Clematis Clematis Are the Noblest and Most Colorful of Climbing Vines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indoor Plants Or Houseplants
Visit us on the Web: www.gardeninghelp.org Indoor Plants or Houseplants Over the past twenty years houseplants have grown in popularity. Offered in a wide variety of sizes, shapes, colors and textures, houseplants beautify our homes and help soften our environment. They have been scientifically proven to improve our health by lowering blood pressure and removing pollutants from the air we breathe. When selecting a houseplant, choose reputable suppliers who specialize in growing houseplants. Get off to a good start by thoroughly examining each plant. Watch for brown edges and spindly growth with elongated stems and large gaps between new leaves. Inspect leaves and stem junctions for signs of insect or disease problems. Check any support stakes to make sure they are not hiding broken stems or branches. Finally, make sure the plant is placed in an area that suits its optimal requirements for light, temperature and humidity. Where to Place Your House Plants With the exception of the very darkest areas, you can always find a houseplant with growth requirements to match the environmental conditions in your home. The most important factors are light intensity and duration. The best way to determine the intensity of light at a window exposure area is to measure it with a light meter. A light meter measures light in units called foot-candles. One foot-candle is the amount of light from a candle spread over a square foot of surface area. Plants that prefer low light may produce dull, lifeless-looking leaves when exposed to bright light. Bright light can also cause leaf spots or brown-tipped scorched margins. -
Abacca Mosaic Virus
Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana, -
Approaches and Limitations of Species Level Diagnostics in Flowering Plants
Genetic Food Diagnostics Approaches and Limitations of Species Level Diagnostics in Flowering Plants Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich genehmigte DISSERTATION von Dipl. Biologe Thomas Horn aus 77709 Wolfach Dekan: Prof. Dr. Peter Roesky Referent: Prof. Dr. Peter Nick Korreferent: Prof. Dr. Horst Taraschewski Tag der mündlichen Prüfung: 17.04.2014 Parts of this work are derived from the following publications: Horn T, Völker J, Rühle M, Häser A, Jürges G, Nick P; 2013; Genetic authentication by RFLP versus ARMS? The case of Moldavian Dragonhead (Dracocephalum moldavica L.). European Food Research and Technology, doi 10.1007/s00217-013-2089-4 Horn T, Barth A, Rühle M, Häser A, Jürges G, Nick P; 2012; Molecular Diagnostics of Lemon Myrtle (Backhousia citriodora versus Leptospermum citratum). European Food Research and Technology, doi 10.1007/s00217-012-1688-9 Also included are works from the following teaching projects: RAPD Analysis and SCAR design in the TCM complex Clematis Armandii Caulis (chuān mù tōng), F2 Plant Evolution, 2011 Effects of highly fragmented DNA on PCR, F3, Lidija Krebs, 2012 1 I. Acknowledgement “Nothing is permanent except change” Heraclitus of Ephesus Entering adolescence – approximately 24 years ago – many aspects of life pretty much escaped my understanding. After a period of turmoil and subsequent experience of a life as laborer lacking an education, I realized that I did not want to settle for this kind of life. I wanted to change. With this work I would like to thank all people that ever bothered trying to explain the world to me, that allowed me to find my way and nurtured my desire to change. -
Chemical Investigation of Devil's Club
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1939 Chemical investigation of devil's club Hubert William Murphy The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Murphy, Hubert William, "Chemical investigation of devil's club" (1939). Graduate Student Theses, Dissertations, & Professional Papers. 6264. https://scholarworks.umt.edu/etd/6264 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. A CHBMIOAL IMTESTIGATiaS Of D E W S CLDB by Hubert WlXlleoot Murphy B«8.# State UniTerslty of Montana, 1937 Presented In partial fulfillment of the re quirement for the d agree of Master of Selenee State Hhiversity of Montana 1939 Approved: 71 chairman of Boarct' of Examiners# Chairman of Coomittee on Graduate Study Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP37065 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI DiMtMUtior) PubliaNng UMI EP37065 Published by ProQuest LLC (2013). -
