Regulation of Macrophage Inflammatory Signaling Pathways by AMP-Activated Protein Kinase

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Macrophage Inflammatory Signaling Pathways by AMP-Activated Protein Kinase University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2014 Regulation of macrophage inflammatory signaling pathways by AMP-activated protein kinase. Yanfang Zhu University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Immunology and Infectious Disease Commons, and the Microbiology Commons Recommended Citation Zhu, Yanfang, "Regulation of macrophage inflammatory signaling pathways by AMP-activated protein kinase." (2014). Electronic Theses and Dissertations. Paper 1649. https://doi.org/10.18297/etd/1649 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. REGULATION OF MACROPHAGE INFLAMMATORY SIGNALING PATHWAYS BY AMP-ACTIVATED PROTEIN KINASE By Yanfang “Peipei” Zhu B.Sc. Northwest A & F University, 2007 M.S. University of Louisville, 2011 A Dissertation Submitted to the Faculty of the University of Louisville School of Medicine in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Microbiology and Immunology University of Louisville Louisville, KY May, 2014 Copyright 2014 by Yanfang “Peipei” Zhu All rights reserved. REGULATION OF MACROPHAGE INFLAMMATORY SIGNALING PATHWAYS BY AMP-ACTIVATED PROTEIN KINASE By Yanfang “Peipei” Zhu B.Sc. Northwest A & F University, 2007 M.S. University of Louisville, 2011 A Dissertation Approved on April 25, 2014 by the following Dissertation Committee: _________________________________ Jill Suttles _________________________________ Thomas C. Mitchell _________________________________ Robert A. Mitchell _________________________________ Sanjay Srivastava ii DEDICATION Dedicated to my beloved family and friends. iii ACKNOWLEDGMENTS My highest regards go to my mentor, Dr. Jill Suttles. Six years of research training in her lab has provided me one of the most important and valuable experiences in my life, both professionally and personally. Dr. Suttles offered me the most wonderful mentorship and the exciting opportunity to work on the scientific project that inspired me in a life long academic interest. Without her guidance, support, encouragement, and friendship, I could never have come this far on the way of pursuing the truth of nature. My great appreciation also goes to my dissertation committee members, Dr. Thomas C. Mitchell, Dr. Robert A. Mitchell, and Dr. Sanjay Srivastava, for their valuable comments and advice and continuous care to the development of my project. I also want to express my gratitude to the late members of my committee, Dr. Robert D. Stout and Dr. Michael Martin. Bob was our beloved friend and insightful teacher whose lectures motivated me to the macrophage plasticity research. Mike’s profound knowledge in cell signaling made him always the good instructor to go to for suggestions. The scientific achievement of this dissertation study is based on the contribution of every idea and support from all these incredible scientists. It is my great honor and pleasure to work and have my Ph.D. training with them. I would like to thank all the nice people in Jill’s lab for their kind assistance and support with all my experiments. I specially thank Lihua Zhang and her family, to provide me the family-like support both in and out of lab work. I am grateful to all iv the nicest colleagues who have made the six years of training experiences cheerful and have brought me courage through the downside of the road. They are Kim Z. Head, Shunmugavadiv “Meena” Vanchinathan, Ashley Triplett, Kelly C. Caroll, Courtney J. Mitchell, and Jonathan R. Brown. Thank you all for the scientific discussions and technical support, for the laughter and compassionate hugs, and for the friendship that will be remembered and appreciated life-long. I also would like to thank my dearest family and friends. It is never enough to say thank you to my parents Mingshan Zhu and Suyin Sun, for their best love and support even with half of the world between us. You are the