remote sensing Article Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection David Stott 1,2, Søren Munch Kristiansen 2,3,* and Søren Michael Sindbæk 3 1 Department of Archaeological Science and Conservation, Moesgaard Museum, Moesgård Allé 20, 8270 Højbjerg, Denmark 2 Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, 8000 Aarhus C, Denmark 3 Center for Urban Network Evolutions (UrbNet), Aarhus University, Moesgård Allé 20, 8270 Højbjerg, Denmark * Correspondence:
[email protected]; Tel.: +45-2338-2424 Received: 19 June 2019; Accepted: 25 July 2019; Published: 12 August 2019 Abstract: Across the world, cultural heritage is eradicated at an unprecedented rate by development, agriculture, and natural erosion. Remote sensing using airborne and satellite sensors is an essential tool for rapidly investigating human traces over large surfaces of our planet, but even large monumental structures may be visible as only faint indications on the surface. In this paper, we demonstrate the utility of a machine learning approach using airborne laser scanning data to address a “needle-in-a-haystack” problem, which involves the search for remnants of Viking ring fortresses throughout Denmark. First ring detection was applied using the Hough circle transformations and template matching, which detected 202,048 circular features in Denmark. This was reduced to 199 candidate sites by using their geometric properties and the application of machine learning techniques to classify the cultural and topographic context of the features. Two of these near perfectly circular features are convincing candidates for Viking Age fortresses, and two are candidates for either glacial landscape features or simple meteor craters.