Apollo 11: First Steps Edition

Total Page:16

File Type:pdf, Size:1020Kb

Apollo 11: First Steps Edition APOLLO 11: FIRST STEPS EDITION Sensory Friendly Script The Omnitheater has a rotating Dome Screen. It begins above the audience. Four minutes before the show starts, it will begin rotating to the movie position down in front of the audience. You will hear a few LOUD BANGS as it rotates. The movie will projected onto the Dome Screen after it has finished rotating. This movie has editing that can sometimes be quick and feel disorientating. There is no one narrator, instead it is narrated by those who have experienced it firsthand. As a result, sound often changes abruptly from scene to scene, and sound can make sudden changes from quiet to loud. Please return to an Omnitheater Associate after the show. APOLLO 11: FIRST STEPS EDITION—47MINUTES SENSORY SCENE DESCRIPTION DIALOGUE/SOUND COMMENTS EXT. DESERT—DAY. Aerial shot of We have been here before desert. FAST PACED In the dreams of the ancients IMAGES FOR THE CUT TO: Alternate aerial shot of who traced the stars in pools 30 SECONED desert by moonlight, COMMERCIAL! CUT TO: Alternate aerial shot of desert CUT TO: Push in over steering And the chalkboards of wheel scientists CUT TO: Hands curling over steering wheel who plotted a course. CUT TO: Ignition button being pushed CUT TO: Wheel locked off center frame while car rotates around it Car driving vertically. Frame rotates horizontally CUT TO: M/S through passenger window of woman driving car CUT TO: Aerial shot of car driving through desert CUT TO: Alternate aerial shot of car driving through desert It’s a journey they started, CUT TO: Foot steps onto desert surface And one we must continue. United in our drive 1 CUT TO: Woman walks into frame CUT TO: Reverse W/S: woman to never stop discovering. stands next to car Boom up to view of stars. Land Rover logo appears COMPANY LOGO: MACGILLIVRAY FREEMAN COMPANY LOGO: CNN FILMS COMPANY LOGO: STATEMENT PICTURES Black MAIN TITILE: APOLLO 11 FIRST STEPS EDITION Sounds of heavy EXT. KENNEDY SPACE CENTER— (Sounds of heavy machinery) machinery DAY--A red truck passes the massive treads of the NASA crawler-transporter CUT TO: Saturn V on crawler transporter in distance with sign in foreground for launch complex 39 CUT TO: NASA worker walking next to treads of crawler-transporter CUT TO: Crawler-transporter approaching camera with workers in foreground Loud! Sound of (Sound of helicopter) helicopter CUT TO: Aerial shot of Saturn-V on crawler-transporter as it ascends ramp toward launch pad 39A. NASA 2 vehicle assembly building visible in (Sounds of work on rocket) distance CUT TO: Tilt down from Launch Escape Tower at top of vehicle INT. LAUNCH CONTROL CENTER – NASA ADMINISTRATOR DAY. Scale model of crawler- OK, are there any changes to transporter and vehicle assembly the schedule? Arnie? building. CUTTO: engineers/administrators ARNIE: in conference room The tank pressurization test will not start until… CUT TO: JoAnn Morgan, NASA ARNIE (CONT’D) Launch Controller, listening during …13:00 meeting NASA ADMINISTRATOR Arnie you gonna extend CUT TO: Engineers sitting at table in that… conference room, listening NASA ADMINISTRATOR(cont’d) …time out for five hours by cutting it off in the front end of that… CUT TO: Saturn-V model in foreground, conference room of engineers in background NASA ADMINISTRATOR (cont’d) … LH2 storage tank pressurization? 3 Black WALTER CRONKITE It’s 3 hours and 32 minutes… GRAPHIC: JULY 16, 1969 …until man begins the greatest adventure in his history… EXT. LAUNCH COMPLEX 39 EARLY MORNING. Slow tilt up from base of Saturn-V on mobile launcher …If all goes well, Apollo 11 platform astronauts Armstrong, Aldrin, and Collins are to lift off from Pad 39A out there on the voyage man always has dreamed about. So it is now, before they go, as their gleaming vehicle sits poised and peaceful out there, that there is time—if only briefly in this busy morning—to think of those three men, and the burdens and the hopes that they carry on behalf of all mankind. INT. FIRING ROOM 1: A hand flips (Music ) switches on a console WALTER CRONKITE CUT TO: INT. SUITING UP ROOM And boring through the Neil Armstrong, with back to vastness, the blackness, and camera, suiting up. Technicians in the cold of space, they’ll white, one holding a camera, look carry the pledge made eight on. Camera pans left, showing years ago by President Collins and Aldrin suiting up. Kennedy to put a man on the moon and bring him back CUT TO: Buzz Aldrin having suit safely in this decade adjusted by tech. CUT TO: Armstrong looking frame left in suiting up room ARMSTRONG GRAPHIC: Each segment of the NEIL ARMSTRONG mission, every individual 4 MISSION COMMANDER piece, has to be completed perfectly… CUT TO: Neil Armstrong speaking ARMSTRONG (cont’d) to technician at left of frame, and …in order for the next step adjusting suit to be possible. And of course the nation itself is backing us so we just