Organic Farming As a Development Strategy: Who Are Interested and Who Are Not?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Animal Nutrition
GCSE Agriculture and Land Use Animal Nutrition Food production and Processing For first teaching from September 2013 For first award in Summer 2015 Food production and Processing Key Terms Learning Outcomes Intensive farming Extensive farming • Explain the differences between intensive and Stocking rates extensive farming. Organic methods • Assess the advantages and disadvantages of intensive and extensive farming systems, Information including organic methods The terms intensive and extensive farming refer to the systems by which animals and crops are grown and Monogastric Digestive Tract prepared for sale. Intensive farming is often called ‘factory farming’. Intensive methods are used to maximise yields and production of beef, dairy produce, poultry and cereals. Animals are kept in specialised buildings and can remain indoors for their entire lifetime. This permits precise control of their diet, breeding , behaviour and disease management. Examples of such systems include ‘barley beef’ cattle units, ‘battery’ cage egg production, farrowing crates in sow breeding units, hydroponic tomato production in controlled atmosphere greenhouses. The animals and crops are often iStockphoto / Thinkstock.com fertilised, fed, watered, cleaned and disease controlled by Extensive beef cattle system based on pasture automatic and semi automatic systems such as liquid feed lines, programmed meal hoppers, milk bacterial count, ad lib water drinkers and irrigation/misting units. iStockphoto / Thinkstock.com Extensive farming systems are typically managed outdoors, for example with free-range egg production. Animals are free to graze outdoors and are able to move around at will. Extensive systems often occur in upland farms with much lower farm stocking rates per hectare. Sheep and beef farms will have the animals grazing outdoors on pasture and only brought indoors and fed meals during lambing season and calving season or during the part of winter when outdoor conditions are too harsh. -
Master's Thesis
Master’s Thesis - master Innovation Science Aquaponics Development in the Netherlands The Role of the Emerging Aquaponics Technology and the Transition towards Sustainable Agriculture Mascha Wiegand 6307345 Tulpenweg 17 63579 Freigericht Germany [email protected] +49 1607561911 Supervisor: Prof. Dr. Ellen H.M. Moors Copernicus Institute of Sustainable Development [email protected] +31 30 253 7812 Second Reader: Dr. Koen Beumer Summary A sustainability transition in the agri-food regime is urgently required to interrupt the strong reciprocal effect between current food production standards and climate change (Willett et al., 2019). One sustainable innovation in the agri-food sector is aquaponics. Aquaponics is the combination of hydroponics and recirculating aquaculture in one controlled environment (Somerville, Cohen, Pantanella, Stankus & Lovatelli, 2014). At first sight, the water and nutrient-saving character of aquaponics, amongst other features (Somerville et al., 2014), sound promising for a transition towards sustainable agriculture. Therefore, the following research question emerged: How can the emerging aquaponics technology contribute to the sustainability transition in the Dutch agri- food sector based on Dutch aquaponics developments in the period 2008-2018? To answer this overarching research question, three sub-questions were developed. An integrated framework combining the multilevel perspective (MLP) and the technological innovation system (TIS) was used to understand the dynamics between overall structural trends, the current Dutch agri-food sector and the emerging aquaponics innovation. The innovation was also set into a broader European context. The research was of exploratory nature and used a qualitative content analysis to process 23 interviews, scientific articles, practitioner websites, publication, patent and Google Trend statistics, etc. -
Changes in Agriculture of the Green Revolution States: Implications for Agricultural Development
Aerie. Econ. Res. Rev., Vol. 5(1), 1992 CHANGES IN AGRICULTURE OF THE GREEN REVOLUTION STATES: IMPLICATIONS FOR AGRICULTURAL DEVELOPMENT SURESH PAL*, MRUTHYUNJAYA* AND PRATAP S. BIRTHAL** ABSTRACT This paper examines the changes in the agriculture of green revolution states. The results revealed that a decrease in the share of agriculture in state domestic product was not accompanied by appropriate fall in the workers in agriculture. Consequently, man-land ratio increased over time, markedly in West U.P. The share of purchased and energy based inputs has increased over the years and formed about 50 per cent of the operational cost. The share of capital in gross value added was substantially higher than that of human labour in the production of wheat, whereas the share of capital and human labour was almost equal in the case of paddy. A sharp decline in the returns to management in the production of wheat calls for developing cost saving technology and reappraisal of price policy. The adoption of new seed-fertilizer based technology and large capital investment (both private and public) in key inputs, particularly in irrigation, have ushered in the "Green Revolution"(GR) in India in the mid-sixties. Consequently, crop production has registered an impressive growth. Because of strong input-output linkages in modern technology, the growth in agriculture was also accompanied by the overall economic development (Bhalla et a!, 1990). However, certain issues relating to structure of agriculture have become important in the period of green revolution which need attention. The new technology is suspected on the ground that while transforming the subsistence agriculture into commer- cial farming, it may induce the well-off farmers to accumulate more and more land through tenancy eviction, purchasing land from marginal and small farmers and encroaching on commons. -
