No. 34 March 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indoor Plants Or Houseplants
Visit us on the Web: www.gardeninghelp.org Indoor Plants or Houseplants Over the past twenty years houseplants have grown in popularity. Offered in a wide variety of sizes, shapes, colors and textures, houseplants beautify our homes and help soften our environment. They have been scientifically proven to improve our health by lowering blood pressure and removing pollutants from the air we breathe. When selecting a houseplant, choose reputable suppliers who specialize in growing houseplants. Get off to a good start by thoroughly examining each plant. Watch for brown edges and spindly growth with elongated stems and large gaps between new leaves. Inspect leaves and stem junctions for signs of insect or disease problems. Check any support stakes to make sure they are not hiding broken stems or branches. Finally, make sure the plant is placed in an area that suits its optimal requirements for light, temperature and humidity. Where to Place Your House Plants With the exception of the very darkest areas, you can always find a houseplant with growth requirements to match the environmental conditions in your home. The most important factors are light intensity and duration. The best way to determine the intensity of light at a window exposure area is to measure it with a light meter. A light meter measures light in units called foot-candles. One foot-candle is the amount of light from a candle spread over a square foot of surface area. Plants that prefer low light may produce dull, lifeless-looking leaves when exposed to bright light. Bright light can also cause leaf spots or brown-tipped scorched margins. -
Keys View They Are Closely Related the Most Diverse Vegetation Types in North America
National Park Service U.S. Department of the Interior Desert Alyssum Joshua Tree KevsViewflw (Lepidiumfremontii) (Yucca brevifolia) Joshua Tree National Park The desert alyssum is a Seeing Joshua Tree relative of such plants National Park's as broccoli, kale, and namesake indicates brussel sprouts; they are that you are definitely all in the mustard family in the Mojave Desert, (Brassicaceae), Although the only place in the the leaves smell like green .A world where it grows. vegetables, the flowers You can't age a Joshua have an aroma of sweet honey. The leaves tree by counting its are thread-like and sometimes lobed; the growth rings because there aren't any: these seedpods are round, flat, and seamed down monocots do not produce true wood. Like all the middle. yuccas,Joshua trees are pollinated by yucca moths(Tegeticula spp.) that specialize in active pollination, a rare form of pollination mutualism.The female moth lays her Brownplume eggs inside the flower's ovary, then pollinates the flower. This 100 Feet ensures that when the larvae emerge, they will have a fresh Wirelettuce food source—the developing seeds! 30 Meters A (Stephanomeria See inside of guide for a selection of plants found on this trail. pauciflora) The Flora of Joshua Tree National Park This small shrub Desert Needlegrass Three distinct biogeographic regions converge in Joshua Tree has an intricate (Stipa speciosa) National Park, creating a rich flora: nearly 730 vascular plant branching pattern, with inconspicuous species have been documented here. Each flower of this species leaves. The pale pink to has a 1.5 inch (4 cm)long lavender flowering head The Sonoran Desert to the south and east, at elevations bristle, known as an awn;this is a composite of multiple needlelike structure has a bend less than 3000 ft(914 m), contributes a unique set of plants flowers,as with all members of the Sunflower in the middle and short white that are adapted to a bi-seasonal precipitation pattern family (Asteraceae). -
Flavonoids and Stilbenoids of the Genera Dracaena and Sansevieria: Structures and Bioactivities
molecules Review Flavonoids and Stilbenoids of the Genera Dracaena and Sansevieria: Structures and Bioactivities Zaw Min Thu 1,* , Ko Ko Myo 1, Hnin Thanda Aung 2, Chabaco Armijos 3,* and Giovanni Vidari 4,* 1 Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar; [email protected] 2 Department of Chemistry, University of Mandalay, Mandalay 100103, Myanmar; [email protected] 3 Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador 4 Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Iraq * Correspondence: [email protected] (Z.M.T.); [email protected] (C.A.); [email protected] (G.V.) Received: 18 May 2020; Accepted: 2 June 2020; Published: 3 June 2020 Abstract: The genera Dracaena and Sansevieria (Asparagaceae, Nolinoideae) are still poorly resolved phylogenetically. Plants of these genera are commonly distributed in Africa, China, Southeast Asia, and America. Most