sincerely hope CUT TO: Michael Collins and that we measure up to that technician adjusting headset as another technician looks on in COLLINS background The whole Apollo program was designed to get two GRAPHIC: Americans to the lunar MICHAEL COLLINS surface and back again to COMMAND MODULE PILOT Earth safely. The enormity… CUT TO: Collins continues to have his suit adjusted by technicians COLLINS …of this event is something CUT TO: Buzz Aldrin having his suit that only history will be able adjusted by technicians to judge. GRAPHIC: EDWIN “BUZZ” ALDRIN LUNAR MODULE PILOT ALDRIN Apollo 11 has very simply been given the mission of carrying men to the moon, landing them there, and bringing them safely back INT. SUITING UP ROOM: Neil WALTER CRONKITE Armstrong turned partially away For in addition to the from camera as a technician adjusts mission the three astronauts his suit will perform, and the 5 experiments they’ll undertake… CUT TO: Neil Armstrong turned more towards camera has his suit … these men will carry with adjusted by technicians them many other things, many things that are not SERIES OF ARCHIVAL PHOTOS AND nearly so easy to describe… Fast-Paced FOOTAGE DENOTING FLASHBACK: footage. A strip of four black and white photographs of Neil Armstrong as a baby Black and white school picture of Neil Armstrong, approximately age 10 Black and white school picture of Neil Armstrong, approximately age 16 Black and white photograph of Neil Armstrong, wearing Naval Aviator uniform approximately age 20 Black and white archival footage: a plane, piloted by Armstrong, takes off from the deck of an aircraft carrier Black and white photo: Janet Armstrong and Neil Armstrong at their wedding Black and white photo: The Armstrong children in the driveway of their residence next to a car Black and white photo: Armstrong kneeling with his son 6 Black and white photo: Neil and Janet Armstrong, each carrying a child, standing near a fence Archival footage: Neil Armstrong being suited up for a test flight, standing next to an X-15 hypersonic aircraft Archival footage: air to air, an X-15 aircraft, piloted by Armstrong, is drop launched from a B-52 Archival footage: air to air, an X-15 aircraft in flight Archival footage: tail of X-15 as it performs barrel rolls. Contrail visible behind aircraft Archival footage: Gemini 8 astronauts, led by Armstrong, exit NASA transfer van and approach ramp Archival footage: Gemini 8 launch Archival footage: the Agena Target Vehicle seen from the window of Gemini 8 during rendezvous Archival footage: undocking from the Agena Target Vehicle as seen from window of Gemini 8 Archival photo: Neil Armstrong and Gemini 8 pilot David Scott with families after the completion of the Gemini 8 mission 7 Archival footage: Neil Armstrong piloting the LLRV (Lunar Landing Research Vehicle) Archival footage: Neil Armstrong parachuting down above a crashed, burning LLRV Archival photo: Neil Armstrong in family home with Janet Armstrong, Mark Armstrong, and Rick Armstrong Neil Armstrong in suiting up room looking at a suit technician WALTER CRONKITE During the planned Apollo 11 journey… Michael Collins’ hand as glove is fastened on in suiting up room …we’ll be concerned with such things as mid-course Michael Collins has his suit adjusted corrections and docking, by technician in suiting up room …the astronauts of course will be concerned with very much more SERIES OF ARCHIVAL PHOTOS AND More Fast-Paced MOVIES DENOTING FLASHBACK images. Archival photo: Michael Collins approximately age 8 8 Archival photo: Michael Collins in a flight suit, standing with a group of pilots in front of F-86 Saber Archival photo: an Air Force plane, piloted by Collins, in mid flight Archival photo: Collins in flight suit, carrying helmet, posing next to plain. Archival photo: Collins posing in front of plane Archival photo: Michael and Patricia Collins on their wedding day Archival photo: Collins holding his young daughters Archival footage: the Agena Target Vehicle seen from the window of Gemini 10 Archival footage: the Agena Target Vehicle seen from the window of Gemini 10, Earth in background Archival footage: images of the Earth taken during Michael Collins’ EVA on Gemini 10 Archival footage: an engine burn on Gemini 10, with Earth rotating in background Archival footage: Michael Collins and Deke Slayton walking on a runway 9 Archival footage: Astronauts in space suits walk down a hallway Archival footage: Astronaut being helped through the hatch of the command module by a technician Neil Armstrong, Michael Collins, and Buzz Aldrin pose in front of the Saturn V rocket Alternate angle: Neil Armstrong, Michael Collins, and Buzz Aldrin pose in front of the Saturn V rocket Close up: Neil Armstrong and Michael Collins laughing while posing for pictures Archival photo: Michael Collins with family outside house Collins in suiting up room, having his suit adjusted by technicians WALTER CRONKITE The flight of Apollo 11 is to be the culmination….