greatest blessing I can ever ask for. I want to express my gratitude to my friends and family from the near and the far, Chi Zhang, Pei-hsin Cheng, and my friends and big family in China. You all made me feel beloved and encouraged during my studies in United States and made my life happy and colorful. Lastly, I want to thank Department of Microbiology and Immunology and the Integrated Programs of Biomedical Sciences (IPIBS) program of University of Louisville School of Medicine for the opportunity and financial support for the training of obtaining my Ph.D. degree in immunology. v ABSTRACT REGULATION OF MACROPHAGE INFLAMMATORY SIGNALING PATHWAYS BY AMP-ACTIVATED PROTEIN KINASE Yanfang “Peipei” Zhu April 25, 2014 AMP-activated protein kinase, AMPK, is a conserved serine/threonine kinase with a critical function in the regulation of metabolic pathways in eukaryotic cells. Recently, AMPK has been shown to play an additional role as a regulator of inflammatory activity in leukocytes. Treatment of macrophages with chemical AMPK activators, or forced expression of a constitutively active form of AMPK, results in polarization to an antiinflammatory phenotype. Additionally, we reported previously that stimulation of macrophages with antiinflammatory cytokines such as IL-10, IL-4 and TGF-β results in rapid activation of AMPK, suggesting that AMPK contributes to the suppressive function of these cytokines. In the current study we investigated the role of AMPK in the regulation of macrophage antiatherogenic functions and demonstrated a new mechanism for AMPK’s role in mediating IL-10-induced gene expression and antiinflammatory effects. The expression of dominant negative (DN-) AMPKα1 in macrophages resulted in a spontaneous obese phenotype in mice associated with fatty vi liver and heart enlargement. The expression of constitutively active (CA-) AMPKα1 in macrophages resulted in decreased IL-6 production but increased expression of ABCA1 and ApoE. Compared to wild-type macrophages, AMPKα1-deficient macrophages failed to express atheroprotective genes including ApoE, LXRα, and ABCA1 in response to IL- 10. Mechanistic studies revealed that IL-10-stimulated wild-type macrophages displayed rapid activation of PI3K and its downstream target Akt, an effect that was not seen in macrophages generated from AMPKα1-deficient mice. Treatment with the PI3K inhibitor LY294002 blocked IL-10’s ability to induce Akt activation but not AMPK activation, suggesting that IL-10-mediated activation of AMPK is independent of PI3K. CA-AMPKα1 macrophages displayed elevated PI3K and CREB activation in response to IL-10 compared to the empty vector transfected macrophages. IL-10 stimulation resulted in increased mTORC1 activity, an Akt downstream target, an effect that was reduced in AMPKα1-deficient mice. IL-10 induced phosphorylation of both Tyr705 and Ser727 residues of STAT3 in an AMPKα1-dependent manner, and these phosphorylation events were blocked by inhibition of CaMKKβ, an upstream activator of AMPK, and by the mTORC1 inhibitor rapamycin, respectively. The impaired STAT3 phosphorylation in response to IL-10 observed in AMPKα1-deficient macrophages was accompanied by reduced SOCS3 expression and an inadequacy of IL-10 to suppress LPS-induced proinflammatory cytokine production. Overall, our data demonstrate that AMPKα1 is required for IL-10 activation of the PI3K/Akt/mTORC1 and STAT3/SOCS3 antiinflammatory pathways regulating macrophage polarization, a mechanism with broad-reaching applicability in immune homeostasis and in inflammation-associated diseases such as atherosclerosis, autoimmune diseases, and obesity. vii TABLE OF CONTENTS PAGE DEDICATION……………………………………………………………………………iii ACKNOWLEDGEMENTS………………………………………………………………iv ABSTRACT……………………………………………………………………………...vi LIST OF FIGURES……………………………………………………………………… x CHAPTER 1. INTRODUCTION……………………………………………………………………...1 2. AMPK REGULATION OF MACROPHAGE FUNCTION IN ATHEROSCLEROSIS INTRODUCTION……………………………………………………………………….22 MATERIALS AND METHODS………………………………………………………...34 RESULTS………………………………………………………………………………..39 