Solar System Solar System

Total Page:16

File Type:pdf, Size:1020Kb

Solar System Solar System Delta Science Reader SolarSolar SystemSystem Delta Science Readers are nonfiction student books that provide science background and support the experiences of hands-on activities. Every Delta Science Reader has three main sections: Think About . , People in Science, and Did You Know? Be sure to preview the reader Overview Chart on page 4, the reader itself, and the teaching suggestions on the following pages. This information will help you determine how to plan your schedule for reader selections and activity sessions. Reading for information is a key literacy skill. Use the following ideas as appropriate for your teaching style and the needs of your students. The After Reading section includes an assessment and writing links. OVERVIEW Students will: discover facts about the Solar System In the Delta Science Reader Solar System, students take a tour of the Sun and the explore the planets and other objects in the planets. Other space objects such as dwarf Solar System planets, comets, asteroids, and meteoroids discuss the function of a table of contents, are explored. Students read about the headings, and a glossary rotation and revolution of the planets and interpret photographs and graphics to the causes of night and day, seasonal answer questions changes, and the phases of the Moon. The book describes the work of a planetary complete a KWL chart geologist. In addition, students discover organize information in a variety of ways how telescopes work. delta science modules Solar System 119 © Delta Education LLC. All rights reserved. Permission to reprint for classroom use only. READING IN THE To stimulate discussion, ask questions such as these: What are some of the CONTENT AREA SKILLS objects in our Solar System? How many • Compare and contrast planets planets are there? What is Earth’s closest neighbor in space? • Determine the main idea of a paragraph • Recognize cause-effect relationships Begin a class KWL chart by recording facts related to planetary conditions students know about the Solar System and • Draw conclusions about planetary facts its planets in the K column. You may wish • Demonstrate critical thinking to copy the KWL chart and ask students to maintain their own charts as they read. • Interpret graphic devices • Summarize K W L + • Categorize planets What What What What I Know I Want I Learned I Want to to Know Explore Further NONFICTION TEXT ELEMENTS Solar System includes a table of contents, headings, photographs and illustrations, captions, diagrams, boldfaced terms, a biographical sketch, and a glossary. Preview the Book Take a few minutes to have students look CONTENT VOCABULARY through the book. Explain the steps involved in previewing nonfiction: think The following terms are introduced in about the title, read the table of contents, context and defined in the glossary: read the headings, read boldfaced words, asteroid, astronomer, atmosphere, axis, and examine any photographs, comet, crater, day, Earth, ellipse, gas giant, illustrations, charts, and graphics. gravity, inner planet, Jupiter, Mars, Mercury, meteor, meteorite, meteoroid, moon, Moon, Call attention to the various nonfiction text Neptune, orbit, outer planet, phase, planet, elements and explain how each feature can Pluto, revolution, revolve, rotate, satellite, help students understand what they read. Saturn, solar, solar system, space probe, Point out that the table of contents lists all star, Sun, telescope, Uranus, Venus, year. the main headings in the book and their page numbers. Ask, How do the headings help you know what you will learn about? EFORE READING Point to some of the photographs and ask B questions such as: What does this photo Build Background show you? How do you think it will help you understand the text? Explain that the Access students’ prior knowledge of the words in boldfaced type are important Solar System and its planets by displaying words related to our Solar System that and discussing the cover. Ask, Do you students will learn when they read the know what planet this is? (Saturn) What book. Point out that these words are do you think these other objects are? defined in the glossary. Choose one word (some of Saturn’s moons) Then read the and have students find its definition in title aloud and invite students to share the glossary. what they know about the topic from their personal experiences and prior hands-on explorations in science. 