The Newsletter of the IUCN/SSC Anteater, Sloth and Armadillo Specialist Group • 2010 • Number 11(1)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Application of Hyphenated Analytical Techniques in the Investigation of Selenium Speciation of Different Plants
Summary of Doctoral Thesis Application of hyphenated analytical techniques in the investigation of selenium speciation of different plants ANIKÓ NÉMETH Supervisor Mihály Dernovics, PhD Department of Applied Chemistry Faculty of Food Science Corvinus University of Budapest Budapest, 2015 PhD School/Program Name PhD School of Life Sciences Field Food Science Head Prof. József Felföldi, PhD Department of Physics and Control Faculty of Food Science Corvinus University of Budapest Supervisor Mihály Dernovics, PhD Department of Applied Chemistry Faculty of Food Science Corvinus University of Budapest The applicant met the requirements of the PhD regulations of the Corvinus University of Budapest and the thesis is accepted for the defence process. ............................................... ............................................... Head of PhD School Supervisor 1 INTRODUCTION The biological importance of selenium (Se) is due to its essentiality for the majority of organisms - including humans. Among others, it plays an important role in the antioxidant system of many organisms through the incorporation of selenocysteine - the 21st amino acid - into various antioxidant enzymes (Papp et al. 2010). Selenium is thus essential for maintaining the redox homeostasis and also can be utilized in chemoprevention of chronic diseases, such as chronic inflammation, cancer or cardiovascular disease (Hatfield et al. 2014). Dietary selenium supplementation received considerable attention in the last decades, since many studies showed that it is effective in counteracting some negative effects of our modern lifestyle (Rayman 2012). Since the daily intake of selenium in Hungary is lower than that is necessary for the optimal operation of our body (Szabó et al. 1991), the missing amount of selenium should be ingested in the form of selenium rich or Se-enriched foodstuff or food supplements. -
Seed Coat Anatomy and Its Relationship to Seed Dispersal in Subfamily Lecythidoideae of the Lecythidaceae (The Brazil Nut Family)
TsouBot. Bull. and MoriAcad. — Sin. Seed (2002) coat 43: of 37-56 Lecythidoideae 37 Seed coat anatomy and its relationship to seed dispersal in subfamily Lecythidoideae of the Lecythidaceae (The Brazil Nut Family) Chih-Hua Tsou1 and Scott A. Mori2,* 1Institute of Botany, Academia Sinica, Taipei, Taiwan 115, Republic of China 2Nathaniel Lord Britton Curator of Botany, Institute of Systematic Botany, The New York Botanical Garden, Bronx, New York 10458-5126, USA (Received April 19, 2001; Accepted August 31, 2001) Abstract. The seed coat anatomy of representative species from all 10 Neotropical genera of Lecythidaceae subfam- ily Lecythidoideae and from the Paleotropical Barringtonia (Lecythidaceae subfamily Planchonioideae) was studied. The seed coat is mainly composed of the testa, which is developed through moderate or intensive multiplication of the outer integument of the ovule. The tegmen, derived from the inner integument of the ovule, is mostly crushed at seed maturity. Barringtonia and Grias, with fruits as diaspores, have an unspecialized exotesta and a poorly differ- entiated seed coat. In contrast, species of Lecythidoideae, with seeds as diaspores, possess well-differentiated seed coats with diversified protective mechanisms. Examples include: an expanded and lignified exotesta that serves as a water barrier and protects the embryo; an extensive area of tannin cells that provides a chemical defense against pathogens and predators; a thick and sclerotic mesotesta that protects the embryo; and large fibers surrounding and supporting -
Chemical Composition, Nutritive Value and Voluntary Intake of Tropical Tree Foliage and Cocoyam in Pigs