Generation of macrophage-specific CA-AMPKα1 and DN-AMPKα1 mice……39 Macrophage-specific DN-AMPKα1 mice develop spontaneous ………………..40 obesity associated with increased proinflammatory cytokine production ABCA1 expression is increased in macrophage from…………………………...43 macrophage-specific CA-AMPKα1 mice AMPK enhances atheroprotective gene expression induced by…………………48 IL-10 in macrophages AMPK promotes ApoE expression in macrophages……………………………..50 Relationship between PPARγ and AMPK in macrophages……………………...53 DISCUSSION……………………………………………………………………………61 viii 3. AMPK REGULATES IL-10-MEDIATED ANTIINFLAMMATORY SIGNALING PATHWAYS IN MACROPHAGES INTRODUCTION……………………………………………………………………….63 MATERIALS AND METHOD………………………………………………………….69 RESULTS………………………………………………………………………………..72 IL-10 activates AMPK on a time dependent manner……………………..……...72 AMPK is required for IL-10 activation of PI3K/Akt pathway…………………..72 AMPK positively regulates IL-10 activation of Akt/CREB pathway……………83 AMPK positively regulates IL-10 activation of mTORC1/S6K pathway……….85 AMPK is required for
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 32-3099: PRKAB1 Recombinant Protein Description
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-3099: PRKAB1 Recombinant Protein Alternative Name : AMPK,HAMPKb,5'-AMP-activated protein kinase subunit beta-1,AMPK subunit beta-1,AMPKb,PRKAB1. Description Source : E.coli. PRKAB1 Human Recombinant produced in E.Coli is a single, non-glycosylated, polypeptide chain containing 293 amino acids (1-270 a.a.) and having a molecular mass of 32.8 kDa. The PRKAB1 is fused to a 23 amino acid His Tag at N- Terminus and purified by proprietary chromatographic techniques. 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1) hinders protein, carbohydrate and lipid biosynthesis, in addition to cell growth and proliferation. AMPK is a heterotrimer comprised of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK acts via direct phosphorylation of metabolic enzymes, and longer-term effects by phosphorylation of transcription regulators. PRKAB1 is a regulator of cellular polarity by remodeling the actin cytoskeleton; most likely by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex compiles, through its C-terminus that joins alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3). Product Info Amount : 5 µg Purification : Greater than 85% as determined by SDS-PAGE. The PRKAB1 protein solution (0.5mg/ml) contains 20mM Tris-HCl buffer (pH 8.0), 0.15M NaCl, Content : 10% glycerol and 1mM DTT. Store at 4°C if entire vial will be used within 2-4 weeks. Store, frozen at -20°C for longer periods of Storage condition : time.
    [Show full text]
  • NFKBIZ Mutation Prevalence in the Arthur/Schmitz/Chapuy Cohorts
    Supplemental Tables/Figures: Table S1: NFKBIZ mutation prevalence in the Arthur/Schmitz/Chapuy cohorts. Subtype Cohort All ABC DLC Schmitz Chapuy # patients 1006 511 330 466 210 UTR 101 (10) 66 (13) 39 (12) 49 (11) 13 (6) Amplification 86 (8.5) 66 (12.9) 23 (7) 35 (8) 28 (13) NFKBIZ Mutation TOTAL 174 (17) 120 (23.5) 57 (17) 79 (17) 38 (18) Table S2: NFKBIZ 3′ UTR mutations in other WGS cohorts. Cohort # Patients NFKBIZ UTR mutations (%) Publication BL_Adult 81 1 (1.2) Grande_et_al,2019 BL_Pediatric 124 1 (0.8) unpublished DLBCL_cell_lines 15 2 (13.3) Morin_et_al,2013 DLBCL_BC 117 11 (9.4) Arthur_et_al,2018 DLBCL_ICGC 87 11 (12.6) Hübschmann_et_al,2021 FL_ICGC 100 4 (4) Hübschmann_et_al,2021 FL_Kridel 48 1 (2.1) Kridel_et_al,2016 Table S3: COO and LymphGen classifications of DLBCLs and FLs from other cohorts. NFKBIZ UTR mutations (%) DLBCL (%) FL (%) ABC 13 (41.9) 13 (54.2) 0 (0) GCB 4 (12.9) 4 (16.7) 0 (0) COO UNCLASS 2 (6.5) 2 (8.3) 0 (0) NA 12 (38.7) 5 (20.8) 5 (100) TOTAL 31 24 5 BN2 13 (41.9) 9 (37.5) 3 (60) EZB 4 (12.9) 2 (8.3) 2 (40) ST2 1 (3.2) 1 (4.2) 0 (0) LymphGen Other 9 (29) 8 (33.3) 0 (0) Composite 2 (6.5) 2 (8.3) 0 (0) NA 2 (6.5) 2 (8.3) 0 (0) TOTAL 31 24 5 Table S4: LymphGen classifications of all patients and those with NFKBIZ mutations in Arthur/Schmitz/Chapuy cohorts.