Organic Agriculture As an Opportunity for Sustainable Agricultural Development
Research to Practice Policy Briefs Policy Brief No. 13 Organic Agriculture as an Opportunity for Sustainable Agricultural Development Verena Seufert [email protected] These papers are part of the research project, Research to Practice – Strengthening Contributions to Evidence-based Policymaking, generously funded by the Canadian International Development Agency (CIDA). Policy Brief - Verena Seufert 1 Executive summary We need drastic changes in the global food system in order to achieve a more sustainable agriculture that feeds people adequately, contributes to rural development and provides livelihoods to farmers without destroying the natural resource basis. Organic agriculture has been proposed as an important means for achieving these goals. Organic agriculture currently covers only a small area in developing countries but its extent is continuously growing as demand for organic products is increasing. Should organic agriculture thus become a priority in development policy and be put on the agenda of international assistance as a means of achieving sustainable agricultural development? Can organic agriculture contribute to sustainable food security in developing countries? In order to answer these questions this policy brief tries to assess the economic, social and environmental sustainability of organic agriculture and to identify its problems and benefits in developing countries. Organic agriculture shows several benefits, as it reduces many of the environmental impacts of conventional agriculture, it can increase productivity in small farmers’ fields, it reduces reliance on costly external inputs, and guarantees price premiums for organic products. Organic farmers also benefit from organizing in farmer cooperatives and the building of social networks, which provide them with better access to training, credit and health services. -
Organic Farming a Way to Sustainable Agriculture
International Journal of Agriculture and Food Science Technology. ISSN 2249-3050, Volume 4, Number 9 (2013), pp. 933-940 © Research India Publications http://www.ripublication.com/ ijafst.htm Organic Farming A Way to Sustainable Agriculture Iyer Shriram Ganeshan, Manikandan.V.V.S, Ritu Sajiv, Ram Sundhar.V and Nair Sreejith Vijayakumar Department of Electrical and Electronics Engineering, Amrita School of Engineering, Coimbatore–641 105, India. Abstract Most cultivable lands today, do not possess sustained fertility, the reason being human encroachment. The use of modern day chemical fertilizers and pesticides has resulted in the degradation of the health of the soil. This has led to inevitable variations in temperature and pH values of the soil, decreasing the yield. The need to improve fertility with the available cultivable lands is necessary. To achieve this, certain organic methods are to be followed in order to attain sustained fertility of the soil which can help us in the long run. One such method is ORGANIC FARMING WITH WORMS. This organic, natural approach to improve the fertility of the soil is not something new to the world of farming. This ancient, time tested methodology has its own significance in improving the fertility. Specific species of earthworms such as EARTH BURROWING WORMS has been made use of in this type of methodology. By comparing the yield obtained with and without using deep burrowing worms, the significance of sustainable farming is reinforced. Index Terms: Organic, Sustainable Farming, Permaculture, Vermiculture, Mulching. 1. Introduction Organic farming is the practice that relies more on using sustainable methods to cultivate crops rather than introducing chemicals that do not belong to the natural eco system. -
The Role of Animals in Eco-Functional Intensification of Organic Agriculture
Sustainable Agriculture Research; Vol. 4, No. 3; 2015 ISSN 1927-050X E-ISSN 1927-0518 Published by Canadian Center of Science and Education The Role of Animals in Eco-functional Intensification of Organic Agriculture Mette Vaarst1 1 Department of Animal Science, Aarhus University, Research Centre Foulum, P. O. Box 50, 8830 Tjele, Denmark Correspondence: Mette Vaarst, Department of Animal Science, Aarhus University, Research Centre Foulum, P. O. Box 50, 8830 Tjele, Denmark. Tel: 45-2290-1344. E-mail: [email protected] Received: February 22, 2015 Accepted: May 4, 2015 Online Published: June 20, 2015 doi:10.5539/sar.v4n3p103 URL: http://dx.doi.org/10.5539/sar.v4n3p103 Abstract Eco-functional intensification is understood as building synergies in multi-functional and resilient agricultural systems in harmony with their surrounding environment and human systems, to the benefit of diversified production of food and beyond, as in, for example, ecosystem services. Integration of animals into eco-functionally intensified agricultural systems to enhance agricultural, ecological and social systems, can contribute to driving a future sustainable development of organic agricultural and food systems. This approach may respond to challenges of an increasing industrialization of livestock in the global north, a process which has led to heavy reliance on external inputs, and, to a large extent, a detachment of animals from farming systems, especially in the global south. Animals are living sentient beings, but often not acknowledged as such. Complex, well-integrated systems can be organized so that they support the health and welfare of animals, and let these animals be valuable resources within the farming system. -
