Study on Antimicrobial and Cytotoxic Activities of Methanol Extract of Dracaena Spicata
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indoor Plants Or Houseplants
Visit us on the Web: www.gardeninghelp.org Indoor Plants or Houseplants Over the past twenty years houseplants have grown in popularity. Offered in a wide variety of sizes, shapes, colors and textures, houseplants beautify our homes and help soften our environment. They have been scientifically proven to improve our health by lowering blood pressure and removing pollutants from the air we breathe. When selecting a houseplant, choose reputable suppliers who specialize in growing houseplants. Get off to a good start by thoroughly examining each plant. Watch for brown edges and spindly growth with elongated stems and large gaps between new leaves. Inspect leaves and stem junctions for signs of insect or disease problems. Check any support stakes to make sure they are not hiding broken stems or branches. Finally, make sure the plant is placed in an area that suits its optimal requirements for light, temperature and humidity. Where to Place Your House Plants With the exception of the very darkest areas, you can always find a houseplant with growth requirements to match the environmental conditions in your home. The most important factors are light intensity and duration. The best way to determine the intensity of light at a window exposure area is to measure it with a light meter. A light meter measures light in units called foot-candles. One foot-candle is the amount of light from a candle spread over a square foot of surface area. Plants that prefer low light may produce dull, lifeless-looking leaves when exposed to bright light. Bright light can also cause leaf spots or brown-tipped scorched margins. -
Flavonoids and Stilbenoids of the Genera Dracaena and Sansevieria: Structures and Bioactivities
molecules Review Flavonoids and Stilbenoids of the Genera Dracaena and Sansevieria: Structures and Bioactivities Zaw Min Thu 1,* , Ko Ko Myo 1, Hnin Thanda Aung 2, Chabaco Armijos 3,* and Giovanni Vidari 4,* 1 Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar; [email protected] 2 Department of Chemistry, University of Mandalay, Mandalay 100103, Myanmar; [email protected] 3 Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador 4 Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Iraq * Correspondence: [email protected] (Z.M.T.); [email protected] (C.A.); [email protected] (G.V.) Received: 18 May 2020; Accepted: 2 June 2020; Published: 3 June 2020 Abstract: The genera Dracaena and Sansevieria (Asparagaceae, Nolinoideae) are still poorly resolved phylogenetically. Plants of these genera are commonly distributed in Africa, China, Southeast Asia, and America. Most of them are cultivated for ornamental and medicinal purposes and are used in various traditional medicines due to the wide range of ethnopharmacological properties. Extensive in vivo and in vitro tests have been carried out to prove the ethnopharmacological claims and other bioactivities. These investigations have been accompanied by the isolation and identification of hundreds of phytochemical constituents. The most characteristic metabolites are steroids, flavonoids, stilbenes, and saponins; many of them exhibit potent analgesic, anti-inflammatory, antimicrobial, antioxidant, antiproliferative, and cytotoxic activities. This review highlights the structures and bioactivities of flavonoids and stilbenoids isolated from Dracaena and Sansevieria. Keywords: Dracaena; Sansevieria; biological/pharmacological activities; flavonoids; stilbenoids 1. Introduction The taxonomic boundaries of the dracaenoid genera Dracaena and Sansevieria have long been debated. -
Journal of Chromatography a Flavylium Chromophores As Species Markers for Dragon's Blood Resins from Dracaena and Daemonorops