of them are cultivated for ornamental and medicinal purposes and are used in various traditional medicines due to the wide range of ethnopharmacological properties. Extensive in vivo and in vitro tests have been carried out to prove the ethnopharmacological claims and other bioactivities. These investigations have been accompanied by the isolation and identification of hundreds of phytochemical constituents. The most characteristic metabolites are steroids, flavonoids, stilbenes, and saponins; many of them exhibit potent analgesic, anti-inflammatory, antimicrobial, antioxidant, antiproliferative, and cytotoxic activities. This review highlights the structures and bioactivities of flavonoids and stilbenoids isolated from Dracaena and Sansevieria. Keywords: Dracaena; Sansevieria; biological/pharmacological activities; flavonoids; stilbenoids 1. Introduction The taxonomic boundaries of the dracaenoid genera Dracaena and Sansevieria have long been debated. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Fire Adaptations of Some Southern California Plants
Proceedings: 7th Tall Timbers Fire Ecology Conference 1967 Fire Adaptations of Some Southern California Plants RICHARD J. VOGL Department of Botany California State College at Los Angeles Los Angeles, California SHORTLY after arriving in California six years ago, I was asked to give a biology seminar lecture on my research. This was the usual procedure with new faculty and I prepared a lecture on my fire research in Wisconsin (Vogi 1961). These seminars were open to the public, since the college serves the city and sur rounding communities. As I presented my findings, I became con scious of the glint of state and U. S. Forest Service uniforms in the back rows. These back rows literally erupted into a barrage of probing questions at the end of the lecture. The questions were somewhat skeptical and were intended to discredit. They admitted that I almost created an acceptable argument for the uses and effects of fire in the Midwest, but were quick to emphasize that they were certain that none of these concepts or principles of fire would apply out here in the West. I consider this first California Tall Timbers Fire Ecology Con ference a major step towards convincing the West that fire has helped shape its vegetation and is an important ecological factor here, just as it is in the Midwest, Southeast, or wherever in North 79 RICHARD J. VOGL America. I hope that southern Californians attending these meetings or reading these Proceedings are not left with the impression that the information presented might be acceptable for northern California but cannot be applied to southern California because the majority of contributors worked in the north. -
Sansevieria in Florida-Past and Present1
Proc. Fla. State Hort. Soc. 95:295-298. 1982. SANSEVIERIA IN FLORIDA-PAST AND PRESENT1 Richard W. Henley R. Dodge (5) mentioned he found Sansevieria zeylanica University of Florida, IFAS, growing in several localities in southern Florida. Leaf sam Ornamental Horticultural Department, ples collected from Boca Chica Key measured approximately Stationed at Agricultural Research Center, 6 ft in length. Dodge prepared a more extensive report on Route 3, Box 580, Apopka, FL 32703 leaf fibers in the United States, published by USDA in 1893 (6) in which he mentioned the fiber of 5. guineensis, listed in Hortus Third (2) as S. hyacinthoides (L.) Druce., African Abstract. The genus Sansevieria has special significance bowstring hemp. It was sufficiently strong for hawsers and in Florida horticulture, where it has been grown as an experi cables and fine enough to be used by jewelers to string mental fiber crop, as an ornamental for interior use and, to a pearls. He further stated that the fiber was too valuable to lesser extent, landscaping outside. Introduction of Sansevieria be used as cordage because manila, sisal and common hemp to Florida is estimated to have occurred between 1765 and were sufficiently abundant and strong. He also indicated that 1820. By the 1890s there was limited testing of a few species the term bowstring hemp was also applied to S. zeylanica of Sansevieria in South Florida, primarily by private interests, (now S. trifasciata) and S. latifolia Bojer. Dodge mentioned for quality and yield of cordage fiber. During World War II, that fiber yield per acre was large because of the rank growth U. -
And Sansevieria