120 delta science reader © Delta Education LLC. All rights reserved. Following the preview, ask, What questions • Shared Reading Have students form do you have about our Solar System that pairs or small groups and read the book you would like this book to answer? Record together. Ask students to pause after each students’ responses in the W column of the text section. Clarify the text as needed. KWL chart. Explain that they will add to the Discuss any questions that arise or have chart as they are reading and complete it been answered. when they finish reading. • Independent Reading Some students may Preview the Vocabulary be ready to read independently. Have them rejoin the class for discussion of the book. You may wish to preview some of the Check understanding by asking students to vocabulary words before reading, rather than explain in their own words what they read. waiting to introduce them in the context of the book. Possibilities include creating a word Tips for Reading wall, vocabulary cards, sentence strips, or a concept web. • If you spread out the reading over several days, begin each session by reviewing the For example, have students categorize words. previous day’s reading and previewing List words from the glossary that can be what will be read in the upcoming session. grouped in different ways, such as moon, • Begin each text section by reading or asteroid, revolve, comet, planet, and rotate. having a volunteer read aloud the heading. After helping students define the words, ask, Discuss what students expect to learn, Into what groups can we put these words? based on the heading. Have students What would be a good name for each examine photographs, illustrations, and category? (Objects in Our Solar System— graphics and read accompanying captions asteroid, comet, moon, planet, dwarf planet; and labels. Ways Planets Move—revolve, rotate) • Help students locate context clues to the Set a Purpose meanings of words in boldface type. Remind them that these words are defined Discuss with students what they might expect in the glossary. Provide help with words to find out when they read the book, based that may be difficult to pronounce. on their preview. Encourage them to use the questions on the KWL chart to set an overall • As appropriate, model reading strategies purpose for reading. students may find helpful for nonfiction: adjust reading rate, ask questions, paraphrase, reread, visualize. GUIDE THE READING Think About . (pages 2–13) Preview the book yourself to determine the amount of guidance you will need to give for Pages 2–3 Our Solar System each section. Depending on your schedule and the needs of your class, you may wish to • Direct students’ attention to the diagram of consider the following options: the Solar System on page 2. Ask questions to elicit facts about the Solar System. How • Whole Group Reading Read the book many planets are there? (eight) Which aloud with a group or the whole class. one is closest to the Sun? (Mercury) Encourage students to ask questions and Which is the farthest? (Neptune) Where is make comments. Pause as necessary to Earth in the Solar System? (third from the clarify and assess understanding. Sun) Which is the biggest planet? (Jupiter) delta science modules Solar System 121 © Delta Education LLC. All rights reserved. • Scientists now consider our Solar Further Facts System to have eight planets, not nine. The planets were named after ancient Pluto has been reclassified as a dwarf mythological characters: planet. See Pluto and the Definition of a Planet on page 6. Mercury messenger of the ancient Roman gods • Generate interest in the text by asking, As you sit here, are you moving or Venus Roman goddess of love and beauty staying still? Explain, Everyone on Mars Roman god of war Earth is moving—because the Earth itself is moving! We’re being carried Jupiter king of the Roman gods along by the Earth as it turns on its Saturn Roman god of agriculture axis and as it travels around the Sun. and time Have students read page 2 to find out about our Solar System and the ways in Uranus the sky personified as a god and which the Earth moves. father of the Titans (a family of giants) in Greek mythology • Check comprehension by asking, Neptune Roman god of the sea What is our Solar System? (the Sun and everything that moves around it) What is the difference between Page 3 What Is the Sun Like? revolving and rotating? (Revolving is • Before reading “What Is the Sun Like?” moving in a path around something; have students study the photograph of rotating is turning on an axis.) the Sun. Invite volunteers to describe what they see. Have students read the Discuss with students the meaning of caption to find out about the Sun’s size the word system. (a group of objects and some of its features. Ask, What is that work together as one unit) Discuss shown coming off the Sun’s surface? that in a system, the parts usually have (cloud of matter erupting) You may wish an effect on one another. Ask, What to share with students that these giant would happen if the Sun were eruptions of matter are called solar removed from the Solar System? (The prominences. Ask, What are the light planets would fly off into space, and dark areas shown on the Sun? because there would not be enough (The light areas are hotter places, and gravity to keep them in orbit.) the dark areas are cooler places.) • Before reading the first paragraph on • Have students read the text about the page 3, have students read the caption Sun on page 3.