Journal of Chromatography A, 1209 (2008) 153–161 Contents lists available at ScienceDirect Journal of Chromatography A journal homepage: www.elsevier.com/locate/chroma Flavylium chromophores as species markers for dragon’s blood resins from Dracaena and Daemonorops trees Micaela M. Sousa a,b , Maria J. Melo a,b,∗ , A. Jorge Parola b , J. Sérgio Seixas de Melo c , Fernando Catarino d , Fernando Pina b, Frances E.M. Cook e, Monique S.J. Simmonds e, João A. Lopes f a Department of Conservation and Restoration, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Monte da Caparica, Portugal b REQUIMTE, CQFB, Chemistry Department, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Monte da Caparica, Portugal c Department of Chemistry, University of Coimbra, P3004-535 Coimbra, Portugal d Botanical Garden, University of Lisbon, Lisbon, Portugal e Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK f REQUIMTE, Servic¸ o de Química-Física, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal article info abstract Article history: A simple and rapid liquid chromatographic method with diode-array UV–vis spectrophotometric detec- Received 20 May 2008 tion has been developed for the authentication of dragon’s blood resins from Dracaena and Daemonorops Received in revised form 28 August 2008 trees. Using this method it was discovered that the flavylium chromophores, which contribute to the red Accepted 3 September 2008 colour of these resins, differ among the species and could be used as markers to differentiate among Available online 7 September 2008 species. A study of parameters, such as time of extraction, proportion of MeOH and pH, was undertaken to optimise the extraction of the flavyliums. -
The Vascular System of Monocotyledonous Stems Author(S): Martin H
The Vascular System of Monocotyledonous Stems Author(s): Martin H. Zimmermann and P. B. Tomlinson Source: Botanical Gazette, Vol. 133, No. 2 (Jun., 1972), pp. 141-155 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2473813 . Accessed: 30/08/2011 15:50 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Botanical Gazette. http://www.jstor.org 1972] McCONNELL& STRUCKMEYER ALAR AND BORON-DEFICIENTTAGETES 141 tomato, turnip and cotton to variations in boron nutri- Further investigationson the relation of photoperiodto tion. II. Anatomical responses. BOT.GAZ. 118:53-71. the boron requirementsof plants. BOT.GAZ. 109:237-249. REED, D. J., T. C. MOORE, and J. D. ANDERSON. 1965. Plant WATANABE,R., W. CHORNEY,J. SKOK,and S. H. WENDER growth retardant B-995: a possible mode of action. 1964. Effect of boron deficiency on polyphenol produc- Science 148: 1469-1471. tion in the sunflower.Phytochemistry 3:391-393. SKOK, J. 1957. Relationships of boron nutrition to radio- ZEEVAART,J. A. D. 1966. Inhibition of stem growth and sensitivity of sunflower plants. -
World Journal of Pharmaceutical Research SJIF Impact Factor 8.074 Lokendra Et Al
World Journal of Pharmaceutical Research SJIF Impact Factor 8.074 Lokendra et al. World Journal of Pharmaceutical Research Volume 7, Issue 12, 201-215. Review Article ISSN 2277–7105 MEDICINE PLANTS HAVING ANALGESIC ACTIVITY: A DETAIL REVIEW Lokendra Singh1*, Gaurav Sharma2, Pooja Sharma3, Dr. Deepak Godara4 1Research Officer, Bilwal Medchem and Research Laboratory Pvt. Ltd, Rajasthan. 2Pharmacologist, National Institute of Ayurveda, Rajasthan. 3Director, Bilwal Medchem and Research Laboratory Pvt. Ltd, Rajasthan. 4Director Analytical Division, Bilwal Medchem and Research Laboratory Pvt. Ltd, Rajasthan. ABSTRACTS Article Received on 26 April 2018, In the review the various plants drugs help in analgesic activity show Revised on 16 May 2018, them. It is most important plant used to analgesic medicine. The Accepted on 06 June 2018 DOI: 10.20959/wjpr201812-12594 Analgesia (pain) is increasing now day by day due to present living condition. For this reason in this review articles reported the advantageously effective of medicinal plant. *Corresponding Author Lokendra Singh KEYWORDS: Medicine plants. Research Officer, Bilwal Medchem and Research INTRODUCTION Laboratory Pvt. Ltd, 1. Curcuma longa Scientific classification Rajasthan. Kingdom: Plantae Clade: Angiosperms Clade: Monocots Clade: Commelinids Order: Zingiberales Family: Zingiberaceae Genus: Curcuma Species: C. longa www.wjpr.net Vol 7, Issue 12, 2018. 201 Lokendra et al. World Journal of Pharmaceutical Research (Botanical view on Curcuma longa) It is native to the Indian subcontinent and Southeast Asia, and requires temperatures between 20 and 30 °C (68–86 °F) and a considerable amount of annual rainfall to thrive. Turmeric powder has a warm, bitter, and pepper-like flavor and earthy, mustard like aroma.[1-2] Turmeric is a perennial herbaceous plant that reaches up to 1 m (3 ft. -