William Herbert (1778--1847) Scientist and Polymath, and His Contributions to Curtis's Botanical Magazine
WILLIAM HERBERT (1778–1847) SCIENTIST AND POLYMATH, AND HIS CONTRIBUTIONS TO CURTIS’S BOTANICAL MAGAZINE Alison Rix ‘Hon. and Rev. W. Herbert, afterwards Dean of Manchester, in the fourth volume of the ‘Horticultural Transactions’, 1822, and in his work on the ‘Amaryllidaceae’ (1837, pp. 19, 339), declares that ‘horticultural experiments have established, beyond the possibility of refutation, that botanical species are only a higher and more permanent class of varieties’. He extends the same view to animals. The Dean believes that single species of each genus were created in an originally highly plastic condition, and that these have produced, chiefly by intercrossing, but likewise by variation, all our existing species’. [Preface to the third edition (1860) of On the Origin of Species,by Charles Darwin] The Hon. and Rev. William Herbert, often known as Dean Herbert, to whom Vol. 65 (1839) of Curtis’s Botanical Magazine was dedicated, was an exceptional polymath – a poet and classical scholar, linguist, reforming MP, clergyman – as well as amateur botanist and botanical artist. His best-known botanical work, illustrated with 48 of his own paintings, was the two volume work Amaryllidaceae, quoted above by Darwin. Although this extraordinary man counted botany as just one of his many interests, his output was prodigious; in addition to studying and breeding plants, such as Crocus, Gladiolus, Hippeastrum, Narcissus and Rhododendron, he also wrote and drew prolifically for journals such as Curtis’s Botanical Magazine and its rival publication, Edwards’s Botanical Register. In addition to Darwin, he corresponded with many other notable people, including Sir William Hooker and William Fox Talbot, and his letters paint a picture of a rather serious and industrious character. -
David A. Rasmussen, 2 Elena M. Kramer, 3 and Elizabeth A. Zimmer 4
American Journal of Botany 96(1): 96–109. 2009. O NE SIZE FITS ALL? M OLECULAR EVIDENCE FOR A COMMONLY INHERITED PETAL IDENTITY PROGRAM IN RANUNCULALES 1 David A. Rasmussen, 2 Elena M. Kramer, 3 and Elizabeth A. Zimmer 4 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 USA Petaloid organs are a major component of the fl oral diversity observed across nearly all major clades of angiosperms. The vari- able morphology and development of these organs has led to the hypothesis that they are not homologous but, rather, have evolved multiple times. A particularly notable example of petal diversity, and potential homoplasy, is found within the order Ranunculales, exemplifi ed by families such as Ranunculaceae, Berberidaceae, and Papaveraceae. To investigate the molecular basis of petal identity in Ranunculales, we used a combination of molecular phylogenetics and gene expression analysis to characterize APETALA3 (AP3 ) and PISTILLATA (PI ) homologs from a total of 13 representative genera of the order. One of the most striking results of this study is that expression of orthologs of a single AP3 lineage is consistently petal-specifi c across both Ranunculaceae and Berberidaceae. We conclude from this fi nding that these supposedly homoplastic petals in fact share a developmental genetic program that appears to have been present in the common ancestor of the two families. We discuss the implications of this type of molecular data for long-held typological defi nitions of petals and, more broadly, the evolution of petaloid organs across the angiosperms. Key words: APETALA3 ; MADS box genes; petal evolution; PISTILLATA ; Ranunculales. -
The Vascular System of Monocotyledonous Stems Author(S): Martin H
The Vascular System of Monocotyledonous Stems Author(s): Martin H. Zimmermann and P. B. Tomlinson Source: Botanical Gazette, Vol. 133, No. 2 (Jun., 1972), pp. 141-155 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2473813 . Accessed: 30/08/2011 15:50 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Botanical Gazette. http://www.jstor.org 1972] McCONNELL& STRUCKMEYER ALAR AND BORON-DEFICIENTTAGETES 141 tomato, turnip and cotton to variations in boron nutri- Further investigationson the relation of photoperiodto tion. II. Anatomical responses. BOT.GAZ. 118:53-71. the boron requirementsof plants. BOT.GAZ. 109:237-249. REED, D. J., T. C. MOORE, and J. D. ANDERSON. 1965. Plant WATANABE,R., W. CHORNEY,J. SKOK,and S. H. WENDER growth retardant B-995: a possible mode of action. 1964. Effect of boron deficiency on polyphenol produc- Science 148: 1469-1471. tion in the sunflower.Phytochemistry 3:391-393. SKOK, J. 1957. Relationships of boron nutrition to radio- ZEEVAART,J. A. D. 1966. Inhibition of stem growth and sensitivity of sunflower plants. -