Recommended publications
  • Galileo and the Telescope
    Galileo and the Telescope A Discussion of Galileo Galilei and the Beginning of Modern Observational Astronomy ___________________________ Billy Teets, Ph.D. Acting Director and Outreach Astronomer, Vanderbilt University Dyer Observatory Tuesday, October 20, 2020 Image Credit: Giuseppe Bertini General Outline • Telescopes/Galileo’s Telescopes • Observations of the Moon • Observations of Jupiter • Observations of Other Planets • The Milky Way • Sunspots Brief History of the Telescope – Hans Lippershey • Dutch Spectacle Maker • Invention credited to Hans Lippershey (c. 1608 - refracting telescope) • Late 1608 – Dutch gov’t: “ a device by means of which all things at a very great distance can be seen as if they were nearby” • Is said he observed two children playing with lenses • Patent not awarded Image Source: Wikipedia Galileo and the Telescope • Created his own – 3x magnification. • Similar to what was peddled in Europe. • Learned magnification depended on the ratio of lens focal lengths. • Had to learn to grind his own lenses. Image Source: Britannica.com Image Source: Wikipedia Refracting Telescopes Bend Light Refracting Telescopes Chromatic Aberration Chromatic aberration limits ability to distinguish details Dealing with Chromatic Aberration - Stop Down Aperture Galileo used cardboard rings to limit aperture – Results were dimmer views but less chromatic aberration Galileo and the Telescope • Created his own (3x, 8-9x, 20x, etc.) • Noted by many for its military advantages August 1609 Galileo and the Telescope • First observed the
    [Show full text]
  • The Telescope Lenses, Which Turned the Image Upside Down but Improved the Clarity Dramatically
    The image produced by the first refracting telescope was Name right side up. However, the clarity of the image was less than ideal. Johannes Kepler worked to improve the image produced by the refracting telescope. He used two convex The Telescope lenses, which turned the image upside down but improved the clarity dramatically. His design soon became popular By Phyllis Naegeli and remains in use today. Do you like to lie on your back and gaze One problem associated with the refracting telescope was at the stars? What constellations can you the rainbow halo it produced around the object in view. Sir name? Have you ever used a telescope to Isaac Newton did not care for the halo produced by the get a closer look at the universe? Do you refracting telescope. He set out to improve the design, know how a telescope works? which led him to work on the reflecting telescope. The design used a curved mirror to collect light from an object. A telescope is used to see distant objects A secondary flat mirror reflected the image to the side of up close. There are two basic types of the tube where it is viewed through an eyepiece. Newton telescopes - the refracting telescope and also used a shorter, fatter tube allowing magnification to be the reflecting telescope. Each will help increased by using larger mirrors. Newton's design you to see the planets, moon, or stars. Both eliminated the rainbow halo produced by the convex lenses use a tube and have an eyepiece to focus the image for you of the refracting telescope.
    [Show full text]
  • The Reflecting Telescope
    The Reflecting Telescope Lens telescopes exist since 1609 when the Dutch maker of The optical properties data of the AstroMedia* reflecting tel- spectacles, Jan Lippershey, sold the first telescopes, then as escope roughly correspond to those of the first instrument a curiosity, to his astonished customers. It was made out of a built by Newton. The mirror has a focal length f=450mm (”f” concave and a convex lens, produced an upright standing from the Latin ”focus” is the abbreviation of focal length). It’s image and had a 3 1/2 times magnification. Galileo Galilei curve is spherical, i.e. is has the same round surface as a (1564-1642) improved on this invention and was the first to globe. make astronomical observations with it. Today almost A spherical concave mirror has one disadvantage: the all lens telescopes are built according to the prin- light rays reflected from the edge meet a little nearer ciples of Johannes Kepler (1571-1630). His tel- to the mirror than those reflected from the centre, escope, based on two convex lenses, produced causing a slight focus distortion. However, since an upside down but much bigger and better this distortion is is not grave and such mirrors focused image which of course for observing are relatively easy to grind, they are neverthe- the heavens are the most important factors. less used in smaller telescopes. In telescopes Building larger telescopes however with larger openings and stronger mag- brings two problems with it: Firstly, nification mirrors with parabolic curves in a lens the light rays are broken, are used.
    [Show full text]
  • Telescopes and Binoculars
    Continuing Education Course Approved by the American Board of Opticianry Telescopes and Binoculars National Academy of Opticianry 8401 Corporate Drive #605 Landover, MD 20785 800-229-4828 phone 301-577-3880 fax www.nao.org Copyright© 2015 by the National Academy of Opticianry. All rights reserved. No part of this text may be reproduced without permission in writing from the publisher. 2 National Academy of Opticianry PREFACE: This continuing education course was prepared under the auspices of the National Academy of Opticianry and is designed to be convenient, cost effective and practical for the Optician. The skills and knowledge required to practice the profession of Opticianry will continue to change in the future as advances in technology are applied to the eye care specialty. Higher rates of obsolescence will result in an increased tempo of change as well as knowledge to meet these changes. The National Academy of Opticianry recognizes the need to provide a Continuing Education Program for all Opticians. This course has been developed as a part of the overall program to enable Opticians to develop and improve their technical knowledge and skills in their chosen profession. The National Academy of Opticianry INSTRUCTIONS: Read and study the material. After you feel that you understand the material thoroughly take the test following the instructions given at the beginning of the test. Upon completion of the test, mail the answer sheet to the National Academy of Opticianry, 8401 Corporate Drive, Suite 605, Landover, Maryland 20785 or fax it to 301-577-3880. Be sure you complete the evaluation form on the answer sheet.
