Arabic in Latin Letters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Roman Numerals
History of Numbers 1c. I can distinguish between an additive and positional system, and convert between Roman and Hindu-Arabic numbers. Roman Numerals The numeric system represented by Roman numerals originated in ancient Rome (753 BC–476 AD) and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. By the 11th century, the more efJicient Hindu–Arabic numerals had been introduced into Europe by way of Arab traders. Roman numerals, however, remained in commo use well into the 14th and 15th centuries, even in accounting and other business records (where the actual calculations would have been made using an abacus). Roman numerals are still used today, in certain contexts. See: Modern Uses of Roman Numerals Numbers in this system are represented by combinations of letters from the Latin alphabet. Roman numerals, as used today, are based on seven symbols: The numbers 1 to 10 are expressed in Roman numerals as: I, II, III, IV, V, VI, VII, VIII, IX, X. This an additive system. Numbers are formed by combining symbols and adding together their values. For example, III is three (three ones) and XIII is thirteen (a ten plus three ones). Because each symbol (I, V, X ...) has a Jixed value rather than representing multiples of ten, one hundred and so on (according to the numeral's position) there is no need for “place holding” zeros, as in numbers like 207 or 1066. Using Roman numerals, those numbers are written as CCVII (two hundreds, plus a ive and two ones) and MLXVI (a thousand plus a ifty plus a ten, a ive and a one). -
ISO Basic Latin Alphabet
ISO basic Latin alphabet The ISO basic Latin alphabet is a Latin-script alphabet and consists of two sets of 26 letters, codified in[1] various national and international standards and used widely in international communication. The two sets contain the following 26 letters each:[1][2] ISO basic Latin alphabet Uppercase Latin A B C D E F G H I J K L M N O P Q R S T U V W X Y Z alphabet Lowercase Latin a b c d e f g h i j k l m n o p q r s t u v w x y z alphabet Contents History Terminology Name for Unicode block that contains all letters Names for the two subsets Names for the letters Timeline for encoding standards Timeline for widely used computer codes supporting the alphabet Representation Usage Alphabets containing the same set of letters Column numbering See also References History By the 1960s it became apparent to thecomputer and telecommunications industries in the First World that a non-proprietary method of encoding characters was needed. The International Organization for Standardization (ISO) encapsulated the Latin script in their (ISO/IEC 646) 7-bit character-encoding standard. To achieve widespread acceptance, this encapsulation was based on popular usage. The standard was based on the already published American Standard Code for Information Interchange, better known as ASCII, which included in the character set the 26 × 2 letters of the English alphabet. Later standards issued by the ISO, for example ISO/IEC 8859 (8-bit character encoding) and ISO/IEC 10646 (Unicode Latin), have continued to define the 26 × 2 letters of the English alphabet as the basic Latin script with extensions to handle other letters in other languages.[1] Terminology Name for Unicode block that contains all letters The Unicode block that contains the alphabet is called "C0 Controls and Basic Latin". -
Proposal for Generation Panel for Latin Script Label Generation Ruleset for the Root Zone
Generation Panel for Latin Script Label Generation Ruleset for the Root Zone Proposal for Generation Panel for Latin Script Label Generation Ruleset for the Root Zone Table of Contents 1. General Information 2 1.1 Use of Latin Script characters in domain names 3 1.2 Target Script for the Proposed Generation Panel 4 1.2.1 Diacritics 5 1.3 Countries with significant user communities using Latin script 6 2. Proposed Initial Composition of the Panel and Relationship with Past Work or Working Groups 7 3. Work Plan 13 3.1 Suggested Timeline with Significant Milestones 13 3.2 Sources for funding travel and logistics 16 3.3 Need for ICANN provided advisors 17 4. References 17 1 Generation Panel for Latin Script Label Generation Ruleset for the Root Zone 1. General Information The Latin script1 or Roman script is a major writing system of the world today, and the most widely used in terms of number of languages and number of speakers, with circa 70% of the world’s readers and writers making use of this script2 (Wikipedia). Historically, it is derived from the Greek alphabet, as is the Cyrillic script. The Greek alphabet is in turn derived from the Phoenician alphabet which dates to the mid-11th century BC and is itself based on older scripts. This explains why Latin, Cyrillic and Greek share some letters, which may become relevant to the ruleset in the form of cross-script variants. The Latin alphabet itself originated in Italy in the 7th Century BC. The original alphabet contained 21 upper case only letters: A, B, C, D, E, F, Z, H, I, K, L, M, N, O, P, Q, R, S, T, V and X. -
