systems in the mid-Atlantic, United States.
    [Show full text]
  • Course Handout for Introduction to Forest Gardening
    COURSE HANDOUT FOR INTRODUCTION TO FOREST GARDENING Complied by Jess Clynewood and Rich Wright Held at Coed Hills Rural Art Space 2010 ETHICS AND PRINCIPLES OF PERMACULTURE Care for the Earth v Care for the people v Fair shares PRINCIPLES Make the least change for the greatest effect v Mistakes are tools for learning v The only limits to the yield of a system are imagination and understanding Observation – Protracted and thoughtful observation rather than prolonged and thoughtless action. Observation is a key tool to re-learn. We need to know what is going on already so that we don’t make changes we will later regret. Use and value diversity - Diversity allows us to build a strong web of beneficial connections. Monocultures are incredibly fragile and prone to pests and diseases – diverse systems are far more robust and are intrinsically more resilient. Relative Location and Beneficial Connections – View design components not in isolation but as part of a holistic system. Place elements to maximise their potential to create beneficial connections with other elements. Multi-functional Design – Try and gain as many yields or outputs from each element in your design as possible. Meet every need in multiple ways, as many elements supporting each important function creates stability and resilience. Perennial systems – minimum effort for maximum gain Create no waste - The concept of waste is essentially a reflection of poor design. Every output from one system could become the input to another system. We need to think cyclically rather than in linear systems. Unmet needs = work, unused output = pollution. Stacking – Make use of vertical as well as horizontal space, filling as many niches as possible.
    [Show full text]
  • Perennial Polyculture Farming: Seeds of Another Agricultural Revolution?
    THE ARTS This PDF document was made available from www.rand.org as a public CHILD POLICY service of the RAND Corporation. CIVIL JUSTICE EDUCATION Jump down to document ENERGY AND ENVIRONMENT 6 HEALTH AND HEALTH CARE INTERNATIONAL AFFAIRS The RAND Corporation is a nonprofit research NATIONAL SECURITY POPULATION AND AGING organization providing objective analysis and effective PUBLIC SAFETY solutions that address the challenges facing the public SCIENCE AND TECHNOLOGY and private sectors around the world. SUBSTANCE ABUSE TERRORISM AND HOMELAND SECURITY TRANSPORTATION AND INFRASTRUCTURE Support RAND WORKFORCE AND WORKPLACE Browse Books & Publications Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Pardee Center View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non- commercial use only. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. This product is part of the RAND Corporation occasional paper series. RAND occasional papers may include an informed perspective on a timely policy issue, a discussion of new research methodologies, essays, a paper presented at a conference, a conference summary, or a summary of work in progress. All RAND occasional papers undergo rigorous peer review to ensure that they meet high standards for research quality and objectivity. Perennial Polyculture Farming Seeds of Another Agricultural Revolution? James A. Dewar This research was undertaken as a piece of speculation in the RAND Frederick S.
    [Show full text]