    [Show full text]
  • Phosphoproteomics of Retinoblastoma: a Pilot Study Identifies Aberrant Kinases
    molecules Article Phosphoproteomics of Retinoblastoma: A Pilot Study Identifies Aberrant Kinases Lakshmi Dhevi Nagarajha Selvan 1,†, Ravikanth Danda 1,2,†, Anil K. Madugundu 3 ID , Vinuth N. Puttamallesh 3, Gajanan J. Sathe 3,4, Uma Maheswari Krishnan 2, Vikas Khetan 5, Pukhraj Rishi 5, Thottethodi Subrahmanya Keshava Prasad 3,6 ID , Akhilesh Pandey 3,7,8, Subramanian Krishnakumar 1, Harsha Gowda 3,* and Sailaja V. Elchuri 9,* 1 L&T Opthalmic Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu 600 006, India; [email protected] (L.D.N.S.); [email protected] (R.D.); [email protected] (S.K.) 2 Centre for Nanotechnology and Advanced Biomaterials, Shanmugha Arts, Science, Technology and Research Academy University, Tanjore, Tamil Nadu 613 401, India; [email protected] 3 Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560 066, India; [email protected] (A.K.M.); [email protected] (V.N.P.); [email protected] (G.J.S.); [email protected] (T.S.K.P.); [email protected] (A.P.) 4 Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576 104, India 5 Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu 600 006, India; [email protected] (V.K.); [email protected] (P.R.) 6 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575 108, India 7 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 8 Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 9 Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu 600 006, India * Correspondence: [email protected] (H.G.); [email protected] (S.V.E.); Tel.: +91-80-28416140 (H.G.); +91-44-28271616 (S.V.E.) † These authors contributed equally to this work.
    [Show full text]
  • Original Article a Database and Functional Annotation of NF-Κb Target Genes
    Int J Clin Exp Med 2016;9(5):7986-7995 www.ijcem.com /ISSN:1940-5901/IJCEM0019172 Original Article A database and functional annotation of NF-κB target genes Yang Yang, Jian Wu, Jinke Wang The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, People’s Republic of China Received November 4, 2015; Accepted February 10, 2016; Epub May 15, 2016; Published May 30, 2016 Abstract: Backgrounds: The previous studies show that the transcription factor NF-κB always be induced by many inducers, and can regulate the expressions of many genes. The aim of the present study is to explore the database and functional annotation of NF-κB target genes. Methods: In this study, we manually collected the most complete listing of all NF-κB target genes identified to date, including the NF-κB microRNA target genes and built the database of NF-κB target genes with the detailed information of each target gene and annotated it by DAVID tools. Results: The NF-κB target genes database was established (http://tfdb.seu.edu.cn/nfkb/). The collected data confirmed that NF-κB maintains multitudinous biological functions and possesses the considerable complexity and diversity in regulation the expression of corresponding target genes set. The data showed that the NF-κB was a central regula- tor of the stress response, immune response and cellular metabolic processes. NF-κB involved in bone disease, immunological disease and cardiovascular disease, various cancers and nervous disease. NF-κB can modulate the expression activity of other transcriptional factors. Inhibition of IKK and IκBα phosphorylation, the decrease of nuclear translocation of p65 and the reduction of intracellular glutathione level determined the up-regulation or down-regulation of expression of NF-κB target genes.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Cells Phenotype of Human Tolerogenic Dendritic Glycolytic
    High Mitochondrial Respiration and Glycolytic Capacity Represent a Metabolic Phenotype of Human Tolerogenic Dendritic Cells This information is current as of September 26, 2021. Frano Malinarich, Kaibo Duan, Raudhah Abdull Hamid, Au Bijin, Wu Xue Lin, Michael Poidinger, Anna-Marie Fairhurst and John E. Connolly J Immunol published online 27 April 2015 http://www.jimmunol.org/content/early/2015/04/25/jimmun Downloaded from ol.1303316 Supplementary http://www.jimmunol.org/content/suppl/2015/04/25/jimmunol.130331 http://www.jimmunol.org/ Material 6.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published April 27, 2015, doi:10.4049/jimmunol.1303316 The Journal of Immunology High Mitochondrial Respiration and Glycolytic Capacity Represent a Metabolic Phenotype of Human Tolerogenic Dendritic Cells Frano Malinarich,*,† Kaibo Duan,† Raudhah Abdull Hamid,*,† Au Bijin,*,† Wu Xue Lin,*,† Michael Poidinger,† Anna-Marie Fairhurst,† and John E.