Recommended publications
  • Breaking the Pressure Barrier: a History of the Spacesuit Injection Patch
    Breaking the Pressure Barrier: A History of the Spacesuit Injection Patch Shane M. McFarland1 Wyle/NASA-Johnson Space Center, Houston, TX Aaron S. Weaver2 NASA-Glenn Research Center, Columbus, OH The spacesuit assembly has a fascinating and complicated history dating back to the early 1930s. Much has been written on this history from an assembly perspective and, to a lesser extent, a component perspective. However, little has been written or preserved specifically on smaller, lesser-known aspects of pressure suit design. One example of this is the injection patch—a small 2–in.-diameter disk on the leg of the Apollo suit that facilitated a medical injection when pressurized, and the only known implementation of such a feature on a flight suit. Whereas many people are aware this feature existed, very little is known of its origin, design, and use, and the fact that the Apollo flight suit was not the only instance in which such a feature was implemented. This paper serves to tell the story of this seeming “afterthought” of a feature, as well as the design considerations heeded during the initial development of subsequent suits. Nomenclature EMU = Extravehicular Mobility Unit ETFE = ethylene tetrafluoroethylene EVA = extravehicular activity FEP = fluorinated ethylene propylene ILC = International Latex Corporation IM = intramuscular (injection) IO = intraosseal (injection) IV = intravascular (injection) LCG = liquid cooling garment NASA = National Aeronautics and Space Administration PGS = pressure garment subsystem TMG = thermal micromediorite garment UTC = urine transfer connector I. Introduction he earliest efforts in pressure suit design were driven by the need to survive high altitudes during attempts to T break speed or height flight records.
    [Show full text]
  • SPEAKERS TRANSPORTATION CONFERENCE FAA COMMERCIAL SPACE 15TH ANNUAL John R
    15TH ANNUAL FAA COMMERCIAL SPACE TRANSPORTATION CONFERENCE SPEAKERS COMMERCIAL SPACE TRANSPORTATION http://www.faa.gov/go/ast 15-16 FEBRUARY 2012 HQ-12-0163.INDD John R. Allen Christine Anderson Dr. John R. Allen serves as the Program Executive for Crew Health Christine Anderson is the Executive Director of the New Mexico and Safety at NASA Headquarters, Washington DC, where he Spaceport Authority. She is responsible for the development oversees the space medicine activities conducted at the Johnson and operation of the first purpose-built commercial spaceport-- Space Center, Houston, Texas. Dr. Allen received a B.A. in Speech Spaceport America. She is a recently retired Air Force civilian Communication from the University of Maryland (1975), a M.A. with 30 years service. She was a member of the Senior Executive in Audiology/Speech Pathology from The Catholic University Service, the civilian equivalent of the military rank of General of America (1977), and a Ph.D. in Audiology and Bioacoustics officer. Anderson was the founding Director of the Space from Baylor College of Medicine (1996). Upon completion of Vehicles Directorate at the Air Force Research Laboratory, Kirtland his Master’s degree, he worked for the Easter Seals Treatment Air Force Base, New Mexico. She also served as the Director Center in Rockville, Maryland as an audiologist and speech- of the Space Technology Directorate at the Air Force Phillips language pathologist and received certification in both areas. Laboratory at Kirtland, and as the Director of the Military Satellite He joined the US Air Force in 1980, serving as Chief, Audiology Communications Joint Program Office at the Air Force Space at Andrews AFB, Maryland, and at the Wiesbaden Medical and Missile Systems Center in Los Angeles where she directed Center, Germany, and as Chief, Otolaryngology Services at the the development, acquisition and execution of a $50 billion Aeromedical Consultation Service, Brooks AFB, Texas, where portfolio.