Journal of the Science of Food and Agriculture J Sci Food Agric 85:1725–1732 (2005) DOI: 10.1002/jsfa.2177 Chemical composition, nutritive value and voluntary intake of tropical tree foliage and cocoyam in pigs† Pascal Leterme,1∗ Angela M Londono,˜ 1 Fernando Estrada,1 Wolfgang B Souffrant2 and Andre´ Buldgen3 1Universidad Nacional de Colombia, sede Palmira, Carrera 32, Palmira (Valle), Colombia 2Research Institute for the Biology of Farm Animals (FBN), Department of Nutritional Physiology ‘O. Kellner’, D-18196 Dummerstorf, Germany 3Faculte´ universitaire des Sciences agronomiques, B-5030 Gembloux, Belgium Abstract: The composition of the leaves of cocoyam (Xanthosoma sagittifolium) and of two trees (Trichanthera gigantea and mulberry, Morus alba), their nutritive value in pigs and voluntary intake by pigs were determined. The average protein content ranged from 170 to 240 g kg−1 dry matter (DM) and that of neutral detergent fibres from 218 to 398 g kg−1 DM. The leaves are interesting sources of calcium (up to 69 g kg−1 DM), potassium, iron and manganese. The proteins are well balanced in essential amino acids, with lysine ranging from 43 to 57 g kg−1 proteins. The apparent faecal digestibility was determined by difference in 35 kg pigs fed a diet containing 35% leaf meal. The digestibility coefficients of DM, N and energy were, respectively, 47–57, 33–36 and 51–53%. The digestible energy value ranged from 1.674 to 2.037 kcal kg−1 DM. The voluntary intake of Trichanthera and Xanthosoma was measured in sows weighing 100 kg on average. The intake reached 3.4 kg fresh leaves day−1 (0.51 kg DM) and 1.0–1.1 kg dry leaf meal/day. -
This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Molecular Species Delimitation, Taxonomy and Biogeography of Sri Lankan Gesneriaceae Subhani Wathsala Ranasinghe Doctor of Philosophy The University of Edinburgh Royal Botanic Garden Edinburgh 2017 Declaration I hereby declare that the work contained in this thesis is my own unless otherwise acknowledged and cited. This thesis has not in whole or in part been previously presented for any degree Subhani Wathsala Ranasinghe 24th January 2017. i Abstract The plant family Gesneriaceae is represented in Sri Lanka by six genera: Aeschynanthus, Epithema, Championia, Henckelia, Rhynchoglossum and Rhynchotechum, with 13 species (plus one subspecies/variety) of which ten are endemic including the monotypic genus Championia, according to the last revision in 1981. They are exclusively distributed in undisturbed habitats, and some have high ornamental value. The species are morphologically diverse, but face a problem of taxonomic delineation, which is further complicated by the presence of putative hybrids. -
Economically Important Plants Arranged Systematically James P
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 1-2017 Economically Important Plants Arranged Systematically James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: http://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Economically Important Plants Arranged Systematically" (2017). Botanical Studies. 48. http://digitalcommons.humboldt.edu/botany_jps/48 This Economic Botany - Ethnobotany is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. ECONOMICALLY IMPORTANT PLANTS ARRANGED SYSTEMATICALLY Compiled by James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California 30 January 2017 This list began in 1970 as a handout in the Plants and Civilization course that I taught at HSU. It was an updating and expansion of one prepared by Albert F. Hill in his 1952 textbook Economic Botany... and it simply got out of hand. I also thought it would be useful to add a brief description of how the plant is used and what part yields the product. There are a number of more or less encyclopedic references on this subject. The number of plants and the details of their uses is simply overwhelming. In the list below, I have attempted to focus on those plants that are of direct economic importance to us. -
Lamiales – Synoptical Classification Vers
Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. -
The Hyperdominant Tropical Tree Eschweilera Coriacea (Lecythidaceae) Shows Higher Genetic Heterogeneity Than Sympatric Eschweilera Species in French Guiana