Processing South Asian Languages Written in the Latin Script: the Dakshina Dataset
Processing South Asian Languages Written in the Latin Script: the Dakshina Dataset Brian Roarky, Lawrence Wolf-Sonkiny, Christo Kirovy, Sabrina J. Mielkez, Cibu Johnyy, Işın Demirşahiny and Keith Hally yGoogle Research zJohns Hopkins University {roark,wolfsonkin,ckirov,cibu,isin,kbhall}@google.com [email protected] Abstract This paper describes the Dakshina dataset, a new resource consisting of text in both the Latin and native scripts for 12 South Asian languages. The dataset includes, for each language: 1) native script Wikipedia text; 2) a romanization lexicon; and 3) full sentence parallel data in both a native script of the language and the basic Latin alphabet. We document the methods used for preparation and selection of the Wikipedia text in each language; collection of attested romanizations for sampled lexicons; and manual romanization of held-out sentences from the native script collections. We additionally provide baseline results on several tasks made possible by the dataset, including single word transliteration, full sentence transliteration, and language modeling of native script and romanized text. Keywords: romanization, transliteration, South Asian languages 1. Introduction lingua franca, the prevalence of loanwords and code switch- Languages in South Asia – a region covering India, Pak- ing (largely but not exclusively with English) is high. istan, Bangladesh and neighboring countries – are generally Unlike translations, human generated parallel versions of written with Brahmic or Perso-Arabic scripts, but are also text in the native scripts of these languages and romanized often written in the Latin script, most notably for informal versions do not spontaneously occur in any meaningful vol- communication such as within SMS messages, WhatsApp, ume. -
Characters for Classical Latin
Characters for Classical Latin David J. Perry version 13, 2 July 2020 Introduction The purpose of this document is to identify all characters of interest to those who work with Classical Latin, no matter how rare. Epigraphers will want many of these, but I want to collect any character that is needed in any context. Those that are already available in Unicode will be so identified; those that may be available can be debated; and those that are clearly absent and should be proposed can be proposed; and those that are so rare as to be unencodable will be known. If you have any suggestions for additional characters or reactions to the suggestions made here, please email me at [email protected] . No matter how rare, let’s get all possible characters on this list. Version 6 of this document has been updated to reflect the many characters of interest to Latinists encoded as of Unicode version 13.0. Characters are indicated by their Unicode value, a hexadecimal number, and their name printed IN SMALL CAPITALS. Unicode values may be preceded by U+ to set them off from surrounding text. Combining diacritics are printed over a dotted cir- cle ◌ to show that they are intended to be used over a base character. For more basic information about Unicode, see the website of The Unicode Consortium, http://www.unicode.org/ or my book cited below. Please note that abbreviations constructed with lines above or through existing let- ters are not considered separate characters except in unusual circumstances, nor are the space-saving ligatures found in Latin inscriptions unless they have a unique grammatical or phonemic function (which they normally don’t). -
History of Writing
History of Writing On present archaeological evidence, full writing appeared in Mesopotamia and Egypt around the same time, in the century or so before 3000 BC. It is probable that it started slightly earlier in Mesopotamia, given the date of the earliest proto-writing on clay tablets from Uruk, circa 3300 BC, and the much longer history of urban development in Mesopotamia compared to the Nile Valley of Egypt. However we cannot be sure about the date of the earliest known Egyptian historical inscription, a monumental slate palette of King Narmer, on which his name is written in two hieroglyphs showing a fish and a chisel. Narmer’s date is insecure, but probably falls in the period 3150 to 3050 BC. In China, full writing first appears on the so-called ‘oracle bones’ of the Shang civilization, found about a century ago at Anyang in north China, dated to 1200 BC. Many of their signs bear an undoubted resemblance to modern Chinese characters, and it is a fairly straightforward task for scholars to read them. However, there are much older signs on the pottery of the Yangshao culture, dating from 5000 to 4000 BC, which may conceivably be precursors of an older form of full Chinese writing, still to be discovered; many areas of China have yet to be archaeologically excavated. In Europe, the oldest full writing is the Linear A script found in Crete in 1900. Linear A dates from about 1750 BC. Although it is undeciphered, its signs closely resemble the somewhat younger, deciphered Linear B script, which is known to be full writing; Linear B was used to write an archaic form of the Greek language. -