    [Show full text]
  • USGS Open-File Report 2005-1190, Table 1
    TABLE 1 GEOLOGIC FIELD-TRAINING OF NASA ASTRONAUTS BETWEEN JANUARY 1963 AND NOVEMBER 1972 The following is a year-by-year listing of the astronaut geologic field training trips planned and led by personnel from the U.S. Geological Survey’s Branches of Astrogeology and Surface Planetary Exploration, in collaboration with the Geology Group at the Manned Spacecraft Center, Houston, Texas at the request of NASA between January 1963 and November 1972. Regional geologic experts from the U.S. Geological Survey and other governmental organizations and universities s also played vital roles in these exercises. [The early training (between 1963 and 1967) involved a rather large contingent of astronauts from NASA groups 1, 2, and 3. For another listing of the astronaut geologic training trips and exercises, including all attending and the general purposed of the exercise, the reader is referred to the following website containing a contribution by William Phinney (Phinney, book submitted to NASA/JSC; also http://www.hq.nasa.gov/office/pao/History/alsj/ap-geotrips.pdf).] 1963 16-18 January 1963: Meteor Crater and San Francisco Volcanic Field near Flagstaff, Arizona (9 astronauts). Among the nine astronaut trainees in Flagstaff for that initial astronaut geologic training exercise was Neil Armstrong--who would become the first man to step foot on the Moon during the historic Apollo 11 mission in July 1969! The other astronauts present included Frank Borman (Apollo 8), Charles "Pete" Conrad (Apollo 12), James Lovell (Apollo 8 and the near-tragic Apollo 13), James McDivitt, Elliot See (killed later in a plane crash), Thomas Stafford (Apollo 10), Edward White (later killed in the tragic Apollo 1 fire at Cape Canaveral), and John Young (Apollo 16).
    [Show full text]
  • Alaska Regional Directors Offices Director Email Address Contact Numbers Supt
    Alaska Regional Directors Offices Director Email Address Contact Numbers Supt. Phone Fax Code ABLI RegionType Unit U.S Fish and Wildlife Service (FWS) Alaska Region (FWS) HASKETT,GEOFFREY [email protected] 1011 East Tudor Road Phone: 907‐ 786‐3309 Anchorage, AK 99503 Fax: 907‐ 786‐3495 Naitonal Park Service(NPS) Alaska Region (NPS) MASICA,SUE [email protected] 240 West 5th Avenue,Suite 114 Phone:907‐644‐3510 Anchoorage,AK 99501 Bureau of Indian Affairs(BIA) Alaska Region (BIA) VIRDEN,EUGENE [email protected] Bureau of Indian Affairs Phone: 907‐586‐7177 PO Box 25520 Telefax: 907‐586‐7252 709 West 9th Street Juneau, AK 99802 Anchorage Agency Phone: 1‐800‐645‐8465 Bureau of Indian Affairs Telefax:907 271‐4477 3601 C Street Suite 1100 Anchorage, AK 99503‐5947 Telephone: 1‐800‐645‐8465 Bureau of Land Manangement (BLM) Alaska State Office (BLM) CRIBLEY,BUD [email protected] Alaska State Office Phone: 907‐271‐5960 222 W 7th Avenue #13 FAX: 907‐271‐3684 Anchorage, AK 99513 United States Geological Survey(USGS) Alaska Area (USGS) BARTELS,LESLIE lholland‐[email protected] 4210 University Dr., Anchorage, AK 99508‐4626 Phone:907‐786‐7055 Fax: 907‐ 786‐7040 Bureau of Ocean Energy Management(BOEM) Alaska Region (BOEM) KENDALL,JAMES [email protected] 3801 Centerpoint Drive Phone: 907‐ 334‐5208 Suite 500 Anchorage, AK 99503 Ralph Moore [email protected] c/o Katmai NP&P (907) 246‐2116 ANIA ANTI AKR NPRES ANIAKCHAK P.O. Box 7 King Salmon, AK 99613 (907) 246‐3305 (907) 246‐2120 Jeanette Pomrenke [email protected] P.O.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Evidence for Thermal-Stress-Induced Rockfalls on Mars Impact Crater Slopes
    Icarus 342 (2020) 113503 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Evidence for thermal-stress-induced rockfalls on Mars impact crater slopes P.-A. Tesson a,b,*, S.J. Conway b, N. Mangold b, J. Ciazela a, S.R. Lewis c, D. M�ege a a Space Research Centre, Polish Academy of Science, Wrocław, Poland b Laboratoire de Plan�etologie et G�eodynamique UMR 6112, CNRS, Nantes, France c School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK ARTICLE INFO ABSTRACT Keywords: Here we study rocks falling from exposed outcrops of bedrock, which have left tracks on the slope over which Mars, surface they have bounced and/or rolled, in fresh impact craters (1–10 km in diameter) on Mars. The presence of these Thermal stress tracks shows that these rocks have fallen relatively recently because aeolian processes are known to infill Ices topographic lows over time. Mapping of rockfall tracks indicate trends in frequency with orientation, which in Solar radiation � � turn depend on the latitudinal position of the crater. Craters in the equatorial belt (between 15 N and 15 S) Weathering exhibit higher frequencies of rockfall on their north-south oriented slopes compared to their east-west ones. � Craters >15 N/S have notably higher frequencies on their equator-facing slopes as opposed to the other ori­ entations. We computed solar radiation on the surface of crater slopes to compare insolation patterns with the spatial distribution of rockfalls, and found statistically significant correlations between maximum diurnal inso­ lation and rockfall frequency.