The Philippines Impact of the Green Revolution on Agriculture Rice: the Primary Crop Major Events of the Green Revolution
The Philippines Impact of the Green Revolution on Agriculture Rice: The Primary Crop Major Events of the Green Revolution • 1960s- the government of the Republic of the Philippines with the Ford Foundation and the Rockefeller Foundation established IRRI (International Rice Research Institute) • 1962- the IRRI crossed Dee-Geo-woo-gen and Peta rice strains • 1968- IR8, or “miracle rice,” was formed • 1981- the use of miracle rice reaches 81% of total rice crops Benefits • IR8, “miracle rice,” produced ten times the amount of rice as traditional varieties • As a result of the switch to farming IR8, annual rice production in the Philippines increased from 3.7 to 7.7 million tons in 2 decades • The large increase in rice production allowed the Philippines to become an exporter of rice for the first time in the 20th century Environmental and Agricultural Problems • Chemical fertilizers used in conjunction with miracle rice eroded soil • Increased rice production led to increased water consumption • Pesticides and fertilizers used in rice farming polluted water and caused siltation • Declining water quality poses a threat to future rice production, due to the high amount of clean water required to grow rice • The Philippines did not have sufficient funding to improve irrigation systems→ fell behind neighboring countries • Vulnerable to recurring natural disasters, which posed a large threat to the agriculture-based economy Rice Production Afterwards • 1973- the Philippines experienced domestic/international problems causing a downfall in economic -
Developing an Individual Farm Organic System Plan
® ® University of Nebraska–Lincoln Extension, Institute of Agriculture and Natural Resources Know how. Know now. G2146 Developing an Individual Farm Organic System Plan Elizabeth A. Sarno, Extension Educator / Organic Project Coordinator Charles A. Francis, Professor Agronomy & Horticulture Twyla M. Hansen, Organic Project Assistant Organic Farming and Related NebGuides for Nebraska This publication is part of a NebGuide series on organic farming being developed by University of Nebraska– Lincoln Extension. As the publications are completed, they will be available on the UNL Extension Publications website. Go to extension.unl.edu/publications and enter the title into the search box, or contact your local exten- sion office. • University of Nebraska–Lincoln Organic Farming • Bird Conservation on Working Farms Research • Selecting Winter Wheat Cultivars for Organic • Transitioning to Organic Farming Production • Developing a Farm Organic System Plan • Flame Weeding in Agronomic Crops • Certification Process for Organic Production • Cover Crops Suitable for Nebraska • Healthy Farm Index • Nutrient Management in Organic Farming substances for organic production (NOP §205.601), go to: An overview of the legal standards required by www.ams.usda.gov/AMSv1.0/nop. the USDA National Organic Program for organic certification. NOP §205.2 Organic system plan standard states: Organic Farming [A organic system plan is] “…a plan of management of an organic production or handling operation that has been To sell agricultural products in the agreed to by the producer or handler and the certifying agent U.S. as organic, farmers and proces- and that includes written plans concerning all aspects of sors must follow the legal standards of agricultural production or handling described in the Act and the USDA National Organic Program the regulations in subpart C of this part.” (NOP) that certify the organic integ- This standard defines organic farming as a production rity of the production and marketing system that is managed in accordance with the Organic Foods process. -
Organic Farming and Deforestation’
PUBLISHED: 1 JULY 2016 | ARTICLE NUMBER: 16101 | DOI: 10.1038/NPLANTS.2016.101 correspondence Reply to ‘Organic farming and deforestation’ Reganold and Wachter reply — We limited in discussing other important instruments and certification standards3,5. appreciate Tayleur and Phalan1 elaborating sustainability metrics, particularly aspects With growing demands on farmland and on the important challenge of habitat of social wellbeing. This gives strength increasing pressures on natural habitat, conversion facing agriculture. Indeed the to the argument that studies need to be progress will depend on targeting research, relationship between agricultural expansion done that adequately assess agriculture’s implementing effective policies and and habitat loss is complex2, and we did impacts on land-use change as well as other enforcing the protection of wildlands. ❐ not have space to delve into this complexity less-measured sustainability metrics4. 3 References in our paper . Moreover, the intent of We do think that organic and other 1. Tayleur, C. & Phalan, B. Nature Plants 2, 16098 (2016). our paper was not to critique organic third-party certification programmes, and 2. Kremen, C. Ann. NY. Acad. Sci. 1355, 52–76 (2015). certification programmes but to evaluate any government agricultural incentive 3. Reganold, J. P. & Wachter, J. M. Nature Plants 2, 15221 (2016). the 40 years of science examining the effects programmes, should be linked to strong 4. Sachs, J. et al. Nature 466, 558–560 (2010). of organic and conventional farming on conservation measures preventing 5. Phalan, B. et al. Science 351, 450–451 (2016). sustainability metrics. deforestation and other forms of habitat We agree that land-use change is conversion. -
Desertification and Agriculture