Writing Language
Writing language Linguists generally agree with the following statement by one of the founders of the modern science of language. Writing is not language, but merely a way of recording language by visible marks. Leonard Bloomfield, Language (1933) Some version of this is clearly true, as we can see by looking at the history of the human species and of each human individual. In both regards, spoken language precedes written language. Speech Writing Present in every society Present only in some societies, and only rather recently Learned before writing Learned after speech is acquired Learned by all children in normal Learned only by instruction, and often not circumstances, without instruction learned at all Human evolution has made speaking Evolution has not specifically favored easier writing Another way to express Bloomfield's point is to say that writing is "parasitic" on speech, expressing some but not all of the things that speech expresses. Specifically, writing systems convey the sequence of known words or other elements of a language in a real or hypothetical utterance, and indicate (usually somewhat less well) the pronunciation of words not already known to the reader. Aspects of speech that writing leaves out can include emphasis, intonation, tone of voice, accent or dialect, and individual characteristics. Some caveats are in order. In the first place, writing is usually not used for "recording language" in the sense of transcribing speech. Writing may substitute for speech, as in a letter, or may deploy the expressive resources of spoken language in visual structures (such as tables) that can't easily be replicated in spoken form at all. -
Greek Type Design Introduction
A primer on Greek type design by Gerry Leonidas T the 1997 ATypI Conference at Reading I gave a talk Awith the title ‘Typography & the Greek language: designing typefaces in a cultural context.’ The inspiration for that talk was a discussion with Christopher Burke on designing typefaces for a script one is not linguistically familiar with. My position was that knowledge and use of a language is not a prerequisite for understanding the script to a very high, if not conclusive, degree. In other words, although a ‘typographically attuned’ native user should test a design in real circumstances, any designer could, with the right preparation and monitoring, produce competent typefaces. This position was based on my understanding of the decisions a designer must make in designing a Greek typeface. I should add that this argument had two weak points: one, it was based on a small amount of personal experience in type design and a lot of intuition, rather than research; and, two, it was quite possible that, as a Greek, I was making the ‘right’ choices by default. Since 1997, my own work proved me right on the first point, and that of other designers – both Greeks and non- Greeks – on the second. The last few years saw multilingual typography literally explode. An obvious arena was the broader European region: the Amsterdam Treaty of 1997 which, at the same time as bringing the European Union closer to integration on a number of fields, marked a heightening of awareness in cultural characteristics, down to an explicit statement of support for dialects and local script variations. -
Nemeth Code Uses Some Parts of Textbook Format but Has Some Idiosyncrasies of Its Own
This book is a compilation of research, in “Understanding and Tracing the Problem faced by the Visually Impaired while doing Mathematics” as a Diploma project by Aarti Vashisht at the Srishti School of Art, Design and Technology, Bangalore. 6 DOTS 64 COMBINATIONS A Braille character is formed out of a combination of six dots. Including the blank space, sixty four combinations are possible using one or more of these six dots. CONTENTS Introduction 2 About Braille 32 Mathematics for the Visually Impaired 120 Learning Mathematics 168 C o n c l u s i o n 172 P e o p l e a n d P l a c e s 190 Acknowledgements INTRODUCTION This project tries to understand the nature of the problems that are faced by the visually impaired within the realm of mathematics. It is a summary of my understanding of the problems in this field that may be taken forward to guide those individuals who are concerned about this subject. My education in design has encouraged interest in this field. As a designer I have learnt to be aware of my community and its needs, to detect areas where design can reach out and assist, if not resolve, a problem. Thus began, my search, where I sought to grasp a fuller understanding of the situation by looking at the various mediums that would help better communication. During the project I realized that more often than not work happened in individual pockets which in turn would lead to regionalization of many ideas and opportunities. Data collection got repetitive, which would delay or sometimes even hinder the process. -