    [Show full text]
  • Human and Machine in Spaceflight
    Digital Apollo: Human and Machine in Spaceflight David A. Mindell The MIT Press Cambridge, Massachusetts London, England ( 2008 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. For information about special quantity discounts, please email [email protected] This book was set in Stone Serif and Stone Sans on 3B2 by Asco Typesetters, Hong Kong. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Mindell, David A. Digital Apollo : human and machine in spaceflight / David A. Mindell. p. cm. Includes bibliographical references and index. ISBN 978-0-262-13497-2 (hardcover : alk. paper) 1. Human-machine systems. 2. Project Apollo (U.S.)—History. 3. Astronautics—United States—History. 4. Manned spaceflight—History. I. Title. TA167.M59 2008 629.47 04—dc22 2007032255 10987654321 Index Accelerometers, 1 control and, 19–22 Apollo program and, 97, 109–110, 119, 132, F-80 Shooting Star, 45 174, 194, 201 F-104 Starfighter, 45 AC Spark Plug, 110, 127, 134, 137 SR-71, 45 Adams, Mike, 59–61 stability and, 19–22 Adaptive control systems, 57–61, 77 U-2, 45 AGC (Apollo guidance computer), 259 X-1, 44, 46 Apollo 4 and, 174–175 X-15, 6 (see also X-15) Apollo 5 and, 175 Air-pressure gauges, 24 Apollo 7 and, 177 Aldrin, Edwin ‘‘Buzz,’’ 1–4, 8, 86 astronaut input and, 159 Eagle and, 217–232
    [Show full text]
  • Apollo Spacecraft
    APOLLO NEWS REFERENCE APOLLO SPACECRAFT The Apollo spacecraft comprises the lunar occupies the right flight station. The astronauts module, the command module, theservice module, transfer to the ascent stage, through the docking the spacecraft-lunar module adapter, and the tunne l, after the LM has docked with the CM and launch escape system. The five parts, 82 feet tall both have attained lunar orbit. The ascent stage when assembled, are carried atop the launch comprises three major areas: crew compartment, vehicle. midsection, and aft equipment bay. The cabin, comprising the crew compartment and midsection, After the launch escape system and the launch has an overa ll volume of 235 cubic feet. vehicle have been jettisoned, the three modu les remain to form the basic spacecraft. The command module carries the three astronauts to and from Because the LM is operated in either the weight­ lunar orbit. The service modu le contains the pro­ lessness of space or in lunar gravity, the cabin pulsion system that propels the spacecraft during contains harness- like restraint equipment rather the trans lunar and transearth flights. The lunar than the foldable couches provided in the CM. The module carries two astronauts, the Commander restraints al low the astronauts sufficient freedom and the Lunar Module Pilot, to and from the of movement to operate al l LM controls while in a moon, and serves as the base of operations during re lativelyupright position. the lunar stay. LUNAR MODULE The lunar module wil l be operated in the vacuum of space; there was no need, therefore,for it to have the aerodynamic symmetry of the com· mand module.