    [Show full text]
  • Find Your Telescope. Your Find Find Yourself
    FIND YOUR TELESCOPE. FIND YOURSELF. FIND ® 2008 PRODUCT CATALOG WWW.MEADE.COM TABLE OF CONTENTS TELESCOPE SECTIONS ETX ® Series 2 LightBridge ™ (Truss-Tube Dobsonians) 20 LXD75 ™ Series 30 LX90-ACF ™ Series 50 LX200-ACF ™ Series 62 LX400-ACF ™ Series 78 Max Mount™ 88 Series 5000 ™ ED APO Refractors 100 A and DS-2000 Series 108 EXHIBITS 1 - AutoStar® 13 2 - AutoAlign ™ with SmartFinder™ 15 3 - Optical Systems 45 FIND YOUR TELESCOPE. 4 - Aperture 57 5 - UHTC™ 68 FIND YOURSEL F. 6 - Slew Speed 69 7 - AutoStar® II 86 8 - Oversized Primary Mirrors 87 9 - Advanced Pointing and Tracking 92 10 - Electronic Focus and Collimation 93 ACCESSORIES Imagers (LPI,™ DSI, DSI II) 116 Series 5000 ™ Eyepieces 130 Series 4000 ™ Eyepieces 132 Series 4000 ™ Filters 134 Accessory Kits 136 Imaging Accessories 138 Miscellaneous Accessories 140 Meade Optical Advantage 128 Meade 4M Community 124 Astrophotography Index/Information 145 ©2007 MEADE INSTRUMENTS CORPORATION .01 RECRUIT .02 ENTHUSIAST .03 HOT ShOT .04 FANatIC Starting out right Going big on a budget Budding astrophotographer Going deeper .05 MASTER .06 GURU .07 SPECIALIST .08 ECONOMIST Expert astronomer Dedicated astronomer Wide field views & images On a budget F IND Y OURSEL F F IND YOUR TELESCOPE ® ™ ™ .01 ETX .02 LIGHTBRIDGE™ .03 LXD75 .04 LX90-ACF PG. 2-19 PG. 20-29 PG.30-43 PG. 50-61 ™ ™ ™ .05 LX200-ACF .06 LX400-ACF .07 SERIES 5000™ ED APO .08 A/DS-2000 SERIES PG. 78-99 PG. 100-105 PG. 108-115 PG. 62-76 F IND Y OURSEL F Astronomy is for everyone. That’s not to say everyone will become a serious comet hunter or astrophotographer.
    [Show full text]
  • First Telescope Purchase
    Recommendation Report: First Telescope Purchase Purchasing a telescope can be very confusing for a person who is new to astronomy. This reports provides a comparison of entry-level telescopes for the amateur astronomer and recommends a specific type of telescope for the typical beginning astronomer. This report will focus on different types of telescopes, and not on specific brands. In addition to comparing several different types of telescopes, this report also compares different telescope mounts. Note: This report was prepared for the Austin Telescope Society, which is a non-profit organization dedicated to the enjoyment of astronomy and the education of the public about astronomy. Many people interested in astronomy waste money on a telescope of poor quality. A telescope in a department store may advertise that it can magnify several hundred times; however, the user is often disappointed when the image is dim, shaky, and hazy. To help avoid this confusion, it is important that the beginning astronomer understand the advantages and disadvantages of various types of telescopes. It is vitally important that the telescope have high quality optics and a sturdy mount. No extra gadgets and frills will help a telescope that has poor optics. Definition of Terms Before the actual comparison report, it is vital that several common terms are defined. The following terms must be understood before proceeding with this comparison: • Alt-azimuth mount. A type of telescope mount that moves in two directions: altitude and azimuth. This is the type of motion best illustrated by a cannon. It can be moved up or down, or rotated left or right.