    [Show full text]
  • AMPK Causes Cell Cycle Arrest in LKB1-Deficient Cells Via Activation of CAMKK2
    Published OnlineFirst May 2, 2016; DOI: 10.1158/1541-7786.MCR-15-0479 Cell Cycle and Senescence Molecular Cancer Research AMPK Causes Cell Cycle Arrest in LKB1-Deficient Cells via Activation of CAMKK2 Sarah Fogarty, Fiona A. Ross, Diana Vara Ciruelos, Alexander Gray, Graeme J. Gowans, and D. Grahame Hardie Abstract The AMP-activated protein kinase (AMPK) is activated by also caused G1 arrest similar to that caused by expression of LKB1, phosphorylation at Thr172, either by the tumor suppressor kinase while expression of a dominant-negative AMPK mutant, or a þ LKB1 or by an alternate pathway involving the Ca2 /calmodulin- double knockout of both AMPK-a subunits, also prevented the dependent kinase, CAMKK2. Increases in AMP:ATP and ADP:ATP cell-cycle arrest caused by A23187. These mechanistic findings ratios, signifying energy deficit, promote allosteric activation and confirm that AMPK activation triggers cell-cycle arrest, and also net Thr172 phosphorylation mediated by LKB1, so that the LKB1– suggest that the rapid proliferation of LKB1-null tumor cells is due AMPK pathway acts as an energy sensor. Many tumor cells carry to lack of the restraining influence of AMPK. However, cell-cycle loss-of-function mutations in the STK11 gene encoding LKB1, but arrest can be restored by reexpressing LKB1 or a constitutively LKB1 reexpression in these cells causes cell-cycle arrest. Therefore, active CAMKK2, or by pharmacologic agents that increase intra- þ it was investigated as to whether arrest by LKB1 is caused by cellular Ca2 and thus activate endogenous CAMKK2. activation of AMPK or of one of the AMPK-related kinases, which are also dependent on LKB1 but are not activated by CAMKK2.
    [Show full text]
  • The Role of MDM2 and CDK4 in Well Differentiated Liposarcoma Dr
    The role of MDM2 and CDK4 in well differentiated liposarcoma Dr Rachel Katherine Conyers Submitted in total fulfillment of the requirements of the degree of Doctor of Philosophy April 2015 Department of Pathology The University of Melbourne i Abstract Transformation of normal cells to cancer cells is tightly linked to fundamental changes in cell cycle regulation. In addition, oncogenes can aberrantly enhance cell proliferation. Two genes; Cyclin dependent kinase-4 (CDK4) and Murine double minute 2 (MDM2) are amplified and overexpressed in over 90% of well differentiated liposarcomas. Their role in cell cycle control, and regulation of tumour suppressor p53 respectively, strongly suggesting that deregulation of these genes confers some selective advantage to this tumour. To elucidate the role of these genes in the development and progression of liposarcoma I have used transgenic mouse models and in vitro assays. Given the recent development of novel CDK4 inhibitors, I have tested several CDK4 inhibitors (sc-203873, sc-203874, NPCD, PD 0332991) on liposarcoma cell lines (449B, T1000, 778, GOT3) to determine sensitivity to inhibition, cell cycle arrest and downstream effects of inhibition. PD033991 was found to be the most selective and sensitive CDK4 inhibitor and, as such, was used in a siRNA screen of the genome to identify co-modifiers of CDK4 inhibition. A total of 13 genes were identified that produced a resistance phenotype in the context of CDK4 inhibition. Two of these genes; Arrestin, beta 2 (ARRB2) and Dysferlin (DYSF) demonstrated a reproducible resistance phenotype in a series of functional validation studies. ii Declaration This is to certify that: i the thesis comprises only my original work towards the PhD except where indicated in the Preface, ii due acknowledgement has been made in the text to all other material used, iii the thesis is fewer than 100 000 words in length, exclusive of tables, maps, bibliographies and appendices.