Plant Ecology and Evolution 153 (1): 67–81, 2020 https://doi.org/10.5091/plecevo.2020.1565 REGULAR PAPER The hyperdominant tropical tree Eschweilera coriacea (Lecythidaceae) shows higher genetic heterogeneity than sympatric Eschweilera species in French Guiana Myriam Heuertz1,*, Henri Caron1,2, Caroline Scotti-Saintagne3, Pascal Pétronelli2, Julien Engel4,5, Niklas Tysklind2, Sana Miloudi1, Fernanda A. Gaiotto6, Jérôme Chave7, Jean-François Molino5, Daniel Sabatier5, João Loureiro8 & Katharina B. Budde1,9 1Univ. Bordeaux, INRAE, Biogeco, FR-33610 Cestas, France 2INRAE, Cirad, Ecofog, GF-97310 Kourou, French Guiana 3INRAE, URFM, FR-84914 Avignon, France 4International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL-33199, USA 5Université de Montpellier, IRD, Cirad, CNRS, INRAE, AMAP, FR-34398 Montpellier, France 6Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Ilhéus, BR-45662-901, Bahia, Brazil 7Université Paul Sabatier Toulouse, CNRS, EBD, FR-31062, Toulouse, France 8University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, PT-3000-456 Coimbra, Portugal 9Present address: University of Copenhagen, Forest, Nature and Biomass, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark *Corresponding author: [email protected] Background and aims – The evolutionary history of Amazonia’s hyperabundant tropical tree species, also known as “hyperdominant” species, remains poorly investigated. We assessed whether the hyperdominant Eschweilera coriacea (DC.) S.A.Mori (Lecythidaceae) represents a single genetically cohesive species, and how its genetic constitution relates to other species from the same clade with which it occurs sympatrically in French Guiana. Methods – We sampled 152 individuals in nine forest sites in French Guiana, representing 11 species of the genus Eschweilera all belonging to the Parvifolia clade, with emphasis on E. -
Trichanthera Gigantea) | Feedipedia
Nacedero (Trichanthera gigantea) | Feedipedia Animal feed resources Feedipedia information system Home About Feedipedia Team Partners Get involved Contact us Nacedero (Trichanthera gigantea) Automatic translation Description Nutritional aspects Nutritional tables References Anglais ▼ Click on the "Nutritional aspects" tab for recommendations for ruminants, pigs, poultry, rabbits, horses, fish and crustaceans Feed categories All feeds drilling plants Cereal and grass forages Legume forages Forage trees Aquatic plants Common names Other forage plants Plant products/by-products Nacedero, naranjillo, Yatago, white rim, rompebarriga, quiebrabarrigo, cajeto, fune, mother water, suiban, ashtray, rascal, stick Cereal grains and by-products water [Spanish]; beque, holy pau [Portuguese]; Trichanthera [Inglés]; chè đại [Vietnamese] Legume seeds and by-products Oil plants and by-products Species Fruits and by-products Roots, tubers and by-products Trichanthera gigantea (Humboldt & Bonpland.) Nees [Acanthaceae] Sugar processing by-products Plant oils and fats Feed categories Other plant by-products Feeds of animal origin Other forage plants drilling plants Animal by-products Dairy products/by-products Related feed(s) Animal fats and oils Insects Description Other feeds Minerals Nacedero (Trichanthera gigantea (Humboldt & Bonpland.) Nees) is a multipurpose, versatile tree native of South America that Other products thrives in a wide range of tropical ecosystems. It is used for fodder for pigs, rabbits and ruminants. Morphology Latin names Trichanthera gigantea is a small to medium sized shrub, generally about 5 m high but it can grow to a height of 12-15 m (Cook Plant and animal families et al., 2005; Rosales, 1997). The crown is 6 m in diameter and the tree is many branched. Branches are quadrangular with Plant and animal species rounded nodes and minutely haired tips. -
Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D. -
A Morphological Cladistic Analysis of Lecythidoideae with Emphasis on Bertholletia, Corythophora, Eschweilera, and Lecythis