CORN PLANT Dracena Fragrans Characteristics Culture Noteworthy
CORN PLANT Dracena fragrans Characteristics House Plant Water: Medium Zone: 10 to 12 Maintenance: Low Height: 15.00 to 50.00 feet Flower: Showy, Fragrant Spread: 3.00 to 10.00 feet Leaf: Evergreen Bloom Time: Seasonal bloomer Fruit: Showy Bloom Description: White-yellow Tolerate: Drought Sun: Part shade Culture Easily grown in containers as an indoor foliage plant where it typically thrives in organically rich, consistently moist, well-drained soils in part shade. Use a loamy, peaty, well-drained potting soil. Corn plant is best sited in bright indirect light locations protected from significant periods of direct sun and drafts. Tolerates some low light. Containers may be placed on beds of wet pebbles with regular misting of plant leaves in order to increase humidity. Dry soils usually result in brown leaf tips. Too much sun may prevent best foliage color from developing. Keep soils uniformly moist during the growing season, but reduce watering from fall to late winter. Allow soils to dry slightly between waterings, but never allow the soils to totally dry out. Plants tolerate a wide range of indoor temperatures, but are best grown in temperatures of 60-75 degrees F. Plant containers may be placed outdoors in summer but should always be brought back indoors in early fall before outdoor temperatures begin to dip below 50 degrees F. This is a frost-free tropical perennial. Noteworthy Characteristics Dracaena fragrans, commonly known as corn plant, is a popular, durable, easy-to-grow indoor houseplant Although it may soar to 20’ tall or more in its native habitat, it more often is seen in the 4-6’ tall range as a container plant in the U.S. -
Ethnobotanical Survey of Dracaena Cinnabari and Investigation of the Pharmacognostical Properties, Antifungal and Antioxidant Activity of Its Resin
plants Communication Ethnobotanical Survey of Dracaena cinnabari and Investigation of the Pharmacognostical Properties, Antifungal and Antioxidant Activity of Its Resin Mohamed Al-Fatimi Department of Pharmacognosy, Faculty of Pharmacy, Aden University, P.O. Box 5411, Maalla, Aden, Yemen; [email protected] Received: 28 September 2018; Accepted: 24 October 2018; Published: 26 October 2018 Abstract: Dracaena cinnabari Balf. f. (Dracaenaceae) is an important plant endemic to Soqotra Island, Yemen. Dragon’s blood (Dam Alakhwin) is the resin that exudes from the plant stem. The ethnobotanical survey was carried out by semi-structured questionnaires and open interviews to document the ethnobotanical data of the plant. According to the collected ethnobotanical data, the resin of D. cinnabari is widely used in the traditional folk medicine in Soqotra for treatment of dermal, dental, eye and gastrointestinal diseases in humans. The resin samples found on the local Yemeni markets were partly or totally substituted by different adulterants. Organoleptic properties, solubility and extractive value were demonstrated as preliminary methods to identify the authentic pure Soqotri resin as well as the adulterants. In addition, the resin extracts and its solution in methanol were investigated for their in vitro antifungal activities against six human pathogenic fungal strains by the agar diffusion method, for antioxidant activities using the DPPH assay and for cytotoxic activity using the neutral red uptake assay. The crude authentic resin dissolves completely in methanol. In comparison with different resin extracts, the methanolic solution of the whole resin showed the strongest biological activities. It showed strong antifungal activity, especially against Microsporum gypseum and Trichophyton mentagrophytes besides antioxidant activities and toxicity against FL-cells. -
Ecological Report on Magombera Forest