    [Show full text]
  • The History of Optical Astronomy, by Caroline Herschel and Lyman Spitzer
    Online Modules from The University of Chicago Multiwavelength Astronomy: The History of Optical Astronomy, by Caroline Herschel and Lyman Spitzer http://ecuip.lib.uchicago.edu/multiwavelength-astronomy/optical/history/index.html Subject(s): Astronomy/Space Science Grade(s) Level: 9-12 Duration: One Class Period Objectives: As a result of reading The History of Optical Astronomy, students will be able to • Discriminate between reflecting and refracting telescope designs and describe the differences between them; • Explain how a telescope focuses light; • Articulate the limitations of ground-based telescopes and propose solutions to these limitations; • Identify important astronomical discoveries made and personages working in the optical regime; • Discuss examples of problem-solving and creativity in astronomy. Materials: Internet connection and browser for displaying the lesson. Pre-requisites: Students should be familiar with the Electromagnetic Spectrum. Before using the lesson, students should familiarize themselves with all vocabulary terms. Procedures: Students will read the lesson and answer assessment questions (listed under evaluation). Introduction: In reading this lesson, you will meet important individuals in the History of Optical Astronomy. They are: Caroline Lucretia Herschel was a German-born British astronomer and the sister of astronomer Sir William Herschel. She is the discoverer of several comets, in particular, the periodic comet 35P/Herschel-Rigollet, which bears her name. Lyman Strong Spitzer, Jr. was an American theoretical physicist, astronomer and mountaineer. He carried out research into star formation, plasma physics, and in 1946, conceived the idea of telescopes operating in outer space. Spitzer is the namesake of NASA's Spitzer Space Telescope. 1 Online Modules from The University of Chicago William Herschel was an astronomer and composer.
    [Show full text]
  • Tools of Astronomy Notes Light Is a Form of Electromagnetic Radiation
    Name_________________________________________Date____________________Period__ Tools of Astronomy Notes Light is a form of electromagnetic radiation. Scientists call the light you can see visible light. If you shine white light through a prism, the light spreads out to make a range of different colors with different wavelengths, called a spectrum. The electromagnetic spectrum includes the entire range of radio waves, microwaves infrared, visible light, ultraviolet radiation, X-rays, and gamma rays. Telescopes are instruments that collect and focus light and other forms of electromagnetic radiation. A telescope that uses lenses or mirrors to collect and focus visible light is called an optical telescope. The two major types of optical telescopes are refracting telescopes and reflecting telescopes. Telescopes used to detect radio waves from objects in space are called radio telescopes. Most radio telescopes have curved, reflecting surfaces. As with optical telescopes, the larger a radio telescope is, the more radio waves it can collect. Radio telescopes can be used day or night. They can also be used during cloudy weather because radio waves can pass through clouds. Most ultraviolet radiation, X-rays, and gamma rays are blocked by Earth’s atmosphere. To detect these wavelengths, astronomers have placed the Hubble space telescope in space. Some space telescopes also detect visible light or infrared radiation. The Earth’s atmosphere interferes with of these forms of radiation. By placing a telescope in space astronomers get a clearer picture of the universe. Spectroscopes are another useful tool for astronomers. A spectroscope breaks the light from a star into a spectrum. Each element has a unique spectrum. This allows astronomers to compare the spectrum of a star to known elements.
    [Show full text]
  • Twelve Ideas Years, After She Resided in Holland and Then Back to the United States
    El personaje Febrero 2014 Adapted by Ingenio Adriana Ocampo was born in Barranquilla, Studied aerospace Engineering in the State University of Colombia, his dad is Colombian and her California, Los Angeles, and then she fulfilled a postgraduate in 1 mom Argentine, she grew in Buenos Aires 7 Planetary Geology, after seeing a few images of the planet Mars and then she lived in the United States for 30 that, according to her, were looking like the terrestrial deserts. TWELVE IDEAS years, after she resided in Holland and then back to the United States. Ocampo has received many prizes among them: the Woman You of the Year of the Science of the Feminine Commission in The MUST KNOW ABOUT When she was a girl did not like to play 8 Angels in 1992 and Science and Technology of the Federation with dolls, she preferred rising to her Chicano in 1997. house terrace with “Taurus”, her dog ADRIANA C. OCAMPO URIA María Camila Arbeláez Ilustración: 2 and observing the stars from there, she felt a Adriana is compared with Marie Curie (A rewarded Nobel prize Our guess in this occasion is the Colombian researcher that is the great curiosity to know why those dots in the of physics and chemistry), for her tenacity and for her exploits in closest to the Moon person, because she lives literally looking at the sky were shining differently from one another. 9 the space like: the Voyager, Viking, Mars Observer and Express. sky and the stars. She works for the division of Planetary Sciences She wished to have a telescope to But the most important is the Mission Juno, which was sent at NASA, where she is in charge of missions that include the study of observe the stars closely so that her in August, 2011 towards Jupiter in the rocket Atlas V551.