THE STORY of PLANTS: IVY D Aniel Mount
NORTHWEST HORTICULTURAL SOCIETY WINTER 2014 THE STORY OF PLANTS: IVY D aniel Mount When I first laid eyes on the ivy- stain remover. In 1566, Anton Mizald, swathed green belts of Seattle I a Parisian doctor, even recom- was flled with a childlike mended wrapping pendulous awe. You see, I was a boy breasts in ivy garlands who imagined himself to restore elasticity Tarzan more than a and to “raise them freman. I found to their proper tree climbing position.” I’m and vine swing- not sure if that ing half-naked would work for preferable to man-boobs, uniformed but that’s not teamwork. Tis why I’m inter- is probably why I ested in ivy. I’m became a gardener. interested in the As a native plant garden worthiness enthusiast I quickly began of this plant I have long to see these green deserts for chosen to overlook. what they were: botanical waste- In the early eighteenth century, lands. I saw ivy as something frst to be horticulturists in Europe began collect- loathed, then to be eradicated. I never Hedera helix cv. (Daniel Mount) ing and naming clones of H. helix. In planted ivy no matter how lovely the the next century the Victorians raised variegation, or deeply lobed the leaf. All ivies I believed would ivy to nearly a cult status, growing it as a parlor plant as well eventually become voracious green monsters and swallow the as in their gardens. To them it was associated with long-lasting Emerald City. and clinging love. Tey used it for joyful Christmas decorat- I was grossly misinformed. -
CORN PLANT Dracena Fragrans Characteristics Culture Noteworthy
CORN PLANT Dracena fragrans Characteristics House Plant Water: Medium Zone: 10 to 12 Maintenance: Low Height: 15.00 to 50.00 feet Flower: Showy, Fragrant Spread: 3.00 to 10.00 feet Leaf: Evergreen Bloom Time: Seasonal bloomer Fruit: Showy Bloom Description: White-yellow Tolerate: Drought Sun: Part shade Culture Easily grown in containers as an indoor foliage plant where it typically thrives in organically rich, consistently moist, well-drained soils in part shade. Use a loamy, peaty, well-drained potting soil. Corn plant is best sited in bright indirect light locations protected from significant periods of direct sun and drafts. Tolerates some low light. Containers may be placed on beds of wet pebbles with regular misting of plant leaves in order to increase humidity. Dry soils usually result in brown leaf tips. Too much sun may prevent best foliage color from developing. Keep soils uniformly moist during the growing season, but reduce watering from fall to late winter. Allow soils to dry slightly between waterings, but never allow the soils to totally dry out. Plants tolerate a wide range of indoor temperatures, but are best grown in temperatures of 60-75 degrees F. Plant containers may be placed outdoors in summer but should always be brought back indoors in early fall before outdoor temperatures begin to dip below 50 degrees F. This is a frost-free tropical perennial. Noteworthy Characteristics Dracaena fragrans, commonly known as corn plant, is a popular, durable, easy-to-grow indoor houseplant Although it may soar to 20’ tall or more in its native habitat, it more often is seen in the 4-6’ tall range as a container plant in the U.S. -
International Cooperation Among Botanic Gardens
INTERNATIONAL COOPERATION AMONG BOTANIC GARDENS: THE CONCEPT OF ESTABLISHING AGREEMENTS By Erich S. Rudyj A thesis submitted to the Faculty of the University of elaware in partial fulfillment of the requirements for the degree Master of Science in Public Horticulture Administration May 1988 © 1988 Erich S. Rudyj INTERNATIONAL COOPERATION~ AMONG BOTANIC GARDENS: THE CONCEPT OF EsrtBllSHING AGREEMENTS 8y Erich S. Rudyj Approved: _ James E. Swasey, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: _ James E. Swasey, Ph.D. Coordinator of the Longwood Graduate Program Approved: _ Richard 8. MLfrray, Ph.D. Associate Provost for Graduate Studies No man is an /land, intire of it selfe; every man is a peece of the Continent, a part of the maine; if a Clod bee washed away by the Sea, Europe is the lesse, as well as if a Promontorie '-"Jere, as well as if a Mannor of thy friends or of thine owne were; any mans death diminishes