BRIEFING Desertification and agriculture SUMMARY Desertification is a land degradation process that occurs in drylands. It affects the land's capacity to supply ecosystem services, such as producing food or hosting biodiversity, to mention the most well-known ones. Its drivers are related to both human activity and the climate, and depend on the specific context. More than 1 billion people in some 100 countries face some level of risk related to the effects of desertification. Climate change can further increase the risk of desertification for those regions of the world that may change into drylands for climatic reasons. Desertification is reversible, but that requires proper indicators to send out alerts about the potential risk of desertification while there is still time and scope for remedial action. However, issues related to the availability and comparability of data across various regions of the world pose big challenges when it comes to measuring and monitoring desertification processes. The United Nations Convention to Combat Desertification and the UN sustainable development goals provide a global framework for assessing desertification. The 2018 World Atlas of Desertification introduced the concept of 'convergence of evidence' to identify areas where multiple pressures cause land change processes relevant to land degradation, of which desertification is a striking example. Desertification involves many environmental and socio-economic aspects. It has many causes and triggers many consequences. A major cause is unsustainable agriculture, a major consequence is the threat to food production. To fully comprehend this two-way relationship requires to understand how agriculture affects land quality, what risks land degradation poses for agricultural production and to what extent a change in agricultural practices can reverse the trend. -
An Overview: Conventional & Organic Agriculture
An Overview: Conventional & Organic Agriculture Just as every consumer makes food choices based on their own tastes and priorities, farmers make decisions about what works best for their own farms. Conventional and organic agriculture are both important to supporting this diversity and choice. The Basics What: Conventional and organic farming both share the same priority: producing safe, nutritious food and supporting farmers’ livelihoods. Both organic and conventional farming affect the environment in different ways – and farms don’t divide neatly into two simple categories. Conventional farms aren’t all the same, and organic farms aren’t all the same – some farms even use both conventional and organic practices, depending on the choice of crops. Why: There is no right or wrong way to farm. Every choice a farmer makes can have advantages and disadvantages. Preserving farmers’ ability to use every tool available allows them to make the best decisions for their farms and to continue providing consumers with choice. How: Conventional utilizes modern technologies to optimize efficiency while preserving natural resources. Conventional farmers generally use modern technologies like GMOs, chemical crop protection, synthetic fertilizers and other practices. Organic is focused on an ecological production management system that minimizes farm inputs. Organic requirements differ between countries, but they generally aim to control pests, diseases and weeds with approaches such as crop rotations, disease resistant crop varieties, and the use of non-synthetic pesticides (whenever available), and fertilize the soil using recycled organic materials, like animal manure. The Background Consumers today are more interested than ever in how their food is produced and there are a wide variety of choices available to them based on their own priorities and values. -
Sustainable Alternatives to Industrial Agriculture Brian Koch ENVR 395 Research Seminar Advisors: Derek Larson & Jean Lavigne
The Global Food System: Sustainable Alternatives to Industrial Agriculture Brian Koch ENVR 395 Research Seminar Advisors: Derek Larson & Jean Lavigne Abstract Methods Results A functioning food system should produce food effectively and An evaluation of six agro-ecological farming techniques (organic, hydroponics, perennial, -The Green Revolution spurred the beginning of industrialized sustainably. The current global food system relies unsustainably on integrated pest management, aquaponics, and no till agriculture) provided a means to agriculture, an unsustainable system which utilizes chemicals, industrial agriculture. Alternative techniques could solve the issues of critique sustainable farming systems in comparison with industrial agriculture. A matrix monoculture, degrades the environment, human health, and promotes unsustainable production. Six agro-ecological farming methods were scaling system was constructed to compare each of the proposed techniques could large-scale farming evaluated through environmental, social, and economic lenses which improve or degrade within the specific criteria: environmental degradation, human health, specifically addressed environmental degradation, human health, and -Six agro-ecological agricultural techniques analyzed provide the educational and communal importance of small scale farming. and farm size. The status quo was the baseline at three for each criteria. Environmental environmental, social, and economic benefits degradation must be improved by signs of soil health, biodiversity, and drastic reductions These techniques would promote sustainability by improving soil health -Implementation of these techniques provides potential to increase and integrity and enhancing biodiversity within cropping systems, in chemical applications must be exhibited to score a four and a five or six if significant biodiverse crop production, improve soil integrity, increasing resource improving human health by producing various types of crops necessary signs are shown.