    [Show full text]
  • A Guide to Smartphone Astrophotography National Aeronautics and Space Administration
    National Aeronautics and Space Administration A Guide to Smartphone Astrophotography National Aeronautics and Space Administration A Guide to Smartphone Astrophotography A Guide to Smartphone Astrophotography Dr. Sten Odenwald NASA Space Science Education Consortium Goddard Space Flight Center Greenbelt, Maryland Cover designs and editing by Abbey Interrante Cover illustrations Front: Aurora (Elizabeth Macdonald), moon (Spencer Collins), star trails (Donald Noor), Orion nebula (Christian Harris), solar eclipse (Christopher Jones), Milky Way (Shun-Chia Yang), satellite streaks (Stanislav Kaniansky),sunspot (Michael Seeboerger-Weichselbaum),sun dogs (Billy Heather). Back: Milky Way (Gabriel Clark) Two front cover designs are provided with this book. To conserve toner, begin document printing with the second cover. This product is supported by NASA under cooperative agreement number NNH15ZDA004C. [1] Table of Contents Introduction.................................................................................................................................................... 5 How to use this book ..................................................................................................................................... 9 1.0 Light Pollution ....................................................................................................................................... 12 2.0 Cameras ................................................................................................................................................
    [Show full text]
  • Infinity 60AZ and 70AZ Manual (Size: 2.3
    www.meade.com MEADE INSTRUCTION MANUAL 60mm | 2.4” Alt-azimuth Refracting Telescope 70mm | 2.8” Alt-azimuth Refracting Telescope INFINITY SERIES 60 & 70mm Telescopes WARNING! Never use a Meade® telescope to look at the Sun! Looking at or near the Sun will cause instant and irreversible damage to your eye. Eye damage is often painless, so there is no warning to the observer that damage has occurred until it is too late. Do not point the telescope at or near the Sun. Do not look through the telescope or viewfinder as it is moving. Children should always have adult supervision while observing. INTRODUCTION determines how much detail you will be Your telescope is an excellent beginner’s able to see in your telescope. The focal instrument, and is designed to observe length information will help later on to 1 objects in the sky and also on land. It can calculate magnification. be your personal window on the universe or allows you to intimately study the behavior of Setting up your telescope involves these nesting birds on a distant hillside. simple steps: • Setting up your tripod The telescope is shipped with the following • Attach the accessory tray parts: • Attach the optical tube to the mount • Optical tube • Attach the viewfinder • Aluminum tripod with accessory tray • Attach the diagonal mirror and eye- • Two 1.25” eyepieces: MA25mm, MA9mm piece • 90 degree erect image diagonal mirror • Align the viewfinder • 2X Barlow • Red-dot viewfinder with bracket Study the picture on the next page and • Yoke-style mount become acquainted with the parts of your telescope.
    [Show full text]
  • The UTB/TSC Physics and Astronomy Department, the Center for Gravitational Wave Astronomy, and the Brownsville Alliance for Science Education Host Mars Viewing
    The UTB/TSC Physics and Astronomy Department, the Center for Gravitational Wave Astronomy, and the Brownsville Alliance for Science Education Host Mars Viewing Quick Guide to the Mars Opposition of August 2003 What is Mars? Mars is the fourth planet from the Sun, or the next planet out from the Earth. Often visible with the unaided eye, it has long been a source of fascination. Mars is about half the size of the Earth (in diameter). Its atmosphere is much thinner than the Earth's, and is mostly carbon dioxide. The average temperature on Mars is -45° C (-50° F), although it can range from -100° to 0° C (-150° to 30° F). Liquid water cannot exist on Mars on the surface. The time for Mars to complete one orbit around the Sun, the Martian year, is 687 days or 1.88 of our years. But Mars rotates on its axis once every 24 hours and 37 minutes, very similar to our day. The surface of Mars is rock and dust. There are many craters from the impacts of comets and asteroids, but there are also vast plains with extinct volcanoes larger than any on Earth, a rift Mars as seen by the Viking 1 valley the length of the United States, and channels apparently cut by running water sometime orbiter. Valles Marineris in the past. Mars appears orange with dark brown regions of wind-blown dust. There are also (Mariner Valley) cuts across the white polar caps of ice and dry ice (frozen water and frozen carbon dioxide) which expand center from left to right.
    [Show full text]