Ecological Report on Magombera Forest Andrew R. Marshall (COMMISSIONED BY WORLD WIDE FUND FOR NATURE TANZANIA PROGRAMME OFFICE) Feb 2008 2 Contents Abbreviations and Acronyms 3 Acknowledgements 4 Executive Summary 5 Background 5 Aim and Objectives 5 Findings 6 Recommendations 7 Introduction 9 Tropical Forests 9 Magombera Location and Habitat 9 Previous Ecological Surveys 10 Management and Conservation History 11 Importance of Monitoring 14 Aim and Objectives 15 Methods 15 Threats 17 Forest Structure 17 Key Species 18 Forest Restoration 20 Results and Discussion 21 Threats 21 Forest Structure 25 Key Species 26 Forest Restoration 36 Recommendations 37 Immediate Priorities 38 Short-Term Priorities 40 Long-Term Priorities 41 References 44 Appendices 49 Appendix 1. Ministry letter of support for the increased conservation of Magombera forest 49 Appendix 2. Datasheets 50 Appendix 3. List of large trees in Magombera Forest plots 55 Appendix 4. Slides used to present ecological findings to villages 58 Appendix 5. Photographs from village workshops 64 3 Abbreviations and Acronyms CEPF Critical Ecosystem Partnership Fund CITES Convention on the International Trade in Endangered Species IUCN International Union for the Conservation of Nature and Natural Resources TAZARA Tanzania-Zambia Railroad UFP Udzungwa Forest Project UMNP Udzungwa Mountains National Park WWF-TPO Worldwide Fund for Nature – Tanzania Programme Office 4 Acknowledgements Thanks to all of the following individuals and institutions: - CEPF for 2007 funds for fieldwork and report -
Isolation & Structure Elucidation of Flavonoids & Polyphenols From
Isolation & Structure Elucidation Of Flavonoids & Polyphenols From The Bark Of Dracaena cinnabari Balf By Hiba Moustafa Al.Massri A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmaceutical Science at Petra University, Amman-Jordan June 2010 APPROVAL PAGE Isolation & Structure Elucidation Of Flavonoids & Polyphenols From The Bark Of Dracaena cinnabari Balf By Hiba Moustafa Al.Massri A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmaceutical Science at Petra University, Amman-Jordan June 2010 Major Professor Name Signature 1. Dr. Fadi Qadan .………………………. Examination Committee Name Signature 1. Dr. Riad Awad .…..…………………... 2. Dr. Wael Abu-Deya ..……………………... 3. Dr. Khalid Tawaha ……………………….. ii ABSTRACT Isolation & Structure Elucidation Of Flavonoids & Polyphenols From The Bark Of Dracaena cinnabari Balf By Hiba Moustafa Al.Massri Petra University, 2010 Under the Supervision of Dr. Fadi Qadan “Dragon’s blood” is the deep-red coloured resin exuded from injured bark obtained from various plants. The original source in Roman times was the dragon tree Dracaena cinnabari. Draceana cinnabari Balf F. belongs to the family Agavaceae, which is commonly known as "Dam El Akhawin" in Yemen. It is a tree endemic to the island socotra and the resin of it has been used as an astringent in the treating of diarrhea and dysentery, as a haemostatic and as anti- ulcer remedy. A series of compounds were isolated from Dracaena cinnabari, these compounds include; flavonoids ( including a triflavonoid and the biflavonoid cinnabarone), isoflavonoids, chalcones, sterols and triterpenoids, dracophane, a novel structural derivative of metacyclophane. -
Dracaena in West Africa
AGRICULTURAL UNIVERSITY WAGENINGEN PAPERS 84-1 (1984) DRACAENA IN WEST AFRICA J.J. BOS Department of Plant taxonomy Agricultural University Wageningen, The Netherlands Received 6-VI-1984 Date of publication 17-X-1984 On Agricultural University Wageningen, The Netherlands 1984 ^.-> CIP-gegevens Bos,J . J. Dracaena in West Africa/J. J. Bos- Wageningen: Agricultural University. - (Agricultural University Wageningen Papers; 84-1(1984)) Ook verschenen alsproefschrif t Wageningen.- Met reg. ISBN 90-6754-058-7 SISO 588UD C 582.572(66) Trefw.: Dracaena; plantentaxonomie; West-Afrika. ISBN 90-6754-058-7 © Agricultural University, Wageningen, theNetherlands , 1984. No part of this publication, apart from abstract, bibliographic data and brief quotations embodied incritica l reviews,ma y be reproduced, re-recorded or published in any form including print, photocopy, microform, elektronic or elektromagnetic record without written permission from the publisher Agricultural University, P.O. Box9101,670 0H BWageningen , the Netherlands. Printed in theNetherland s by Drukkerij Veenman b.v., Wageningen. CONTENTS INTRODUCTION AND ACKNOWLEDGEMENTS GENERAL P\RT: History ofE racaen a inWes t Africa. 