A morphological cladistic analysis of Lecythidoideae with emphasis on Bertholletia, Corythophora, Eschweilera, and Lecythis 1 2 3 YA-YI HUANG ,SCOTT A. MORI , AND LAWRENCE M. KELLY 1 The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458-5126, U.S.A. Current address: Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan; e-mail: lecy.yhuang@ gmail.com 2 Institute of Systematic Botany, The New YorkBotanical Garden, 2900 Southern Blvd., Bronx( NY 10458-5126, U.S.A.; e-mail: [email protected] 3 The New York Botanical Garden, 2900 Southern Blvd., Bronx( NY 10458-5126, U.S.A.; e-mail: [email protected] Abstract. A cladistic analysis was conducted to test the monophyly of Eschweilera and Lecythis as well as to examine the relationships of these two genera and their close relatives Bertholletia and Corythophora. The study included 86 species, represent- ing all four genera and covering the range of taxonomic and morphological variation in the genera. The data matrix included 49 parsimony-informative characters derived from vegetative, floral, fruit, and seed morphology and anatomy. The results based on the consensus of all most parsimonious trees indicate that Bertholletia, Corythophora, Eschweilera,andLecythis form a clade supported by brachyparacytic stomata, the absence of pedicels (with subsequent reversals in several clades), a two or four- locular ovary, the presence of an aril, and the absence of cotyledons. Within the clade, the monophyly of Corythophora is supported by the presence of inflores- cence scales and the absence of nectar. Eschweilera is monophyletic only if E. congestiflora and E. simiorum are excluded. The monophyly of Eschweilera is supported by the presence of a two-locular ovary. -
A Synoptical Classification of the Lamiales
Lamiales – Synoptical classification vers. 2.0 (in prog.) Updated: 13 December, 2005 A Synoptical Classification of the Lamiales Version 2.0 (in progress) Compiled by Richard Olmstead With the help of: D. Albach, B. Bremer, P. Cantino, C. dePamphilis, P. Garnock-Jones, R. Harley, L. McDade, E. Norman, B. Oxelman, J. Reveal, R. Scotland, J. Smith, E. Wallander, A. Weber, A. Wolfe, N. Young, M. Zjhra, and others [estimated # species in Lamiales = 22,000] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near-term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. Lamiales – Synoptical classification vers. 2.0 (in prog.) Updated: 13 December, 2005 Acanthaceae (~201/3510) Durande, Notions Elém. Bot.: 265. 1782, nom. cons. – Synopsis compiled by R. Scotland & K. Vollesen (Kew Bull. 55: 513-589. 2000); probably should include Avicenniaceae. Nelsonioideae (7/ ) Lindl. ex Pfeiff., Nomencl. -
A New Miocene Malpighialean Tree from Panama
Rodriguez-ReyesIAWA Journal et al. – New38 (4), Miocene 2017: malpighialean437–455 wood 437 Panascleroticoxylon crystallosa gen. et sp. nov.: a new Miocene malpighialean tree from Panama Oris Rodriguez-Reyes1, 2, Peter Gasson3, Carolyn Thornton4, Howard J. Falcon-Lang5, and Nathan A. Jud6 1Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón Republic of Panamá 2Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Apartado 000 17, Panamá 0824, Panamá 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom 4Florissant Fossil Beds National Monument, P.O. Box 185, 15807 Teller County Road 1, Florissant, CO 80816, U.S.A. 5Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom 6L.H. Bailey Hortorium, Department of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, NY 14853, U.S.A. *Corresponding author; e-mail: [email protected] ABSTRACT We report fossil wood specimens from two Miocene sites in Panama, Central America: Hodges Hill (Cucaracha Formation; Burdigalian, c.19 Ma) and Lago Alajuela (Alajuela Formation; Tortonian, c.10 Ma), where material is preserved as calcic and silicic permineralizations, respectively. The fossils show an unusual combination of features: diffuse porous vessel arrangement, simple perforation plates, alternate intervessel pitting, vessel–ray parenchyma pits either with much reduced borders or similar to the intervessel pits, abundant sclerotic tyloses, rays markedly heterocellular with long uniseriate tails, and rare to absent axial parenchyma. This combination of features allows assignment of the fossils to Malpighiales, and we note similarities with four predominantly tropical families: Salicaceae, Achariaceae, and especially, Phyllanthaceae, and Euphorbiaceae.