CACTOLOGIA PHANTASTICA 9(1) ISSN 2590-3403 17 January 2019 doi:10.5281/zenodo.3611373 ×Dravieria: Valid Publication of a Nothogeneric Name for Hybrids Between Dracaena and Sansevieria (Asparagaceae) MAARTEN H. J. VAN DER MEER1 Abstract—The nothogeneric name ×Dravieria is proposed for hybrids between Dracaena and Sansevieria . Dracaena Vand., as traditionally circumscribed, is paraphyletic in regards to Sansevieria Thunb. (Lu e t al. 2014; Takawira-Nyenya e t al. 2018) Takawira-Nyenya et al. (2018) consequently subsumed S ansevieria into D racaena. This change has not yet found its way to the general public, which will likely hold on to the familiar Sansevieria for decades to come. The only intergeneric hybrid between D racaena and S ansevieria known to me is a purported cross between S ansevieria parva N.E.Br. (≡ D racaena parva (N.E.Br.) Byng & Christenh.) and D racaena surculosa Lindl. (as D racaena godseffiana hort.) patented in 2016 under the name ‘SUDRASAN01’ (Suphachadiwong 2016). This cultivar is likely identical to the plant recently brought on the market in the Netherlands as D ravieria FIREFLIES. To my knowledge, the nothogeneric name D ravieria has not been validly published, which is why I propose it here: ×Dravieria anon. ex M.van der Meer n othogen. nov. = D racaena Vand. × S ansevieria Thunb. 1 Roggekamp 379 NL-2592 VV Den Haag [email protected] ORCiD: 0000-0002-5182-9615 CC BY-SA 4.0 1 CACTOLOGIA PHANTASTICA 9(1) ISSN 2590-3403 17 January 2019 doi:10.5281/zenodo.3611373 ×Dravieria ‘SUDRASAN01’ (reproduced from Suphachadiwong 2016) ×Dravieria FIREFLIES at garden center GroenRijk de Wilskracht in The Hague, the Netherlands CC BY-SA 4.0 2 CACTOLOGIA PHANTASTICA 9(1) ISSN 2590-3403 17 January 2019 doi:10.5281/zenodo.3611373 Literature Lu, P., & Morden, C. -
The Vascular System of Monocotyledonous Stems Author(S): Martin H
The Vascular System of Monocotyledonous Stems Author(s): Martin H. Zimmermann and P. B. Tomlinson Source: Botanical Gazette, Vol. 133, No. 2 (Jun., 1972), pp. 141-155 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2473813 . Accessed: 30/08/2011 15:50 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Botanical Gazette. http://www.jstor.org 1972] McCONNELL& STRUCKMEYER ALAR AND BORON-DEFICIENTTAGETES 141 tomato, turnip and cotton to variations in boron nutri- Further investigationson the relation of photoperiodto tion. II. Anatomical responses. BOT.GAZ. 118:53-71. the boron requirementsof plants. BOT.GAZ. 109:237-249. REED, D. J., T. C. MOORE, and J. D. ANDERSON. 1965. Plant WATANABE,R., W. CHORNEY,J. SKOK,and S. H. WENDER growth retardant B-995: a possible mode of action. 1964. Effect of boron deficiency on polyphenol produc- Science 148: 1469-1471. tion in the sunflower.Phytochemistry 3:391-393. SKOK, J. 1957. Relationships of boron nutrition to radio- ZEEVAART,J. A. D. 1966. Inhibition of stem growth and sensitivity of sunflower plants. -
CORN PLANT Dracena Fragrans Characteristics Culture Noteworthy
CORN PLANT Dracena fragrans Characteristics House Plant Water: Medium Zone: 10 to 12 Maintenance: Low Height: 15.00 to 50.00 feet Flower: Showy, Fragrant Spread: 3.00 to 10.00 feet Leaf: Evergreen Bloom Time: Seasonal bloomer Fruit: Showy Bloom Description: White-yellow Tolerate: Drought Sun: Part shade Culture Easily grown in containers as an indoor foliage plant where it typically thrives in organically rich, consistently moist, well-drained soils in part shade. Use a loamy, peaty, well-drained potting soil. Corn plant is best sited in bright indirect light locations protected from significant periods of direct sun and drafts. Tolerates some low light. Containers may be placed on beds of wet pebbles with regular misting of plant leaves in order to increase humidity. Dry soils usually result in brown leaf tips. Too much sun may prevent best foliage color from developing. Keep soils uniformly moist during the growing season, but reduce watering from fall to late winter. Allow soils to dry slightly between waterings, but never allow the soils to totally dry out. Plants tolerate a wide range of indoor temperatures, but are best grown in temperatures of 60-75 degrees F. Plant containers may be placed outdoors in summer but should always be brought back indoors in early fall before outdoor temperatures begin to dip below 50 degrees F. This is a frost-free tropical perennial. Noteworthy Characteristics Dracaena fragrans, commonly known as corn plant, is a popular, durable, easy-to-grow indoor houseplant Although it may soar to 20’ tall or more in its native habitat, it more often is seen in the 4-6’ tall range as a container plant in the U.S. -
Listado De Todas Las Plantas Que Tengo Fotografiadas Ordenado Por Familias Según El Sistema APG III (Última Actualización: 2 De Septiembre De 2021)