    [Show full text]
  • The Turtle Club
    The Turtle Club The Turtle Club was dreamed up by test pilots during WWII, the Interstellar Association of Turtles believes that you never get anywhere in life without sticking your neck out. When asked,” Are you a Turtle?” Shepard leads you must answer with the password in full no matter the Corvette how embarassing or inappropriate the timing is, or and Astronaut you forfeit a beverage of their choice. parade, Coca Beach, FL. To become a part of the time honored tradition, you must be 18 years of age or older and be approved by the Imperial Potentate or High Potentate. Memebership cards will be individually signed by Wally Schirra and Schirra rides his Sigma 7 Ed Buckbee. A limited number of memberships are Mercury available. Apply today by filling out the order form spacecraft. below or by visiting www.apogee.com and follow the prompts to be a card carrying member of the Turtle Club! A portion of the monies raised by the Turtle Club Membership Drive will be donated to the Astronaut Scholarship Foundation and Space Camp Scholarships. Turtle Club co-founder Shepard, High Potentate Buckbee and Imeperial Potentate and co-founder Schirra enjoy a gotcha! Order your copy today of The Real Space Cowboys along with your Turtle Club Membership _______________________________________________ Name _______________________________________________ Address _______________________________________________ _______________________________________________ City ___________________________ __________________ State Zip _______________________________________________ email ______________________ _____ __________________ Phone Age Birthdate You must be 18 years of age or older to become a member of the Turtle Club. __ No. of books @ $23.95 ______ Available Spring 2005 __ No.
    [Show full text]
  • Apollo 11 Astronaut Neil Armstrong Broadcast from the Moon (July 21, 1969) Added to the National Registry: 2004 Essay by Cary O’Dell
    Apollo 11 Astronaut Neil Armstrong Broadcast from the Moon (July 21, 1969) Added to the National Registry: 2004 Essay by Cary O’Dell “One small step for…” Though no American has stepped onto the surface of the moon since 1972, the exiting of the Earth’s atmosphere today is almost commonplace. Once covered live over all TV and radio networks, increasingly US space launches have been relegated to a fleeting mention on the nightly news, if mentioned at all. But there was a time when leaving the planet got the full attention it deserved. Certainly it did in July of 1969 when an American man, Neil Armstrong, became the first human being to ever step foot on the moon’s surface. The pictures he took and the reports he sent back to Earth stopped the world in its tracks, especially his eloquent opening salvo which became as famous and as known to most citizens as any words ever spoken. The mid-1969 mission of NASA’s Apollo 11 mission became the defining moment of the US- USSR “Space Race” usually dated as the period between 1957 and 1975 when the world’s two superpowers were competing to top each other in technological advances and scientific knowledge (and bragging rights) related to, truly, the “final frontier.” There were three astronauts on the Apollo 11 spacecraft, the US’s fifth manned spaced mission, and the third lunar mission of the Apollo program. They were: Neil Armstrong, Edwin “Buzz” Aldrin, and Michael Collins. The trio was launched from Kennedy Space Center in Florida on July 16, 1969 at 1:32pm.
    [Show full text]
  • The Moon Is a Harsh Chromatogram: the Most Strategic Knowledge Gap (Skg) at the Lunar Surface E
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2766.pdf THE MOON IS A HARSH CHROMATOGRAM: THE MOST STRATEGIC KNOWLEDGE GAP (SKG) AT THE LUNAR SURFACE E. Patrick, R. Blase, M. Libardoni, Southwest Research Institute®, 6220 Culebra Rd., San Antonio, TX 78238 ([email protected]) Introduction: Data from analytical instruments de- a gas chromatograph mass spectrometer (GCMS) and ployed during multiple lunar missions, combined with revealed 97% of the composition in that mass channel laboratory results[1], suggest the regolith surface of the to be N2. Henderson et al.[5] also identified amino ac- Moon traps more volatiles in gas-surface interactions ids which were attributed to contamination, but results than is currently understood. We assert that the lunar from recent more sensitive LCMS and GCMS experi- surface behaves as a giant 3-D surface chromatogram, ments by Elsila et al.[1] found some amino acid and separating gas molecules by species as each wafts other organic signatures to be extraterrestrial in origin. across the regolith according to its mobility and ad- While these and other investigations suggest contami- sorption characteristics before eventually becoming nation from the Apollo spacecraft as a likely source for trapped. Herein we present supporting evicence for this a number of observed signatures[1,2,4,5], what is not claim. explained is the nature of the trapping mechanism for In gas chromatography (GC), components of a the N2 feature in 10086, and demonstrates gas retention sample are separated within a column according to from a gas that, under most circumstances, exhibits no their individual partitioning coefficients and by such retention at temperatures around 300 K[3].
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]