Encoding Diversity for All the World's Languages
Encoding Diversity for All the World’s Languages The Script Encoding Initiative (Universal Scripts Project) Michael Everson, Evertype Westport, Co. Mayo, Ireland Bamako, Mali • 6 May 2005 1. Current State of the Unicode Standard • Unicode 4.1 defines over 97,000 characters 1. Current State of the Unicode Standard: New Script Additions Unicode 4.1 (31 March 2005): For Unicode 5.0 (2006): Buginese N’Ko Coptic Balinese Glagolitic Phags-pa New Tai Lue Phoenician Nuskhuri (extends Georgian) Syloti Nagri Cuneiform Tifinagh Kharoshthi Old Persian Cuneiform 1. Current State of the Unicode Standard • Unicode 4.1 defines over 97,000 characters • Unicode covers over 50 scripts (many of which are used for languages with over 5 million speakers) 1. Current State of the Unicode Standard • Unicode 4.1 defines over 97,000 characters • Unicode covers over 50 scripts (often used for languages with over 5 million speakers) • Unicode enables millions of users worldwide to view web pages, send e-mails, converse in chat-rooms, and share text documents in their native script 1. Current State of the Unicode Standard • Unicode 4.1 defines over 97,000 characters • Unicode covers over 50 scripts (often used for languages with over 5 million speakers) • Unicode enables millions of users worldwide to view web pages, send e-mails, converse in chat- rooms, and share text documents in their native script • Unicode is widely supported by current fonts and operating systems, but… Over 80 scripts are missing! Missing Modern Minority Scripts India, Nepal, Southeast Asia China: -
First : Arabic Transliteration Alphabet
E/CONF.105/137/CRP.137 13 July 2017 Original: English and Arabic Eleventh United Nations Conference on the Standardization of Geographical Names New York, 8-17 August 2017 Item 14 a) of the provisional agenda* Writing systems and pronunciation: Romanization Romanization System from Arabic letters to Latinized letters 2007 Submitted by the Arabic Division ** * E/CONF.105/1 ** Prepared by the Arabic Division Standard Arabic System for Transliteration of Geographical Names From Arabic Alphabet to Latin Alphabet (Arabic Romanization System) 2007 1 ARABIC TRANSLITERATION ALPHABET Arabic Romanization Romanization Arabic Character Character ٛ GH ؽٔيح ء > ف F ا } م Q ة B ى K د T ٍ L س TH ّ M ط J ٕ ػ N % ٛـ KH ؿ H ٝاُزبء أُوثٛٞخ ك٢ ٜٗب٣خ أٌُِخ W, Ū ٝ ك D ١ Y, Ī م DH a Short Opener ه R ā Long Opener ى Z S ً ā Maddah SH ُ ☺ Alif Maqsourah u Short Closer ٓ & ū Long Closer ٗ { ٛ i Short Breaker # ī Long Breaker ظ ! ّ ّلح Doubling the letter ع < - 1 - DESCRIPTION OF THE NEW ALPHABET How to describe the transliteration Alphabet: a. The new alphabet has neglected the following Latin letters: C, E, O, P, V, X in addition to the letter G unless it is coupled with the letter H to form a digraph GH .(اُـ٤ٖ Ghayn) b. This Alphabet contains: 1. Latin letters which have similar phonetic letters in Arabic : B,T,J,D,R,Z,S,Q,K,L,M,N,H,W,Y. ة، ،د، ط، ك، ه، ى، ً، م، ى، ٍ، ّ، ٕ، ٛـ، ٝ، ١ 2. -
Bioinformatics Evolutionary Tree Algorithms Reveal the History of the Cretan Script Family
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016 Bioinformatics Evolutionary Tree Algorithms Reveal the History of the Cretan Script Family Peter Z. Revesz syllabary, whose similarity with Linear A was noted by Evans. Abstract— This paper shows that Crete is the likely origin of a The Phoenician alphabet [28] was a major influence on the family of related scripts that includes the Cretan Hieroglyph, Linear development of many other alphabets due to the Phoenicians’ A, Linear B and Cypriot syllabaries and the Greek, Phoenician, Old widespread commercial influence in the Mediterranean area. Hungarian, South Arabic and Tifinagh alphabets. The paper develops The Phoenician and the South Arabic [30] alphabets are a novel similarity measure between pairs of script symbols. The similarity measure is used as an aid to develop a comparison table of assumed to derive from the Proto-Sinaitic alphabet, which the nine scripts. The paper presents a method to translate comparison originated in the Sinai Peninsula sometime between the th th tables into DNA encodings, thereby enabling the use of mid-19 and mid-16 century BC [29]. Phoenician represents bioinformatics algorithms that construct hypothetical evolutionary the northern branch, while South Arabic represents the trees. Applying the method to the nine scripts yields a script southern branch of Proto-Sinaitic. evolutionary tree with two main branches. The first branch is The classical Greek alphabet from about 800 BC had a composed of Cretan Hieroglyph, Cypriot, Linear A, Linear B, Old Hungarian and Tifinagh, while the second branch is composed of major influence for many other European alphabets.