Listado de todas las plantas que tengo fotografiadas ordenado por familias según el sistema APG III (última actualización: 2 de Septiembre de 2021) GÉNERO Y ESPECIE FAMILIA SUBFAMILIA GÉNERO Y ESPECIE FAMILIA SUBFAMILIA Acanthus hungaricus Acanthaceae Acanthoideae Metarungia longistrobus Acanthaceae Acanthoideae Acanthus mollis Acanthaceae Acanthoideae Odontonema callistachyum Acanthaceae Acanthoideae Acanthus spinosus Acanthaceae Acanthoideae Odontonema cuspidatum Acanthaceae Acanthoideae Aphelandra flava Acanthaceae Acanthoideae Odontonema tubaeforme Acanthaceae Acanthoideae Aphelandra sinclairiana Acanthaceae Acanthoideae Pachystachys lutea Acanthaceae Acanthoideae Aphelandra squarrosa Acanthaceae Acanthoideae Pachystachys spicata Acanthaceae Acanthoideae Asystasia gangetica Acanthaceae Acanthoideae Peristrophe speciosa Acanthaceae Acanthoideae Barleria cristata Acanthaceae Acanthoideae Phaulopsis pulchella Acanthaceae Acanthoideae Barleria obtusa Acanthaceae Acanthoideae Pseuderanthemum carruthersii ‘Rubrum’ Acanthaceae Acanthoideae Barleria repens Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. atropurpureum Acanthaceae Acanthoideae Brillantaisia lamium Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. reticulatum Acanthaceae Acanthoideae Brillantaisia owariensis Acanthaceae Acanthoideae Pseuderanthemum laxiflorum Acanthaceae Acanthoideae Brillantaisia ulugurica Acanthaceae Acanthoideae Pseuderanthemum laxiflorum ‘Purple Dazzler’ Acanthaceae Acanthoideae Crossandra infundibuliformis Acanthaceae Acanthoideae Ruellia -
Leydi Magdali Recinos López Ingeniero Forestal
UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO DIVISIÓN DE AGRONOMÍA DEPARTAMENTO DE FORESTAL Nolina cespitifera Trel. Especie Forestal no Maderable de las Zonas Áridas y Semiáridas del Noreste de México Por: LEYDI MAGDALI RECINOS LÓPEZ MONOGRAFÍA Presentada como requisito parcial para obtener el título de: INGENIERO FORESTAL Saltillo, Coahuila, México Enero de 2016 DEDICATORIAS A mis padres: Griselda López Juárez y José Luis Recinos Gómez Primeramente por haberme traído a la vida, por esos esfuerzos tan grandes para hacer de mí una persona de buenos sentimientos y con un gran intelecto. Les agradezco la oportunidad que me dan para seguir estudiando y los consejos que me dan todos los días. Gracias por estar conmigo apoyándome en este ciclo de mi vida. Muchas gracias porque todo lo que soy se lo debó a ustedes y por ser una de mis motivaciones para terminar este sueño. A mis hermanos: Luisito Recinos López, Aridelci Recinos López y Mayrín Recinos López. Gracias por el apoyo que me dan con sus consejos, caricias, por los te quiero ustedes fueron mi fuente de inspiración para terminar mi carrera, porque todos las dificultades las pase con su cariño y amor. Por ser mi fuente de inspiración gracias. A mis abuelitas: Juana Gómez Reyes y Gloria Juárez Gutiérrez Gracias por darme tan buenos consejos y por el esfuerzo que realizaron para que yo terminara mi carrera profesional, por estar siempre a mi lado brindándome su cariño y amor; para que yo sea una persona con buenos principios. A la familia: Gómez y Martínez; A todos mis familiares les agradezco por ser parte de mi vida, por brindarme su apoyo moral y económico para que hoy yo sea una profesionista. -
Two New Species and One New Variety of Aspidistra (Asparagaceae: Nolinoideae) from Southern Vietnam
Gardens’ Bulletin Singapore 66(1): 27–37. 2014 27 Two new species and one new variety of Aspidistra (Asparagaceae: Nolinoideae) from southern Vietnam 1 2 3 J. Leong-Škorničková , H.-J. Tillich & Q.B. Nguyễn 1Herbarium, Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore 259569 [email protected] 2Ludwig-Maximilians-University, Systematic Botany, Menzinger Str. 67, D-80638 Munich, Germany [email protected] 3 Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoàng Quốc Việt Street, Cầu Giấy, Hanoi, Vietnam ABSTRACT. Two new species and one new variety of Aspidistra Ker-Gawl. (Asparagaceae: Nolinoideae) from southern and central Vietnam, A. ventricosa Tillich & Škorničk., A. mirostigma Tillich & Škorničk., and A. connata Tillich var. radiata Tillich & Škorničk., are described and illustrated here. Keywords. Asparagaceae, Aspidistra, Convallariaceae s. str., Nolinoideae, Ruscaceae s.l., Vietnam Introduction The genus Aspidistra Ker-Gawl. (Asparagaceae: Nolinoideae – formerly also placed in Convallariaceae and in Ruscaceae) ranges from Assam (India) in the west to southern Japan in the east, and from central China southwards to the Malay Peninsula. Its centre of diversity is in southeast China (Guangxi Province) and adjacent northern Vietnam (Tillich, 2005). The number of known species continues to grow as the Indochinese floristic region is better explored. Currently more than 100 species are recognised (Tillich & Averyanov, 2012) of which many were first reported from Vietnam only in the last decade (Bogner & Arnautov, 2004; Bräuchler & Ngoc, 2005; Tillich, 2005, 2006, 2008; Tillich et al., 2007; Tillich & Averyanov, 2008, 2012; Averyanov & Tillich, 2012, 2013, submitted; Tillich & Leong-Škorničková, 2013; Vislobokov et al., 2013).