3 Phytogeography 4 Habit and Growth. 5 Morphology. 7 Flowering 8 Phylogeny 10 TAXONOMIC TREATMENT: Genusdiagnosi s 14 Keyt oth especie s inWestAfrica 17 Speciesdia g loses 19 APPENDIX: Dracaena dijaco (L.)L 120 Dracaenasp . .cf.D.nyangensisPellegri n 120 Dracaena saposchnikowi iRege l 121 Speciesexclüdend a 121 Nomina rejii:iend a 122 REGISTER 124 PHOT. 1.Dracaena arborea (Willd. ) Link fruiting at WAG (photograph J. W. MUGGE). INTRODUCTION AND ACKNOWLEDGEMENTS The present publication isth ethir d revision ofDracaena for WestAfric a (after those by HUTCHINSON and HEPPER) and is part of a monograph of the genus. -
Dragon's Blood
Available online at www.sciencedirect.com Journal of Ethnopharmacology 115 (2008) 361–380 Review Dragon’s blood: Botany, chemistry and therapeutic uses Deepika Gupta a, Bruce Bleakley b, Rajinder K. Gupta a,∗ a University School of Biotechnology, GGS Indraprastha University, K. Gate, Delhi 110006, India b Department of Biology & Microbiology, South Dakota State University, Brookings, South Dakota 57007, USA Received 25 May 2007; received in revised form 10 October 2007; accepted 11 October 2007 Available online 22 October 2007 Abstract Dragon’s blood is one of the renowned traditional medicines used in different cultures of world. It has got several therapeutic uses: haemostatic, antidiarrhetic, antiulcer, antimicrobial, antiviral, wound healing, antitumor, anti-inflammatory, antioxidant, etc. Besides these medicinal applica- tions, it is used as a coloring material, varnish and also has got applications in folk magic. These red saps and resins are derived from a number of disparate taxa. Despite its wide uses, little research has been done to know about its true source, quality control and clinical applications. In this review, we have tried to overview different sources of Dragon’s blood, its source wise chemical constituents and therapeutic uses. As well as, a little attempt has been done to review the techniques used for its quality control and safety. © 2007 Elsevier Ireland Ltd. All rights reserved. Keywords: Dragon’s blood; Croton; Dracaena; Daemonorops; Pterocarpus; Therapeutic uses Contents 1. Introduction ........................................................................................................... -
Bioactivities, Characterization, and Therapeutic Uses of Dracaena Cinnabari
Available online on www.ijpqa.com International Journal of Pharmaceutical Quality Assurance 2018; 9(1); 229-232 doi: 10.25258/ijpqa.v9i01.11353 ISSN 0975 9506 Research Article Bioactivities, Characterization, and Therapeutic Uses of Dracaena cinnabari Israa Adnan Ibraheam 1, Haider Mashkoor Hussein 2, Imad Hadi Hameed* 1Department of Biology, College of Science for women, University of Babylon, Iraq 2College of Science, University of Al-Qadisiyah, Iraq 3College of Nursing, University of Babylon, Iraq Received: 8th Oct, 17; Revised: 4th Dec, 18; Accepted:10th Jan, 18; Available Online:25th March, 2018 ABSTRACT Young specimen of Dracaena cinnabari in the Koko Crater Botanical Garden, Honolulu, Hawaii, United States The dragon blood tree has a unique and strange appearance, with an "upturned, densely packed crown having the shape of an uprightly held umbrella". This evergreen species is named after its dark red resin, which is known as "dragon's blood". Its leaves are found only at the end of its youngest branches; its leaves are all shed every 3 or 4 years before new leaves simultaneously mature. Branching tends to occur when the growth of the terminal bud is stopped, due to either flowering or traumatic events (e.g. herbivory). The trees can be harvested for their crimson red resin, called dragon's blood, which was highly prized in the ancient world and is still used today. Dragon's blood is used as a stimulant and abortifacient. The root yields a gum-resin, used in gargle water as a stimulant, astringent and in toothpaste. The root is used in rheumatism, the leaves are a carminative.