me, because I am involved in Mankinde; And therefore never send to know for whom the bell tolls; It tolls for thee. - JOHN DONNE - In the Seventeenth Meditation of the Devotions Upon Emergent Occasions (1624) iii ACKNOWLEDGEMENTS I wish to express my sincerest thanks to Donald Crossan, James Oliver and James Swasey, who, as members of my thesis committee, provided me with the kind of encouragement and guidance needed to merge both the fields of Public Horticulture and International Affairs. Special thanks are extended to the organizers and participants of the Tenth General Meeting and Conference of the International Association of Botanical Gardens (IABG) for their warmth, advice and indefatigable spirit of international cooperation. -
ROBERT FORTUNE: Studies of Society and Environ- SECRET AGENT Ment (SOSE), English, English As a Second Language (ESL), BIOGRAPHY Politics, Media Studies and Economics
ISSUE 29 AUSTRALIAN SCREEN EDUCATION STUDY 1 h GUIDE CAROLINE WRIGHT-NEVILLE CAROLINE 6. The Medicinal Properties of Tea 7. Food and Festivals BEFORE YOU WATCH Discuss these general questions: • What do you think of when you drink tea from china cups? • How do you and your friends make a cup of tea? • Make a list of Australian native plants and non-native plants you have in your garden. • How did the non-native plants get to Australia? CURRICULUM LINKS • What images do you associate with Coca Cola and Microsoft? Why? OBERT FORTUNE THE • Compare some of the plots of James TEA THIEF is relevant Bond fi lms. How real are his mis- Rfor students in senior sions? secondary or adult educa- tion courses studying History, ROBERT FORTUNE: Studies Of Society and Environ- SECRET AGENT ment (SOSE), English, English as a Second Language (ESL), BIOGRAPHY Politics, Media Studies and Economics. Robert Fortune was born in Scotland in 1813 and is famous for being the This guide is divided into the follow- horticulturalist responsible for the in- ing areas: troduction of about 200 new species of plants into England. He was an avid 1. Robert Fortune: Biography explorer and adventurer who travelled 2. The East India Company around Asia and India collecting seed- 3. The Opium Wars lings and keeping detailed records of 4. The Signifi cance of Tea everything he saw. He was also one 5. Movement for the Protecttion of the of Britain’s most successful secret Right To Taste. AUSTRALIAN SCREEN EDUCATION ISSUE 29 2 agents. In 1848, the British govern- Make a list of some of the plants he ment commissioned him to bring might have found in China that are now back from China the best tea seeds, growing in your garden. -
Mechanical Architecture and Development in Clematis
Research MechanicalBlackwell Publishing Ltd. architecture and development in Clematis: implications for canalised evolution of growth forms S. Isnard1, T. Speck2 and N. P. Rowe1 1Botanique et Bioinformatique de l’Architecture des Plantes, UMR 5120 CNRS, TA40/PS2, Boulevard de la Lironde, 34398 Montpellier, France; 2Plant Biomechanics Group, Institute for Biology II, Botanical Garden of the Albert-Ludwigs-Universität, Schänzlestrasse 1, D-79104 Freiburg, Germany Summary Author for correspondence: • Mechanical architectures of two Clematis species, the herbaceous perennial S. Isnard Clematis recta and the woody liana, Clematis vitalba, were investigated and + Tel: 33 (0) 467617553 compared with the woody rhizomatous sand dune plant Clematis flammula var. Fax: +33 (0) 467615668 Email: [email protected] maritima. • Bending mechanical properties of stems from various developmental stages were Received: 25 September 2002 compared and related to stem geometry and relative proportions of tissues during Accepted: 28 February 2003 development. doi: 10.1046/j.1469-8137.2003.00771.x • Clematis vitalba and C. flammula var. maritima showed mechanical architectures with reductions in structural Young’s modulus of the stem during ontogeny. Irrever- sible loss of stem rigidity was mediated by disruption, separation and eventual loss of primary phloem fibres via secondary growth of the periderm and cambial activity. Each species showed variations of non-self-supporting mechanical architecture relating to specific habitat preferences. In aerial stems of C. recta the structural Young’s modulus remained approximately constant during ontogeny, a mechanical signal characteristic for semi-self-supporting architectures. •Woody aerial plant stems are extremely rare in the Ranunculaceae and seldom, if ever, show self-supporting characteristics.