    [Show full text]
  • Human Kinases Info Page
    Human Kinase Open Reading Frame Collecon Description: The Center for Cancer Systems Biology (Dana Farber Cancer Institute)- Broad Institute of Harvard and MIT Human Kinase ORF collection from Addgene consists of 559 distinct human kinases and kinase-related protein ORFs in pDONR-223 Gateway® Entry vectors. All clones are clonal isolates and have been end-read sequenced to confirm identity. Kinase ORFs were assembled from a number of sources; 56% were isolated as single cloned isolates from the ORFeome 5.1 collection (horfdb.dfci.harvard.edu); 31% were cloned from normal human tissue RNA (Ambion) by reverse transcription and subsequent PCR amplification adding Gateway® sequences; 11% were cloned into Entry vectors from templates provided by the Harvard Institute of Proteomics (HIP); 2% additional kinases were cloned into Entry vectors from templates obtained from collaborating laboratories. All ORFs are open (stop codons removed) except for 5 (MST1R, PTK7, JAK3, AXL, TIE1) which are closed (have stop codons). Detailed information can be found at: www.addgene.org/human_kinases Handling and Storage: Store glycerol stocks at -80oC and minimize freeze-thaw cycles. To access a plasmid, keep the plate on dry ice to prevent thawing. Using a sterile pipette tip, puncture the seal above an individual well and spread a portion of the glycerol stock onto an agar plate. To patch the hole, use sterile tape or a portion of a fresh aluminum seal. Note: These plasmid constructs are being distributed to non-profit institutions for the purpose of basic
    [Show full text]
  • PRKAB1 (Human) Cell-Based ELISA Cellular Localization of AMPK
    PRKAB1 (Human) Cell-Based ELISA cellular localization of AMPK. This subunit may also Kit serve as an adaptor molecule mediating the association of the AMPK complex. [provided by RefSeq] Catalog Number: KA2571 Regulatory Status: For research use only (RUO) Product Description: PRKAB1 (Human) Cell-Based ELISA Kit is an indirect enzyme-linked immunoassay for qualitative determination of PRKAB1 expression in cultured cells. Suitable Sample: Attached Cell Label: HRP-conjugated Detection Method: Colorimetric Reactivity: Human,Mouse,Rat Applications: Qual (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Storage Instruction: Store the kit at 4°C. Entrez GeneID: 5564 Gene Symbol: PRKAB1 Gene Alias: AMPK, HAMPKb, MGC17785 Gene Summary: The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This subunit may be a positive regulator of AMPK activity. The myristoylation and phosphorylation of this subunit have been shown to affect the enzyme activity and Page 1/1 Powered by TCPDF (www.tcpdf.org).
    [Show full text]
  • Identification of Kinase Inhibitor Targets in the Lung Cancer Microenvironment by Chemical and Phosphoproteomics
    Published OnlineFirst September 4, 2014; DOI: 10.1158/1535-7163.MCT-14-0152 Molecular Cancer Models and Technologies Therapeutics Identification of Kinase Inhibitor Targets in the Lung Cancer Microenvironment by Chemical and Phosphoproteomics Manuela Gridling1, Scott B. Ficarro2,3,4, Florian P. Breitwieser1, Lanxi Song5, Katja Parapatics1, Jacques Colinge1, Eric B. Haura5, Jarrod A. Marto2,3,4, Giulio Superti-Furga1, Keiryn L. Bennett1, and Uwe Rix1,6 Abstract A growing number of gene mutations, which are recognized as cancer drivers, can be successfully targeted with drugs. The redundant and dynamic nature of oncogenic signaling networks and complex interactions between cancer cells and the microenvironment, however, can cause drug resistance. While these challenges can be addressed by developing drug combinations or polypharmacology drugs, this benefits greatly from a detailed understanding of the proteome-wide target profiles. Using mass spectrometry-based chemical proteomics, we report the comprehensive characterization of the drug–protein interaction networks for the multikinase inhibitors dasatinib and sunitinib in primary lung cancer tissue specimens derived from patients. We observed in excess of 100 protein kinase targets plus various protein complexes involving, for instance, AMPK, TBK1 (sunitinib), and ILK (dasatinib). Importantly, comparison with lung cancer cell lines and mouse xenografts thereof showed that most targets were shared between cell lines and tissues. Several targets, however, were only present in tumor tissues. In xenografts, most of these proteins were of mouse origin suggesting that they originate from the tumor microenvironment. Furthermore, intersection with subsequent global phosphoproteomic analysis identified several activated signaling pathways. These included MAPK, immune, and integrin signaling, which were affected by these drugs in both cancer cells and the microen- vironment.
    [Show full text]